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Introduction

The Vienna Computing Library (ViennaClL) is a scientific computing library written in
C++. It allows simple, high-level access to the vast computing resources available on par-
allel architectures such as GPUs and multi-core CPUs by using either a host-based com-
puting backend, an OpenCL computing backend, or CUDA. The primary focus is on common
linear algebra operations (BLAS levels 1, 2 and 3) and the solution of large sparse systems
of equations by means of iterative methods. In ViennaCL 1.5.x, the following iterative
solvers are implemented (confer for example to the book of Y. Saad [1]):

e Conjugate Gradient (CG)
e Stabilized BiConjugate Gradient (BiCGStab)
e Generalized Minimum Residual (GMRES)

A number of preconditioners is provided with ViennaCL 1.5.2 in order to improve con-
vergence of these solvers, cf. Chap. 4.

The solvers and preconditioners can also be used with different libraries due to their
generic implementation. At present, it is possible to use the solvers and precondition-
ers directly with types from the uBLAS library, which is part of Boost [2]. The iterative
solvers can directly be used with Eigen [3] and MTL 4 [4].

Under the hood, ViennaCL uses a unified layer to access CUDA [5], OpenCL [6], and/or
OpenMP [7] for accessing and executing code on compute devices. Therefore, ViennaCL
is not tailored to products from a particular vendor and can be used on many different
platforms. At present, ViennaCL is known to work on all current CPUs and modern GPUs
from NVIDIA and AMD (see Tab. 1), CPUs using either the AMD Accelerated Parallel
Processing (APP) SDK (formerly ATI Stream SDK) or the Intel OpenCL SDK, and Intels
MIC platform (Xeon Phi).

Double precision arithmetic on GPUs is only possible if it is provided by the GPU.
There is no double precision emulation in ViennaCL.

Double precision arithmetic using the ATI Stream SDK or AMD APP SDK may
not be fully OpenCL-certified. Also, we have observed bugs in AMD APP SDKs 2.7
which affects some algorithms in ViennacCL (e.g. BiICGStab).

A
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Compute Device float double
NVIDIA Geforce 86XX GT/GSO ok -
NVIDIA Geforce 88XX GTX/GTS | ok -
NVIDIA Geforce 96XX GT/GSO ok -
NVIDIA Geforce 98XX GTX/GTS | ok -
NVIDIA GT 230 ok -
NVIDIA GT(S) 240 ok -
NVIDIA GTS 250 ok -
NVIDIA GTX 260 ok ok
NVIDIA GTX 275 ok ok
NVIDIA GTX 280 ok ok
NVIDIA GTX 285 ok ok
NVIDIA GTX 4XX ok ok
NVIDIA GTX 5XX ok ok
NVIDIA GTX 6XX ok ok
NVIDIA Quadro FX 46XX ok -
NVIDIA Quadro FX 48XX ok ok
NVIDIA Quadro FX 56XX ok -
NVIDIA Quadro FX 58XX ok ok
NVIDIA Tesla 870 ok -
NVIDIA Tesla C10XX ok ok
NVIDIA Tesla C20XX ok ok

ATI Radeon HD 4XXX ok -

ATI Radeon HD 48XX ok | essentially ok
ATI Radeon HD 5XXX ok -

ATI Radeon HD 58XX ok | essentially ok
ATI Radeon HD 59XX ok | essentially ok
ATI Radeon HD 68XX ok -

ATI Radeon HD 69XX ok | essentially ok
ATI Radeon HD 77XX ok -

ATI Radeon HD 78XX ok -

ATI Radeon HD 79XX ok | essentially ok
ATI FireStream V92XX ok | essentially ok
ATI FirePro V78XX ok | essentially ok
ATI FirePro V87XX ok | essentially ok
ATI FirePro V88XX ok | essentially ok

Table 1: Available arithmetics in ViennaCL provided by selected GPUs. Some older ver-
sions of the Stream SDK (APP SDK) from AMD/ATI may not comply to the OpenCL stan-
dard for double precision extensions.



Chapter 1

Installation

This chapter shows how ViennaCL can be integrated into a project and how the examples
are built. The necessary steps are outlined for several different platforms, but we could
not check every possible combination of hardware, operating system and compiler. If you
experience any trouble, please write to the maining list at

viennacl-support@lists.sourceforge.net

1.1 Dependencies

ViennaCL uses the CMake build system for multi-platform support. Thus, before you pro-
ceed with the installation of ViennaCL, make sure you have a recent version of CMake
installed.

To use ViennaCL, only the following minimal prerequisite has to be fulfilled:

e A fairly recent C++ compiler (e.g. GCC version 4.2.x or above and Visual C++ 2005 and
2010 are known to work)

The full potential of ViennaCL is available with the following optional libraries:

e CMake [8] as build system (optional, but highly recommended for building examples)
e OpenCL [6, 9] for accessing compute devices (GPUs); see Section 1.3 for details.

e CUDA [5] for using CUDA-accelerated operations.

e OpenMP [7] for directive-based parallelism on CPUs.

e uBLAS (shipped with Boost [2]) provides the same interface as ViennaCL and allows
to switch between CPU and GPU seamlessly, see the tutorials.

e Eigen [3] can be used to fill viennaCL types directly. Moreover, the iterative solvers
in ViennaCL can directly be used with Eigen objects.

e MTL 4 [4] can be used to fill viennaCL types directly. Even though MTL 4 provides
its own iterative solvers, the ViennaCL solvers can also be used with MTL 4 objects.



1.2 Generic Installation of ViennaCL

Since ViennaCL is a header-only library, it is sufficient to copy the folder viennac1/ either
into your project folder or to your global system include path. On Unix based systems, this
is often /usr/include/ or /usr/local/include/. If the OpenCL headers are not installed
on your system, you should repeat the above procedure with the folder c1./.

On Windows, the situation strongly depends on your development environment. We advise
users to consult the documentation of their compiler on how to set the include path cor-
rectly. With Visual Studio this is usually something like C:\Program Files\Microsoft
Visual Studio 9.0\VC\include and can be setin Tools -> Options -> Projects
and Solutions —-> VC++-Directories. For using the CUDA backend, simply make
sure that the cCUDA SDK is installed properly. If you wish to use the OpenCL backend,
the include and library directories of your OpenCL SDK should also be added there.

If multiple OpencCL libraries are available on the host system, viennaCL uses the A
first platform returned by the system. Consult Chap. 8 for configuring the use of
other platforms.

1.3 Get the OpencCL Library

In order to compile and run OpenCL applications, a corresponding library (e.g. 1ibOpenCL. so
under Unix based systems) and is required. If OpenCL is to be used with GPUs, suitable
drivers have to be installed. This section describes how these can be acquired.

Note, that for Mac OS X systems there is no need to install an OpenCL capable @
driver and the corresponding library. The OpencCL library is already present if a

suitable graphics card is present. The setup of ViennaCL on Mac OS X is discussed

in Section 1.5.2.

1.3.1 NVIDIA Driver

NVIDIA provides the OpencCL library with the GPU driver. Therefore, if a NVIDIA driver
is present on the system, the library is too. However, not all of the released drivers contain
the OpencCL library. A driver which is known to support OpenCL, and hence providing the
required library, is 260.19.21. Note that the latest NVIDIA drivers do not include the
OpenCL headers anymore. Therefore, the official OpenCL headers from the Khronos group
[6] are also shipped with ViennaCL in the folder cL/.

1.3.2 AMD Accelerated Parallel Processing SDK (formerly Stream SDK)

AMD has provided the OpencCL library with the Accelerated Parallel Processing (APP)
SDK [10] previously, now the OpenCL library is also included in the GPU driver. At the
release of ViennaCL 1.5.2, the latest version of the SDK is 2.7. If used with AMD GPUs,
recent AMD GPU drivers are typically required. If ViennaCL is to be run on multi-core



CPUs, no additional GPU driver is required. The installation notes of the APP SDK pro-
vides guidance throughout the installation process [11].

If the SDK is installed in a non-system wide location on UNIX-based systems, @
be sure to add the OpencCL library path to the LD_LIBRARY PATH environment
variable. Otherwise, linker errors will occur as the required library cannot be

found.

It is important to note that the AMD APP SDK may not provide OpencCL certified double
precision support [12] on some CPUs and GPUs.

