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cluster.Gen(clusterSim) 

 

Random cluster generation with known structure of clusters 
 

Models 

Metric data (dataType="m") 

model=1. No cluster structure. The observations are simulated from the uniform distribution over 

the unit hypercube. 

model=2. The observations are independently drawn from normal distribution with means and 

covariances are taken from arguments means and cov. 

model=3. Two elongated clusters in 2 dimensions. The observations in each of two clusters are 

independent bivariate normal random variables with means (0, 0), (1, 5), and covariance matrix ∑ 

(𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = −0.9). 

model=4. Three elongated clusters in 2 dimensions. The observations are independently drawn 

from bivariate normal distribution with means (0, 0), (1.5, 7), (3, 14) and covariance matrix ∑ (𝜎𝑗𝑗 =

1, 𝜎𝑗𝑙 = −0.9). 

model=5. Three elongated clusters in 3 dimensions. The observations are independently drawn 

from multivariate normal distribution with means (1.5, 6, –3), (3, 12, –6), (4.5, 18, –9), and identity 

covariance matrix ∑, where 𝜎𝑗𝑗 = 1 (1 ≤ 𝑗 ≤ 3), 𝜎12 = 𝜎13 = −0.9, and 𝜎23 = 0.9. 

model=6. Five clusters in 2 dimensions that are not well separated. The observations are inde-

pendently drawn from bivariate normal distribution with means (5, 5), (–3, 3), (3, –3), (0, 0), (–5, –

5), and identity covariance matrix ∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0.9). 

model=7. Five clusters in 3 dimensions that are not well separated. The observations are inde-

pendently drawn from multivariate normal distribution with means (5, 5, 5), (–3, 3, –3), (3, –3, 3), (0, 

0, 0), (–5, –5, –5), and covariance matrix ∑, where 𝜎𝑗𝑗 = 1 (1 ≤ 𝑗 ≤ 3), and 𝜎𝑗𝑙 = 0.9 (1 ≤ 𝑗 ≠ 𝑙 ≤

3). 

model=8. Five clusters in 2 dimensions. The observations are independently drawn from bivari-

ate normal distribution with means (0, 0), (0, 10), (5, 5), (10, 0), (10, 10), and identity covariance 

matrix ∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0). 

model=9. Five clusters in 3 dimensions. The observations are independently drawn from multi-

variate normal distribution with means (0, 0, 0), (10, 10, 10), (–10, –10, –10), (10, –10, 10), (–10, 10, 

10), and identity covariance matrix ∑, where 𝜎𝑗𝑗 = 3 (1 ≤ 𝑗 ≤ 3), and 𝜎𝑗𝑙 = 2 (1 ≤ 𝑗 ≠ 𝑙 ≤ 3). 

model=10. Four clusters in 2 dimensions. The observations are independently drawn from biva-

riate normal distribution with means (–4, 5), (5, 14), (14, 5), (5, –4), and identity covariance matrix 

∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0). 

model=11. Four clusters in 3 dimensions. The observations are independently drawn from mul-

tivariate normal distribution with means (–4, 5, –4), (5, 14, 5), (14, 5, 14), (5, –4, 5), and identity 

covariance matrix ∑, where 𝜎𝑗𝑗 = 1 (1 ≤ 𝑗 ≤ 3), and 𝜎𝑗𝑙 = 0 (1 ≤ 𝑗 ≠ 𝑙 ≤ 3). 

model=12. Four clusters in 1 dimension. The observations are independently drawn from uni-

variate normal distribution with means –2, 4, 10, 16 respectively, and identity variance 𝜎𝑗
2 = 0.5 (1 ≤

𝑗 ≤ 4). 
model=13. Three elongated clusters in 2 dimensions. The observations are independently drawn 

from bivariate normal distribution with means (0, 0), (1.5, 7), (3, 14) and covariance matrices ∑1 =

[
1 −0.9

−0.9 1
], ∑2 = [

1.5 0
0 1.5

], ∑3 = [
1 0.5
0.5 1

]. 

model=14. Four clusters in 3 dimensions. The observations are independently drawn from mul-

tivariate normal distribution with means (–4, 5, –4), (5, 14, 5), (14, 5, 14), (5, –4, 5), and covariance 

matrices ∑1 = [
1 0 0
0 1 0
0 0 1

], ∑2 = [
1 −0.9 −0.9

−0.9 1 0.9
−0.9 0.9 1

], ∑3 = [
1 0.9 0.9
0.9 1 0.9
0.9 0.9 1

], ∑4 = [
3 2 2
2 3 2
2 2 3

]. 
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model=15. Five clusters in 3 dimensions that are not well separated. The observations are inde-

pendently drawn from multivariate normal distribution with means (5, 5, 5), (–3, 3, –3), (3, –3, 3), (0, 

0, 0), (–5, –5, –5), and covariance matrices ∑1 = [
1 −0.9 −0.9

−0.9 1 0.9
−0.9 0.9 1

], ∑2 = [
0.5 0 0
0 1 0
0 0 2

], ∑3 =

[
1 0.9 0.9
0.9 1 0.9
0.9 0.9 1

], ∑4 = [
1 0.6 0.6
0.6 1 0.6
0.6 0.6 1

], ∑5 = [
1 0 0
0 1 0
0 0 1

]. 

model=16. Two elongated clusters in 2 dimensions. The observations in each of two clusters are 

independent bivariate normal random variables with means (0, 0), (1, 5), and covariance matrices 

∑1 = [
1 −0.9

−0.9 1
], ∑2 = [

1 0.5
0.5 1

]. 

model=21,22,... – if fixedCov=TRUE means should be read from means_<mod-

elNumber>.csv and covariance matrix for all clusters should be read from cov_<modelNumber>.csv 

and if fixedCov=FALSE means should be read from means_<modelNumber>.csv and covariance 

matrices should be read separately for each cluster from cov_<modelNumber>_<cluster-

Number>.csv, e.g. (inputType="csv") 

 

means_21.csv 
"V1","V2" 

"1",4,8 

"2",0,4 

cov_21_1.csv 
"V1","V2" 

"1",1.0,0.9 

"2",0.9,1.0 

cov_21_2.csv 
"V1","V2" 

"1",1.0,-0.9 

"2",-0.9,1.0 

 

Ordinal data (dataType="o"). The clusters in models 1, 2, ... contain continuous data and a 

discretization process is performed on each variable to obtain ordinal data. The number of categories 

𝑘𝑗 determines the width of each class intervals:[𝑚𝑎𝑥
𝑖

{𝑥𝑖𝑗) − 𝑚𝑖𝑛
𝑖
{𝑥𝑖𝑗}] 𝑘𝑗⁄ . Independently for each 

variable each class interval receive category 1,… , 𝑘𝑗  and the actual value of variable 𝑥𝑖𝑗 is replaced 

by these categories. 

Symbolic interval data (dataType="s"). To obtain symbolic interval data the data were gener-

ated for each model twice into sets A and B and minimal (maximal) value of {𝑥𝑖𝑗
𝐴 , 𝑥𝑖𝑗

𝐵} is treated as 

the beginning (the end) of an interval. 

 

Noisy variables. The noisy variables are simulated independently from the uniform distribution. 

We require that the variations of noisy variables in the generated data are similar to non-noisy varia-

bles (see Milligan [1985], Qiu and Joe [2006], p. 322). 

Outliers (for metric and symbolic interval data only). The outliers are generated independently for 

each variable for the whole data set from uniform distribution (the default range is [1, 10]). The gen-

erated values are randomly added to maximum of j-th variable or subtracted from minimum of j-th 

variable.  
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