Unfortunately, some versions of the AMD APP SDK are known to have bugs. For A
example, APP SDK 2.7 on Linux causes BiCGStab to fail on some devices.

1.3.3 INTEL OpenCL SDK

ViennaCL works fine with the INTEL OpenCL SDK on Windows and Linux. The correct
linker path is set automatically in CMakeLists.txt when using the CMake build system,
cf. Sec. 1.2.

1.4 Enabling OpenMP, OpenCL, or CUDA Backends

The new default behavior in ViennaCL 1.4.0 is to use the CPU backend. OpenCL @
and CUDA backends need to be enabled by appropriate preprocessor #defines.

By default, viennaCL now uses the single-threaded/OpenMP-enabled CPU backend. The
OpenCL and the CUDA-backend need to be enabled explicitly by using preprocessor con-
stants as follows:

Preprocessor #define | Default computing backend

none CPU, single-threaded
VIENNACL_WITH_OPENMP | CPU with OpenMP (compiler flags required)
VIENNACL_WITH_OPENCL | OpenCL

VIENNACL_WITH_CUDA CUDA

The preprocessor constants can be either defined at the beginning of the source file (prior
to any ViennaCL-includes), or passed to the compiler as command line argument. For
example, on g++ the respective command line option for enabling the OpenCL backend
is ~-DVIENNACL_WITH_OPENCL. Note that CUDA requires the nvcc compiler. Furthermore,
the use of OpenMP usually requires additional compiler flags (on g++ this is for example
—fopenmp).

The CUDA backend requires a compilation using nvcc. @

Multiple backends can be used simultaneously. In such case, cupa has higher priority than



OpencL, which has higher priority over the CPU backend when it comes to selecting the
default backend.

1.5 Building the Examples and Tutorials

For building the examples, we suppose that CMake is properly set up on your system. The
other dependencies are listed in Tab. 1.1.

Before building the examples, customize CMakeLists.txt in the ViennaCL root folder
for your needs. Per default, all examples using uBLAS, Eigen and MTL4 are turned off.
Please enable the respective examples based on the libraries available on your machine.
Directions on how to accomplish this are given directly within the CMakeLists.txt file.
A brief overview of the most important flags is as follows:

CMake Flag Purpose

ENABLE_CUDA Builds examples with the cUDA backend enabled
ENABLE_OPENCL | Builds examples with the OpenCL backend enabled
ENABLE_OPENMP | Builds examples with OpenMP for the CPU backend enabled
ENABLE_EIGEN | Builds examples depending on Eigen

ENABLE_MTL4 Builds examples depending on MTL 4

ENABLE_UBLAS | Builds examples depending on uBLAS

1.5.1 Linux

To build the examples, open a terminal and change to:

$> cd /your-ViennaCL-path/build/

Execute

$> cmake ..

to obtain a Makefile and type

$> make

to build the examples. If some of the dependencies in Tab. 1.1 are not fulfilled, you can
build each example separately:

$> make blasl #builds the blas level 1 tutorial
$> make vectorbench #builds vector benchmarks

Speed up the building process by using jobs, e.g. make -74.

Execute the examples from the bui1ld/ folder as follows:

$> examples/tutorial/blasl
$> examples/benchmarks/vectorbench

Note that all benchmark executables carry the suffix bench.



Use the CMake-GUI via cmake-gui .. within the build/ folder in order to enable
or disable optional libraries conveniently.

1.5.2 MacOS X

The tools mentioned in Section 1.1 are available on Macintosh platforms too. For the GCC
compiler the Xcode [13] package has to be installed. To install CMake and Boost external
portation tools have to be used, for example, Fink [14], DarwinPorts [15] or MacPorts [16].
Such portation tools provide the aforementioned packages, CMake and Boost, for macin-
tosh platforms.

If the CMake build system has problems detecting your Boost libraries, deter-
mine the location of your Boost folder. Open the CMakeLists.txt file in the
root directory of ViennaCL and add your Boost path after the following entry:
IF (SCMAKE_SYSTEM_NAME MATCHES "Darwin")

The build process of ViennaCL on Mac OS is similar to Linux.

1.5.3 Windows

In the following the procedure is outlined for Visual Studio: Assuming that an OpenCL
SDK and CMake is already installed, Visual Studio solution and project files can be created
using CMake:

e Open the cMake GUL
e Set the ViennaCL base directory as source directory.
e Set the build/ directory as build directory.

e Click on ’Configure’ and select the appropriate generator (e.g. Visual Studio 9
2008).

e If you set ENABLE_CUDA, ENABLE_CUDA, ENABLE_MTL4, or ENABLE_OPENCL and the paths
cannot be found, please select the advanced view and provide the required paths
manually.

e If you set ENABLE_UBLAS and the paths cannot be found, please select the advanced
view and provide the required paths manually. You may have to specify the linker
path for Boost manually within your Visual Studio IDE.

e Click again on ’Configure’. You should not receive an error at this point.
e Click on ’Generate’.

e The project files can now be found in the ViennaCL build directory, where they can be
opened and compiled with Visual Studio (provided that the include and library paths
are set correctly, see Sec. 1.2).



The examples and tutorials should be executed from within the build/ directory @
of ViennaCL, otherwise the sample data files cannot be found.



Example/Tutorial

Dependencies

tutorial/amg.cpp
tutorial/bandwidth-reduction.cpp
tutorial/blasl.cpp/cu

OpenCL, uBLAS

tutorial/blas2.cpp/cu uBLAS
tutorial/blas3.cpp/cu uBLAS
tutorial/custom-kernels.cpp OpenCL
tutorial/custom—-context.cpp OpenCL
tutorial/eigen-with-viennacl.cpp | Eigen
tutorial/fft.cpp OpenCL
tutorial/iterative.cpp/cu uBLAS
tutorial/iterative—-ublas.cpp uBLAS
tutorial/iterative-eigen.cpp Eigen
tutorial/iterative-mtl4.cpp MTL 4
tutorial/lanczos.cpp/cu uBLAS
tutorial/libviennacl.cpp/cu -
tutorial/least—-squares.cpp/cu uBLAS
tutorial/matrix-range.cpp/cu uBLAS
tutorial/mtl4-with-viennacl.cpp | MTL 4
tutorial/multithreaded.cpp/cu Boost
tutorial/multithreaded._cg.cpp/cu | Boost
tutorial/power—-iter.cpp/cu uBLAS
tutorial/qgr.cpp/cu uBLAS

tutorial/scheduler.cpp
tutorial/spai.cpp
tutorial/sparse.cpp/cu
tutorial/structured-matrices.cpp
tutorial/vector-range.cpp/cu

OpenCL, uBLAS
uBLAS
OpenCL, uBLAS
uBLAS

tutorial/viennacl-info.cpp OpenCL
tutorial/wrap—-cuda-buffer.cu CUDA
tutorial/wrap-host-buffer.cpp -
benchmarks/blas3.cpp/cu -
benchmarks/opencl.cpp OpenCL
benchmarks/solver.cpp/cu uBLAS
benchmarks/sparse.cpp/cu uBLAS

benchmarks/vector.cpp/cu

Table 1.1: Dependencies for the examples in the examples/ folder. Examples using the
CUDA-backend use the .cu file extension. Note that all examples can be run using either
of the CPU, OpenCL, and CUDA backend unless an explicit OpenCIl-dependency is stated.



Part 1

Core Functionality

The ViennaCL core consists of operations and algorithms which are available on all three
computing backends (CUDA, host-based, OpenCL). These features are considered stable and
full support is provided. However, note that performance-characteristics may differ consid-
erably on the different computing backends. In particular, the use of GPUs will not pay off
if the data is too small, hence PCI-Express latency is dominant.
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Chapter 2

Basic Types

This chapter provides a brief overview of the basic interfaces and usage of the provided
data types. Operations on the various types are explained in Chapter 3. For full details,
refer to the reference pages in the folder doc/doxygen.

2.1 Scalar Type

The scalar type scalar<T> with template parameter T denoting the underlying CPU scalar
type (char, short, int, long, float and double, if supported - see Tab. 1) represents a
single scalar value on the computing device. scalar<T> is designed to behave much like a
scalar type on conventional host-based CPU processing, but library users have to keep in
mind that every operation on scalar<T> may require the launch of an appropriate compute
kernel on the GPU, thus making the operation much slower then the conventional CPU
equivalent. Even if the host-based computing backend of ViennaCL is used, some (small)
overheads occur.

Be aware that operations between objects of type scalar<T> (e.g. additions. com- A
parisons) have large overhead on GPU backends. A separate compute kernel
launch is required for every operation in such case.

2.1.1 Example Usage

The scalar type of ViennaCL can be used just like the built-in types, as the following
snippet shows:

float cpu_float = 42.0f;

double cpu_double = 13.7603;
viennacl::scalar<float> gpu_float (3.1415f);
viennacl::scalar<double> gpu_double = 2.71828;

//conversions
cpu_float = gpu_float;
gpu_float cpu_double; //automatic transfer and conversion

cpu_float = gpu_float * 2.0f;
cpu_double = gpu_float - cpu_float;

11



Interface | Comment
v.handle () | The memory handle (CPU, CUDA, or OpenCL)

Table 2.1: Interface of vector<T> in ViennaCL. Destructors and operator overloads for
BLAS are not listed.

Mixing built-in types with the ViennaCL scalar is usually not a problem. Nevertheless,
since every operation requires OpenCL calls, such arithmetics should be used sparsingly.

In the present version of ViennaCl, it is not possible to assign a scalar<float> A
to a scalar<double> directly.

Mixing operations between objects of different scalar types is not supported. Con- A
vert the data manually on the host if needed.

2.1.2 Members

Apart from suitably overloaded operators that mimic the behavior of the respective CPU
counterparts, only a single public member function handle () is available, cf. Tab. 2.1.

2.2 Vector Type

The main vector type in ViennaCL is vector<T, alignment>, representing a chunk of
memory on the compute device. T is the underlying scalar type (char, short, int, long, €i-
ther float, or double if supported, cf. Tab. 1, complex types are not supported in ViennaCL
1.5.2). The second template argument alignment is deprecated and should not be pro-
vided by the library user.

At construction, vector<T, alignment>> is initialized to have the supplied length, but
the memory is not initialized to zero. Another difference to CPU implementations is that
accessing single vector elements is very costly, because every time an element is accessed,
it has to be transferred from the CPU to the compute device or vice versa.

2.2.1 Example Usage

The following code snippet shows the typical use of the vector type provided by ViennacCL.
The overloaded function copy () function, which is used similar to std: :copy () from the
C++ Standard Template Library (STL), should be used for writing vector entries:

std::vector<ScalarType> stl_vec (10);
viennacl::vector<ScalarType> vcl_vec(10);

//fill the STL vector:
for (size_t 1=0; i<stl_vec.size(); ++1)
stl_vec[i] = 1i;

//copy content to GPU vector (recommended initialization)

12



copy (stl_vec.begin(), stl_vec.end(), vcl_vec.begin());
//manipulate GPU vector here

//copy content from GPU vector back to STL vector
copy (vcl_vec.begin(), vcl_vec.end(), stl_vec.begin());

The function copy() does not assume that the values of the supplied CPU object are @
located in a linear memory sequence. If this is the case, the function fast_copy
provides better performance.

Once the vectors are set up on the GPU, they can be used like objects on the CPU (refer to
Chapter 3 for more details):

// let vcl_vecl and vcl_vec2 denote two vector on the GPU
vcl_vecl *x= 2.0;

vcl_vec2 += vcl_vecl;

vcl_vecl = vcl_vecl - 3.0 x vcl_vec?2;

2.2.2 Members

At construction, vector<T, alignment>> is initialized to have the supplied length, but
memory is not initialized. If initialization is desired, the memory can be initialized with
zero values using the member function clear (). See Tab. 2.2 for other member functions.

Accessing single elements of a vector using operator() or operator[] is very slow for A
GPUs due to PCI-Express latency! Use with care!

One important difference to pure CPU implementations is that the bracket operator as well
as the parenthesis operator are very slow, because for each access an OpenCL data transfer
has to be initiated. The overhead of this transfer is orders of magnitude. For example:

// fill a vector on CPU
for (size_t 1i=0; i<cpu_vector.size(); ++1i)
cpu_vector (i) = 1le-3f;

// fill a ViennaCL vector - VERY SLOW with GPU backends!!
for (size_t 1i=0; i<gpu_vector.size(); ++1)
vcl_vector (i) = le-3f;

The difference in execution speed is typically several orders of magnitude, therefore direct
vector element access should be used only if a very small number of entries is accessed in
this way. A much faster initialization is as follows:

// fill a vector on CPU
for (long i=0; i<cpu_vector.size(); ++1i)
cpu_vector (i) = le-3f;

// fill a vector on GPU with data from CPU - faster versions:
copy (cpu_vector, vcl_vector); //option 1
copy (cpu_vector.begin (), cpu_vector.end(), vcl_vector.begin()); //option 2

13



Interface

Comment

CTOR (n) Constructor with number of entries

v (1) Access to the i-th element of v (slow for GPUs!)
v[i] Access to the i-th element of v (slow for GPUs!)
v.clear () Initialize v with zeros

v.resize (n, bool preserve) Resize v to length n. Preserves old values if bool

is true.

v.begin () Iterator to the begin of the matrix

v.end () Iterator to the end of the matrix

v.size () Length of the vector

v.swap (v2) Swap the content of v with v2
v.internal_size () Returns the number of entries allocated on the

GPU (taking alignment into account)

v.empty () Shorthand notation for v.size () == 0
v.clear () Sets all entries in v to zero
v.handle () Returns the memory handle (needed for custom

kernels, see Chap. 9)

Table 2.2: Interface of vector<T> in ViennaCL. Destructors and operator overloads for
BLAS are not listed.

In this way, setup costs for the CPU vector and the VviennaCL vector are comparable.

2.3 Dense Matrix Type

matrix<T, F, alignment> represents a dense matrix with interface listed in Tab. 2.3.
The second optional template argument F specifies the storage layout and defaults to
row.major. As an alternative, a column_major memory layout can be used. The third
template argument alignment denotes an alignment for the rows and columns for row-
major and column-major memory layout and should no longer be specified by the user
(cf. alignment for the vector type).

2.3.1 Example Usage

The use of matrix<T, F> is similar to that of the counterpart in uBLAS. The operators
are overloaded similarly.

//set up a 3 by 5 matrix:

viennacl::matrix<float> vcl_matrix (4, 5);

//fill it up:

vcl_matrix(0,2) = 1.0;
vcl_matrix(1,2) = -1.5;
vcl_matrix(2,0) = 4.2;
vcl_matrix (3,4) = 3.1415;

14



Interface Comment

CTOR (nrows, ncols) Constructor with number of rows and columns
mat (i, j) Access to the element in the i-th row and the ;-
th column of mat

mat.resize(m, n,

Resize mat to m rows and n columns. Currently,
bool preserve)

the boolean flag is ignored and entries always

discarded.
mat.sizel () Number of rows in mat
mat.internal_sizel () Internal number of rows in mat
mat.size2 () Number of columns in mat
mat.internal_size2 () Internal number of columns in mat
mat.clear () Sets all entries in v to zero
mat .handle () Returns the memory handle (needed for custom

kernels, see Chap. 9)

Table 2.3: Interface of the dense matrix type matrix<T, F> in ViennaCL. Constructors,
Destructors and operator overloads for BLAS are not listed.

Accessing single elements of a matrix using operator () is very slow on GPU
backends! Use with care!

A much better way is to initialize a dense matrix using the provided copy () function:

//copy content from CPU matrix to GPU matrix
copy (cpu_matrix, gpu_matrix);

//copy content from GPU matrix to CPU matrix
copy (gpu_matrix, cpu_matrix);

The type requirement on the cpu_matrix is that operator () can be used for accessing
entries, that a member function sizel () returns the number of rows and that size2 ()
returns the number of columns. Please refer to Chap. 5 for an overview of other libraries
for which an overload of copy () is provided.

The internal memory buffer of a matrix<> is by default padded with zeros so that A
the internal matrix size is a multiple of e.g. a power of two.

2.3.2 Members

The members are listed in Tab. 2.3. The usual operator overloads are not listed explicitly

2.4 Sparse Matrix Types

There are five different sparse matrix types provided in ViennaCL, compressed_matrix,
coordinate_matrix, ell_matrix, hyb_matrix, and compressed_compressed_matrix.
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Interface Comment

CTOR (nrows, ncols) Constructor with number of rows and
columns

mat.set () Initialize mat with the data provided as ar-
guments

mat .reserve (num) Reserve memory for up to num nonzero en-
tries

mat.sizel () Number of rows in mat

mat.size2 () Number of columns in mat

mat.nnz () Number of nonzeroes in mat

mat .resize (m, n,

Resize mat to m rows and n columns. Cur-
bool preserve)

rently, the boolean flag is ignored and entries
always discarded.

mat .handlel () Returns the memory handle holding the
row indices (needed for custom kernels, see
Chap. 9)

mat .handle2 () Returns the memory handle holding the col-
umn indices (needed for custom kernels, see
Chap. 9)

mat .handle () Returns the memory handle holding the en-
tries (needed for custom kernels, see Chap. 9)

Table 2.4: Interface of the sparse matrix type compressed matrix<T, F>in ViennaCL.
Destructors and operator overloads for BLAS are not listed.

2.4.1 Compressed Matrix

compressed matrix<T, alignment> represents a sparse matrix using a compressed
sparse row scheme. Again, T is the floating point type. alignment is the alignment and
defaults to 1 at present. In general, sparse matrices should be set up on the CPU and then
be pushed to the compute device using copy (), because dynamic memory management of
sparse matrices is not provided on OpenCL compute devices such as GPUs.

2.4.1.1 Example Usage

The use of compressed matrix<T, alignment>> is similar to that of the counterpart
in uBLAS. The operators are overloaded similarly. There is a direct interfacing with the
standard implementation using a vector of maps from the STL:

//set up a sparse 3 by 5 matrix on the CPU:
std::vector< std::map< unsigned int, float> > cpu_sparse_matrix(4);

//fill it up:

cpu_sparse_matrix[0][2] = 1.0;
cpu_sparse_matrix[1l][2] = -1.5;
cpu_sparse_matrix[3][0] = 4.2;

//set up a sparse ViennaCL matrix:
viennacl: :compressed_matrix<float> vcl_sparse_matrix (4, 5);
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//copy to OpenCL device:
copy (cpu_sparse_matrix, vcl_sparse_matrix);

//copy back to CPU:
copy (vcl_sparse_matrix, cpu_sparse_matrix);

The copy () functions can also be used with a generic sparse matrix data type fulfilling
the following requirements:

e The const_iteratorl type is provided for iteration along increasing row index
e The const_iterator?2 type is provided for iteration along increasing column index
e .beginl () returns an iterator pointing to the element with indices (0, 0).

e .endl () returns an iterator pointing to the end of the first column

When copying to the cpu type: Write operation via operator ()

e When copying to the cpu type: resize (m, n, preserve) member (cf. Tab. 2.4)

The iterator returned from the cpu sparse matrix type via beginl () has to fulfill the
following requirements:

e .begin () returns an column iterator pointing to the first nonzero element in the
particular row.

e .end () returns an iterator pointing to the end of the row

e Increment and dereference

For the sparse matrix types in uBLAS, these requirements are all fulfilled. Please refer to
Chap. 5 for an overview of other libraries for which an overload of copy () is provided.

2.4.1.2 Members

The interface is described in Tab. 2.4.

2.4.2 Coordinate Matrix

In the second sparse matrix type, coordinate matrix<T, alignment>, entries are
stored as triplets (i, j,val), where i is the row index, j is the column index and val
is the entry. Again, T is the floating point type. The optional alignment defaults to 1 at
present. In general, sparse matrices should be set up on the CPU and then be pushed to the
compute device using copy (), because dynamic memory management of sparse matrices
is not provided on OpenCL compute devices such as GPUs.

2.4.2.1 Example Usage

The use of coordinatematrix<T, alignment>> is similar to that of the first sparse
matrix type compressed matrix<T, alignment>, thus we refer to Sec. 2.4.1.1
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Interface Comment

CTOR (nrows, ncols) Constructor with number of rows and
columns

mat .reserve (num) Reserve memory for num nonzero entries

mat.sizel () Number of rows in mat

mat.size2 () Number of columns in mat

mat.nnz () Number of nonzeroes in mat

mat.resize(m, n, Resize mat to m rows and n columns. Cur-

bool preserve) .. .

rently, the boolean flag is ignored and entries
always discarded.

mat.resize(m, n) Resize mat to m rows and n columns. Does
not preserve old values.

mat .handlel?2 () Returns the memory handle holding the row
and column indices (needed for custom ker-
nels, see Chap. 9)

mat .handle () Returns the memory handle holding the en-
tries (needed for custom kernels, see Chap. 9)

Table 2.5: Interface of the sparse matrix type coordinate matrix<T, A>in ViennaCL.
Destructors and operator overloads for BLAS are not listed.

2.4.2.2 Members

The interface is described in Tab. 2.5.

Note that only a few preconditioners work with coordinate _matrix so far,
cf. Sec. 4.3.

2.4.3 ELL Matrix

A sparse matrix in ELL format of type e11_matrix is stored in a block of memory of size
N X Nmax, Where N is the number of rows of the matrix and n,,,x is the maximum number
of nonzeros per row. Rows with less than n,,,x entries are padded with zeros. In a second
memory block, the respective column indices are stored.

The ELL format is well suited for matrices where most rows have approximately the same
number of nonzeros. This is often the case for matrices arising from the discretization of
partial differential equations using e.g. the finite element method. On the other hand, the
ELL format introduces substantial overhead if the number of nonzeros per row varies a
lot.

For an example use of an e11_matrix, have a look at examples/benchmarks/sparse.cpp.

Note that preconditioners in Sec. 4.3 do not work with e11_matrix yet.
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2.4.4 Hybrid Matrix

The higher performance of the ELL format for matrices with approximately the same num-
ber of entries per row and the higher flexibility of the CSR format is combined in the
hyb_matrix type, where the main part of the system matrix is stored in ELL format and
excess entries are stored in CSR format.

For an example use of an hyb_matrix, have a look at examples/benchmarks/sparse.cpp.

Note that preconditioners in Sec. 4.3 do not work with hyb_matrix yet. A

2.4.5 Compressed Compressed Matrix

If only a few rows of a sparse matrix are populated, then the previous sparse matrix
formats are fairly expensive in terms of memory consumption. This is addressed by the
compressed_compressed_matrix<> format, which is similar to the standard CSR format,
but only stores the rows containing nonzero elements. An additional array is used to store
the global row index r in the sparse matrix A of the i-th nonzero row.

Note that preconditioners in Sec. 4.3 do mnot work with A

compressed_compressed_matrix yet.

2.5 Proxies

Similar to uBLAS, ViennaCL provides range and slice objects in order to conveniently
manipulate dense submatrices and vectors. The functionality is provided in the head-
ers viennacl/vector_proxy.hpp and viennacl/matrix_proxy.hpp respectively. A range
refers to a contiguous integer interval and is set up as

std::size_t lower_bound = 1;
std::size_t upper_bound '
viennacl::range r (lower_bound, upper_bound);

A slice is similar to a range and allows in addition for arbitrary increments (stride). For
example, to create a slice consisting of the indices 2, 5, 8, 11, 14, the code

std::size_t start = 2;
std::size_t stride = 3;
std::size_t size =5

viennacl::slice s(start, stride, size);

In order to address a subvector of a vector v and a submatrix of a matrix v, the proxy
objects v_sub and M_sub are created as follows:

typedef viennacl::vector<ScalarType> VectorType;
typedef viennacl::matrix<ScalarType, viennacl::row_major> MatrixType;

viennacl::vector_range<VCLVectorType> v_sub (v, r);
viennacl::matrix_range<VCLMatrixType> M_sub (M, r, r);
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As a shortcut, one may use the free function project () in order to avoid having to write
the type explicitly:

project (v, r); //returns a vector_range as above
project (M, r, r); //returns a matrix_range as above

In the same way vector_slices and matrix_slices are set up.

The proxy objects can now be manipulated in the same way as vectors and dense matri-
ces. In particular, operations such as vector proxy additions and matrix additions work as
usual, e.g.

vcl_sub += vecl_sub; //or project (v, r) += project (v, r);
M_sub += M_sub; //or project (M, r, r) += project (M, r, r);

Submatrix-Submatrix products are computed in the same manner and are handy for many
block-based linear algebra algorithms.

Example code can be found in examples/tutorial/vector-range.cpp and
examples/tutorial/matrix—-range.cpp
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Chapter 3

Basic Operations

The basic types have been introduced in the previous chapter, so we move on with the de-
scription of the basic BLAS operations. Almost all operations supported by uBLAS are avail-
able, including element-wise operations on vectors. Thus, consider the ublas-documentation
as a reference as well.

3.1 Vector-Vector and Elementary Matrix-Matrix Operations
(BLAS Level 1)

ViennaCL provides all vector-vector operations defined at level 1 of BLAS. Tab. 3.1 shows
how these operations can be carried out in ViennaCL. The function interface is compatible
with uBLAS, thus allowing quick code migration for uBLAS users. Element-wise operations
and standard operator overloads are available for dense matrices as well. The only dense
matrix norm provided is norm_frobenius () for the Frobenius norm.

For full details on level 1 functions, refer to the reference documentation located @
in doc/doxygen/

Mixing operations between objects of different scalar types is not supported. Con- A
vert the data manually on the host if needed.

3.2 Matrix-Vector Operations (BLAS Level 2)

The interface for level 2 BLAS functions in ViennaCL is similar to that of uBLAS and shown
in Tab. 3.2.

For full details on level 2 functions, refer to the reference documentation located @
in doc/doxygen/

A
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Mixing operations between objects of different scalar types is not supported. Con-
vert the data manually on the host if needed.

3.3 Matrix-Matrix Operations (BLAS Level 3)

Full BLAS level 3 support is since ViennaCL 1.1.0, cf. Tab. 3.3. While BLAS levels 1 and
2 are mostly memory-bandwidth-limited, BLAS level 3 is mostly limited by the available
computational power of the respective device. Hence, matrix-matrix products regularly
show impressive performance gains on mid- to high-end GPUs when compared to a single
CPU core.

Again, the ViennaCL API is identical to that of uBLAS and comparisons can be carried out
immediately, as is shown in the tutorial located in examples/tutorial/blas3.cpp.

As for performance, ViennaCL yields decent performance gains at BLAS level 3 on mid-
to high-end GPUs compared to CPU implementations using a single core only. However,
highest performance is usually obtained only with careful tuning to the respective target
device. Generally, ViennaCL provides kernels that represent a good compromise between
efficiency and portability among a large number of different devices and device types.

For certain matrix dimensions, typically multiples of 64 or 128, ViennaCL also
provides tuned kernels reaching over 1 TFLOP in single precision (AMD HD 7970).

Mixing operations between objects of different scalar types is not supported. Con- A
vert the data manually on the host if needed.

3.4 Initializer Types

Initializer types in ViennaCL 1.5.2 can currently only be used for initializing A
vectors and matrices, not for computations!

In order to initialize vectors, the following initializer types are provided, again similar to
uBLAS:

unit_vector<T> (s, 1) Unit vector of size s with entry 1 at index 4, zero else-
where.
zero_vector<T>(s) Vector of size s with all entries being zero.

scalar_vector<T>(s, v) | Vector of size s with all entries equal to v.
random_vector<T> (s, d) | Vector of size s with all entries random according to the
distribution specified by d.

For example, to initialize a vector v1 with all 42 entries being 42.0, use

viennacl::vector<float> vl = viennacl::scalar_vector<float> (42, 42.0f);

Similarly the following initializer types are available for matrices:
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identity _matrix<T>(s, i) Identity matrix of dimension s x s.

zero_matrix<T> (sl, s2) Matrix of size s; x sy with all entries being zero.

scalar_matrix<T>(sl, s2, v) | Matrix of size s; X sy with all entries equal to v.

random_matrix<T>(sl, s2, d) | Vector of size s with all entries random according to the

distribution specified by d.

3.5 Row, Column, and Diagonal Extraction

For many algorithms it is of interest to extract a single row or column of a dense matrix,
or to access the matrix diagonal. This is provided in the same way as for Boost.uBLAS

through the free functions row (), column (), and diag():

// A 1s a viennacl::matrix<T>

// Extract 5-th row of A, then overwrite with 6-th diagonal:
viennacl::vector<T> r = viennacl::row (A, 4);

r = viennacl::row (A, 5);

// Extract 4-th column of A, then overwrite with second column:
viennacl::vector<T> ¢ = viennacl::column (A, 3);
c = viennacl::column (A, 1);

// Extract diagonal:
viennacl::vector<T> d = viennacl::diag(A);

The function diag can also be used to create a matrix which has the provided vector entries

in the off-diagonal:

// Create the matrix

// 01 0 0

// 00 2 0

// 0 0 0 3

viennacl::vector<float> v (3);

v[0] = 1.0f; v[1l] = 2.0f; v[2] = 3.0f;
viennacl::matrix<float> A = viennacl::diag(v, 1);

This is similar to MATLAB’s diag () function.
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Verbal Mathematics ViennaCL

swap Ty swap (x,V);

stretch T — ax x = alpha;
assignment Y x y = X;

multiply add Yy ar+y y += alpha * x;
multiply subtract Yy ar—y y —= alpha * x;

inner dot product a+—zly inner_prod(x,y) ;

L' norm a <+ ||lz||1 alpha = norm_1 (x);

L? norm a <+ ||z[2 alpha = norm_2 (x);
L norm a < ||z]|oo alpha = norm_inf (x);
L norm index i < max; |z i = index_norm_inf (x);
plane rotation (z,y) < (ax + By, —fx + ay) | plane_rotation(a, b, x,
elementwise product Yi < Ti -2 y = element_prod(x,z);
elementwise division Yi — Tj * 24 y = element_div(x, z);
elementwise power yi < y = element_pow (x,z);
elementwise modulus (ints) | y; « |z y = element_abs (x);
elementwise modulus (floats) | y; « |z y = element_fabs (x);
elementwise acos y; < acos(z;) y = element_acos (x);
elementwise asin y; < asin(z;) y = element_asin (x);
elementwise atan y; < atan(x;) y = element_atan (x);
elementwise ceil yi 2] y = element_ceil (x);
elementwise cos y; < cos(x;) y = element_cos (x);
elementwise cosh y; < cosh(x;) y = element_cosh (x) ;
elementwise exp y; < exp(x;) y = element_exp (x);
elementwise floor Yi |2 y = element_floor (x);
elementwise log (base e) yi < In(z;) y = element_log (x);
elementwise log (base 10) yi < logyo(z;) y = element_logl0 (x);
elementwise sin y; < sin(z;) y = element_sin (x);
elementwise sinh y; « sinh(x;) y = element_sinh (x);
elementwise sqrt yi < sqrt(z;) y = element_sqrt (x);
elementwise tan y; < tan(z;) y = element_tan (x);
elementwise tanh y; < tanh(z;) y = element_tanh (x) ;

Table 3.1: BLAS level 1 routines mapped to ViennaCL. Note that the free functions reside
in namespace viennacl::linalg
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Verbal Mathematics ViennaCL

matrix vector product | y + Az y = prod (A, x);

matrix vector product |y« ATz y = prod(trans(B), x);

inplace mv product x <+ Ax x = prod(A, x);

inplace mv product z+— ATz x = prod(trans(d), x);

scaled product add Yy — aAx + By y = alpha * prod(A, x)+ beta * y

scaled product add y <+ aATz + By y = alpha * prod(trans(A), x)+
beta » y

tri. matrix solve Y Ay y = solve (A, x, tag);

tri. matrix solve Y AT 'y y = solve(trans(A), x, tag);

inplace solve €T A_lx inplace_solve (A, x, taqg);

inplace solve re AT 'y inplace_solve (trans (), x, tag);

rank 1 update A Oz:EyT + A A += alpha » outer_prod(x,Vy);

symm. rank 1 update | A « azz® + A

rank 2 update

A a(zyt +yzT) + A

+= alpha % outer_prod(x,x);

alpha * outer_prod(x,vy);

>
+
I

+= alpha * outer_prod(y,x);

Table 3.2: BLAS level 2 routines mapped to ViennaCL. Note that the free functions re-
side in namespace viennacl::1linalg. tag is one out of lower_tag, unit_lower_tag,

upper_tag, and unit_upper_tag.

Verbal Mathematics | ViennaCL

matrix-matrix product | C <+ A x B C = prod (A, B);

matrix-matrix product | C < A x BT C = prod(A, trans(B));
matrix-matrix product | C < AT x B | ¢ = prod(trans(a), B);
matrix-matrix product | C < AT x BT | ¢ = prod(trans(a), trans(B));
tri. matrix solve C+ A'B C = solve(d, B, tag);

tri. matrix solve C« AT 'B C solve (trans (A), B, tag);

tri. matrix solve C+ A-1BT C solve (A, trans(B), tag);

tri. matrix solve C«— AT'BT | ¢ solve (trans (A), trans(B), tag);
inplace solve B+ A 'B inplace_solve (A, trans(B), tag);
inplace solve B« AT'B inplace_solve (trans (A), x, tag);
inplace solve B« A 1BT inplace_solve (A, trans(B), tag);
inplace solve B« AT'BT inplace_solve (trans (A), x, tag);

Table 3.3: BLAS level 3 routines mapped to ViennaCL. Note that the free functions reside

in namespace viennacl::1linalg
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Chapter 4

Algorithms

This chapter gives an overview over the available algorithms in ViennaCL. The focus of
ViennaCL is on iterative solvers, for which ViennaCL provides a generic implementation
that allows the use of the same code on the CPU (either using uBLAS, Eigen, MTL4 or
OpenCL) and on the GPU (using OpenCL).

4.1 Direct Solvers

ViennaCL 1.5.2 provides triangular solvers and LU factorization without pivoting for
the solution of dense linear systems. The interface is similar to that of uBLAS

using namespace viennacl::1linalg; //to keep solver calls short
viennacl::matrix<float> vcl_matrix;

viennacl: :vector<float> wvcl_rhs;

viennacl: :vector<float> vcl_result;

/% Set up matrix and vectors here #*/

//solution of an upper triangular system:

vcl_result = solve(vcl_matrix, vcl_rhs, upper_tag());
//solution of a lower triangular system:
vcl_result = solve(vcl_matrix, vcl_rhs, lower_tag());

//solution of a full system right into the load vector vcl_rhs:
lu_factorize (vcl_matrix);
lu_substitute(vcl_matrix, wvcl_rhs);

In VviennaCL 1.5.x there is no pivoting included in the LU factorization process, hence
the computation may break down or yield results with poor accuracy. However, for certain
classes of matrices (like diagonal dominant matrices) good results can be obtained without
pivoting.

It is also possible to solve for multiple right hand sides:

using namespace viennacl::linalg; //to keep solver calls short
viennacl: :matrix<float> vcl_matrix;

viennacl::matrix<float> vcl_rhs_matrix;
viennacl::matrix<float> vcl_result;

/% Set up matrices here */
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//solution of an upper triangular system:
vcl_result = solve(vcl_matrix, vcl_rhs_matrix, upper_tag());

//solution of a lower triangular system:
vcl_result = solve(vcl_matrix, vcl_rhs_matrix, lower_tag());

4.2 Iterative Solvers

ViennaCL provides different iterative solvers for various classes of matrices, listed in
Tab. 4.1. Unlike direct solvers, the convergence of iterative solvers relies on certain prop-
erties of the system matrix. Keep in mind that an iterative solver may fail to converge,
especially if the matrix is ill conditioned or a wrong solver is chosen.

For full details on linear solver calls, refer to the reference documentation located
in doc/doxygen/ and to the tutorials

The iterative solvers can directly be used for uBLAS, Eigen and MTL4 objects!
Please have a look at Chap. 5 and the respective tutorials in the examples/tutori-
als/ folder.

In VviennaclL 1.5.2, GMRES using ATI GPUs yields wrong results due to a bug
in Stream SDK v2.1. Consider using newer versions of the Stream SDK.

viennacl::compressed_matrix<float> vcl_matrix;
viennacl::vector<float> wvcl_rhs;
viennacl::vector<float> vcl_result;

/* Set up matrix and vectors here */

//solution using conjugate gradient solver:

vcl_result = viennacl::linalg::solve(vcl_matrix,
vcl_rhs,
viennacl::linalg::cg_tag());

//solution using BiCGStab solver:

vcl_result = viennacl::linalg::solve(vcl_matrix,
vcl_rhs,
viennacl::linalg::bicgstab_tag());

//solution using GMRES solver:

vcl_result = viennacl::linalg::solve(vcl_matrix,
vcl_rhs,
viennacl::linalg::gmres_tag());

Customized error tolerances can be set in the solver tags. The convention is that solver tags
take the relative error tolerance as first argument and the maximum number of iteration
steps as second argument. Furthermore, after the solver run the number of iterations and
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Method Matrix class ViennaCL

Conjugate Gradient | symmetric posi- | y = solve (A, x, cg.tag());
(CQR) tive definite

Stabilized Bi-CG | non-symmetric y = solve (A, x, bicgstab_tag());
(BiCGStab)

Generalized Minimum | general y = solve (A, x, gmres_tag());
Residual (GMRES)

Table 4.1: Linear solver routines in ViennaCL for the computation of y in the expression
Ay = z with given A, x.

the estimated error can be obtained from the solver tags as follows:

// conjugate gradient solver with tolerance 1lel0

// and at most 100 iterations:

viennacl::linalg::cg_tag custom_cg(le-10, 100);

vcl_result = viennacl::1linalg::solve(vcl_matrix, vcl_rhs, custom_cgqg);
//print number of iterations taken and estimated error:

std::cout << "No. of iters: " << custom_cg.iters() << std::endl;
std::cout << "Est. error: " << custom_cg.error() << std::endl;

The BiCGStab solver tag can be customized in exactly the same way. The GMRES solver
tag takes as third argument the dimension of the Krylov space. Thus, a tag for GMRES(30)
with tolerance 1E—10 and at most 100 total iterations (hence, up to three restarts) can be
set up by

viennacl::linalg::gmres_tag custom_gmres (le-10, 100, 30);

4.3 Preconditioners

ViennaCL ships with a generic implementation of several preconditioners. The precondi-
tioner setup is expect for simple diagonal preconditioners always carried out on the CPU
host due to the need for dynamically allocating memory. Thus, one may not obtain an
overall performance benefit if too much time is spent on the preconditioner setup.

The preconditioner also works for uBLAS types!

An overview of preconditioners available for the various sparse matrix types is as follows:

Matrix Type ICHOL | (Block-)ILU[O/T] | Jacobi | Row-scaling | AMG | SPAI
compressed_matrix yes yes yes yes yes yes
coordinate_matrix no no yes yes no no
ell matrix no no no no no no
hyb_matrix no no no no no no

Broader support of preconditioners particularly for e11_matrix and hyb_matrix is sched-
uled for future releases. AMG and SPAI preconditioners are described in Chap. 7.

In the following it is assumed that the sparse linear system of equations is given as follows:
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typedef viennacl::compressed_matrix<float> SparseMatrix;

SparseMatrix vcl_matrix;
viennacl::vector<float> wvcl_rhs;
viennacl::vector<float> wvcl_result;

/+* Set up matrix and vectors here */

4.3.1 Incomplete LU Factorization with Threshold (ILUT)

The incomplete LU factorization preconditioner aims at computing sparse matrices lower
and upper triangular matrices L and U such that the sparse system matrix is approxi-
mately given by A ~ LU. In order to control the sparsity pattern of L and U, a threshold
strategy is used (ILUT) [1]. Due to the serial nature of the preconditioner, the setup of
ILUT is always computed on the CPU using the respective ViennaCL backend.

//compute ILUT preconditioner:

viennacl::linalg::ilut_tag ilut_config;

viennacl::linalg::ilut_precond< SparseMatrix > vcl_ilut (vcl_matrix,
ilut_config);

//solve (e.g. using conjugate gradient solver)

vcl_result = viennacl::1linalg::solve(vcl_matrix,
vcl_rhs,
viennacl::linalg::bicgstab_tag(),
vcl_ilut); //preconditioner here

The triangular substitutions may be applied in parallel on GPUs by enabling level-scheduling
[1] via the member function call use_level_scheduling (true) in the ilut_config object.

Three parameters can be passed to the constructor of ilut_tag: The first specifies the
maximum number of entries per row in L and U, while the second parameter specifies the
drop tolerance. The third parameter is the boolean specifying whether level scheduling
should be used.

The performance of level scheduling depends strongly on the matrix pattern and @
is thus disabled by default.

4.3.2 Incomplete LU Factorization with Static Pattern (ILUO)

Similar to ILUT, ILUO computes an approximate LU factorization with sparse factors L
and U. While ILUT determines the location of nonzero entries on the fly, ILUO uses the
sparsity pattern of A for the sparsity pattern of L and U [1]. Due to the serial nature of the
preconditioner, the setup of ILUO is computed on the CPU.

//compute ILUO preconditioner:

viennacl::linalg::1i1u0_tag iluO_config;

viennacl::linalg::11u0_precond< SparseMatrix > vcl_ilut(vcl_matrix,
iluO_config);

//solve (e.g. using conjugate gradient solver)
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vcl_result = viennacl::linalg::solve(vcl_matrix,

vcl_rhs,
viennacl::linalg::bicgstab_tag(),
vel _ilut); //preconditioner here

The triangular substitutions may be applied in parallel on GPUs by enabling level-scheduling
[1] via the member function call use_level_scheduling (true) in the i1u0_config object.

One parameter can be passed to the constructor of i 1u0_tag, being the boolean specifying
whether level scheduling should be used.

The performance of level scheduling depends strongly on the matrix pattern and
is thus disabled by default.

4.3.3 Block-ILU

To overcome the serial nature of ILUT and ILUO applied to the full system matrix, a par-
allel variant is to apply ILU to diagonal blocks of the system matrix. This is accomplished
by the block_ilu preconditioner, which takes the system matrix type as first template ar-
gument and the respective ILU-tag type as second template argument (either ilut_tag or
ilu0_tag). Support for accelerators using CUDA or OpenCL is provided.

//compute block—-ILU preconditioner using ILUO for each block:
block_ilu_precond<SparseMatrix,
ilu0_tag> vcl_block_ilu0(vcl_matrix,

iluO0_tag());
//solve
vcl_result = viennacl::linalg::solve(vcl_matrix,
vcl_rhs,

viennacl::linalg::bicgstab_tag(),
vcl_block_ilu0);

A third argument can be passed to the constructor of block_ilu_precond: Either the num-
ber of blocks to be used (defaults to 8), or an index vector with fine-grained control over the
blocks. Refer to the Doxygen pages in doc/doxygen for details.

The number of blocks is a design parameter for your sparse linear system at hand. @
Higher number of blocks leads to better memory bandwidth utilization on GPUs,
but may increase the number of solver iterations.

4.3.4 dJacobi Preconditioner

A Jacobi preconditioner is a simple diagonal preconditioner given by the reciprocals of the
diagonal entries of the system matrix A. Use the preconditioner as follows:

//compute Jacobi preconditioner:
jacobi_precond< SparseMatrix > vcl_jacobi (vcl_matrix,
viennacl::1linalg::jacobi_tag());
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//solve (e.g. using conjugate gradient solver)

vcl_result = viennacl::linalg::solve(vcl_matrix,
vcl_rhs,
viennacl::linalg::cg_tag(),
vcl_jacobi);

4.3.5 Row Scaling Preconditioner

A row scaling preconditioner is a simple diagonal preconditioner given by the reciprocals
of the norms of the rows of the system matrix A. Use the preconditioner as follows:

//compute row scaling preconditioner:
row_scaling< SparseMatrix > vcl_row_scaling(vcl_matrix,
viennacl::1linalg::row_scaling_tag());

//solve (e.g. using conjugate gradient solver)

vcl_result = viennacl::linalg::solve(vcl_matrix,
vcl_rhs,
viennacl::1linalg::cg_tag(),
vcl_row_scaling);

The tag viennacl::1linalg::row_scaling_tag () can be supplied with a parameter denot-
ing the norm to be used. A value of 1 specifies the ['-norm, while a value of 2 selects the
I2-norm (default).

4.4 Eigenvalue Computations

Two algorithms for the computations of the eigenvalues of a matrix A are implemented in
ViennaCL:

e The Power Iteration [17]

e The Lanczos Algorithm [18]

Depending on the parameter tag either one of them is called. Both algorithms can be used
for either uBLAS or ViennaCL compressed matrices.

In order to get the eigenvalue with the greatest absolut value the power iteration should
be called.

The Lanczos algorithm returns a vector of the largest eigenvalues with the same type as
the entries of the matrix.

The algorithms are called for a matrix object A by

std: :vector<double> largest_eigenvalues = viennacl::linalg::eig(A, ltag);
double largest_eigenvalue = viennacl::linalg::eig (A, ptagqg);

4.4.1 Power Iteration

The Power iteration aims at computing the eigenvalues of a matrix by calculating the prod-
uct of the matrix and a vector for several times, where the resulting vector is used for the
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next product of the matrix and so on. The computation stops as soon as the norm of the
vector converges.

The final vector is the eigenvector to the eigenvalue with the greatest absolut value.

To call this algorithm, piter_tag must be used. This tag has only one parameter:
terminationfactor defines the accuracy of the computation, i.e. if the new norm of the
eigenvector changes less than this parameter the computation stops and returns the cor-
responding eigenvalue (default: 1e — 10).

The call of the constructor may look like the following:

viennacl::linalg::piter_tag ptag(le-8);

Example code can be found in examples/tutorial/power—-iter.cpp.

4.4.2 The Lanczos Algorithm

In order to compute the eigenvalues of a sparse high-dimensional matrix the Lanczos algo-
rithm can be used to find these. This algorithm reformulates the given high-dimensional
matrix in a way such that the matrix can be rewritten in a tridiagonal matrix at much
lower dimension. The eigenvalues of this tridiagonal matrix are equal to the largest eigen-
values of the original matrix.

The eigenvalues of the tridiagonal matrix are calculated by using the bisection method
[17].

To call this Lanczos algorithm, lanczos_tag must be used. This tag has several parame-
ters that can be passed to the constructor:

e The exponent of epsilon for the tolerance of the reorthogonalization, defined by the
parameter factor (default: 0.75)

e The method of the Lanczos algorithm: 0 uses partial reorthogonalization, 1 full reothog-
onalization and 2 does not use reorthogonalization (default: 0)

e The number of eigenvalues that are returned is specified by num_eigenvalues (de-
fault: 10)

e The size of the krylov space used for the computations can be set by the parameter
krylov_size (default: 100). The maximum number of iterations can be equal or less
this parameter

The call of the constructor may look like the following:

viennacl::linalg::lanczos_tag ltag(0.85, 15, 0, 200);

Example code can be found in examples/tutorial/lanczos.cpp.
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4.5 QR Factorization

The current QR factorization implementation depends on uBLAS. A

A matrix A € R™™ can be factored into A = QR, where (Q € R"*" is an orthogonal matrix
and R € R™™ is upper triangular. This so-called QR-factorization is important for eigen-
value computations as well as for the solution of least-squares problems [17]. ViennaCL
provides a generic implementation of the QR-factorization using Householder reflections in
file viennacl/linalg/qr.hpp. An example application can be found in examples/tutorial
/gr . hpp.

The Householder reflectors v; defining the Householder reflection I — 3;v;v} are stored in
the columns below the diagonal of the input matrix A [17]. The normalization coefficients
B; are returned by the worker function inplace_gr. The upper triangular matrix R is
directly written to the upper triangular part of A.

std::vector<ScalarType> betas = viennacl::linalg::inplace_qgr (A, 12);

If Ais a dense matrix from uBLAS, the calculation is carried out on the CPU using a single
thread. If Ais a viennacl: :matrix, a hybrid implementation is used: The panel factoriza-
tion is carried out using uBLAS, while expensive BLAS level 3 operations are computed on
the OpenCL device using multiple threads.

Typically, the orthogonal matrix @ is kept in inplicit form because of computational effi-
ciency However, if () and R have to be computed explicitly, the function recoverQ can be
used:

viennacl::linalg::recoverQ (A, betas, Q, R);

Here, 2 is the inplace QR-factored matrix, betas are the coefficients of the Householder
reflectors as returned by inplace_qr, while ¢ and R are the destination matrices. However,
the explicit formation of Q) is expensive and is usually avoided. For a number of applications
of the QR factorization it is required to apply Q” to a vector b. This is accomplished by

viennacl::linalg::inplace_qr_apply_trans_Q (A, betas, b);

without setting up Q (or Q') explicitly.

Have a look at examples/tutorial/least-squares.cpp for a least-squares com- ﬁ?
putation using QR factorizations.
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Chapter 5

Interfaces to Other Libraries

ViennaCL aims at compatibility with as many other libraries as possible. This is on the
one hand achieved by using generic implementations of the individual algorithms, and on
the other hand by providing the necessary wrappers.

The interfaces to third-party libraries provided with ViennaCL are explained in the fol-
lowing subsections. Please feel free to suggest additional libraries for which an interface
should be shipped with viennaCL.

Since it is unlikely that all third-party libraries for which viennaCL provides interfaces
are installed on the target machine, the wrappers are disabled by default. To selectively
enable the wrappers, the appropriate preprocessor constants VIENNACL_WITH_XxXX have to
be defined prior to any #include statements for ViennaClL headers. This can for example be
assured by passing the preprocessor constant directly when launching the compiler. With
Gcc this is for instance achieved by the -p switch.

5.1 Boost.uBLAS

Since all types in ViennaCL have the same interface as their counterparts in uBLAS, most
code written for ViennaCL objects remains valid when using uBLAS objects.

//Option 1: Using ViennaCL:
using namespace viennacl;
using namespace viennacl::1linalg;

//Option 2: Using ublas:
//using namespace boost::numeric::ublas;

matrix<float> dense_matrix(5,5);
vector<float> dense_vector (5,5);
compressed_matrix<float> sparse_matrix (1000, 1000);

//f11]1 with data:
dense_matrix (0,0) = 2.0;

//run solvers

vector<float> resultl = solve(dense_matrix, dense_vector, upper_tag());

vector<float> result2 viennacl::linalg::solve (sparse_matrix,
dense_vector, cg_tagl());
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L 1

The above code is valid for either the ViennaCL namespace declarations, or the uBLAS
namespace. Note that the iterative solvers are not part of uBLAS and therefore the explicit
namespace specification is required. More examples for the exchangability of uBLAS and
ViennaCL can be found in the tutorials in the examples/tutorials/ folder.

When using the iterative solvers, the preprocessor constant VIENNACL WITH_UBLAS must
be defined prior to any other ViennaCL include statements. This is essential for enabling
the respective wrappers.

Refer in particular to iterative—-ublas.cpp for a complete example on iterative @
solvers using uBLAS types.

5.2 Eigen

To copy data from Eigen [3] objects (version 3.x.y) to ViennaCL, the copy () -functions are
used just as for uBLAS and STL types:

//from Eigen to ViennaCL

viennacl: :copy (eigen_vector, vcl_vector);
viennacl::copy(eigen_densematrix, vcl_densematrix);
viennacl::copy(eigen_sparsematrix, vcl_sparsematrix);

In addition, the STL-compliant iterator-version of viennacl: :copy () taking three argu-
ments can be used for copying vector data. Here, all types prefixed with eigen are Eigen
types, the prefix vcl indicates ViennaCL objects. Similarly, the transfer from vViennaCL
back to Eigen is accomplished by

//from ViennaCL to Eigen

viennacl: :copy (vcl_vector, eigen_vector);
viennacl::copy(vcl_densematrix, eigen_densematrix);
viennacl: :copy (vcl_sparsematrix, eigen_sparsematrix);

The iterative solvers in ViennaCL can also be used directly with Eigen objects:

using namespace viennacl::1linalg; //for brevity of the following lines
eigen_result = solve(eigen_matrix, eigen_rhs, cg_tag());

eigen_result = solve(eigen_matrix, eigen_rhs, bicgstab_tag());
eigen_result solve (eigen_matrix, eigen_rhs, gmres_tag());

When using the iterative solvers with Eigen, the preprocessor constant VIENNACL_WITH_EIGEN
must be defined prior to any other ViennaCL include statements. This is essential for en-
abling the respective wrappers.

Refer to iterative—eigen.cpp and eigen-with-viennacl.cpp for complete @
examples.
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5.3 MTL 4

The following lines demonstate how ViennaCL types are filled with data from MTL 4 [4]
objects:

//from Eigen to ViennaCL

viennacl: :copy (mtl4_vector, vcl_vector);
viennacl::copy (mtl4_densematrix, vcl_densematrix);
viennacl::copy (mtl4d_sparsematrix, vcl_sparsematrix);

In addition, the STL-compliant iterator-version of viennacl: :copy () taking three argu-
ments can be used for copying vector data. Here, all types prefixed with mt14 are MTL 4
types, the prefix vcl indicates ViennaCL objects. Similarly, the transfer from viennaCL
back to MTL 4 is accomplished by

//from ViennaCL to MTL4

viennacl: :copy (vcl_vector, mtl4_vector);
viennacl::copy(vcl_densematrix, mtl4d_densematrix);
viennacl: :copy (vcl_sparsematrix, mtl4_sparsematrix);

Even though MTL 4 provides its own set of iterative solvers, the iterative solvers in ViennaCL
can also be used:

using namespace viennacl::linalg; //for brevity of the following lines
mtl4_result = solve(mtl4d4_matrix, mtl4_rhs, cg_tag());

mtl4d_result = solve(mtld_matrix, mtl4_rhs, bicgstab_tag());
mtl4_result = solve(mtld_matrix, mtl4_rhs, gmres_tag());

Our internal tests have shown that the execution time of MTL 4 solvers is equal to ViennaCL
solvers when using MTL 4 types.

When using the iterative solvers with MTL, 4, the preprocessor constant VIENNACL_WITH MTL4
must be defined prior to any other ViennaCL include statements. This is essential for en-
abling the respective wrappers.

Refer to iterative-mtl14.cpp and mt14-with-viennacl.cpp for complete ex- @
amples.
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Chapter 6

Shared Library

In order to open up ViennaCL to other languages such as C, FORTRAN, or Python, a
shared library is under development in the subfolder 1ibviennacl/. Currently the differ-
ent BLAS backends for dense linear algebra are available. Sparse linear algebra, iterative
solvers, etc. will follow in future releases.

The design and calling conventions are very similar to vendor BLAS libraries. All functions
are prefixed 'ViennaCL. The three backends provide their functionality through functions
prefixed viennaCLCUDA, ViennaCLOpenCL, and ViennaCLHost, respectively. Since we con-
sider the standard BLAS interface rather tedious and error-prone, an additional object-
oriented interface is provided as well.

Have a look at examples/tutorial/libviennacl.cpp as well as the tests located at tests
/src/libviennacl* to get an impression on how to use these methods. Also, all callable
functions in the shared library are listed in the public include file 1ibviennacl/include/
viennacl.hpp. Additional documentation will be added incrementally.

37



Part 11

Addon Functionality

With the introduction of host-based, CUDA- and OpenCL-enabled computing backends in
ViennaCL 1.4.0, certain functionality is not available for all three backends and listed
in the following. For example, the OpenCL kernel generator makes sense in the OpenCL
computing backend, thus this functionality is moved out of the set of core functionality.

Also, certain functionality is still in experimental stage and might experience interface
changes. Although all functionality flagged as experimental and listed in this section
passes a respective set of tests, library users are advised to use them with extra care and
be prepared for interface changes when upgrading to a newer version of ViennaCL.
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Chapter 7

Additional Algorithms

The following algorithms are still not yet mature enough to be considered core-functionality,
and/or are available with the OpenCL backend only.

7.1 Additional Iterative Solvers
The following iterative solvers are only available on selected computing backends.

7.1.1 Mixed-Precision Conjugate Gradients

A two-stage mixed-precision CG algorithm is available as follows:

viennacl::linalg::mixed_precision_cg_tag mixed_prec_cg_config;
vcl_result = viennacl::linalg::solve(vcl_matrix,
vcl_rhs,

mixed_prec_cg_confiqg);

As usual, the first parameter to the constructor of mixed_precision_cg_tag is the relative
tolerance for the residual, while the second parameter denotes the maximum number of
solver iterations. The third parameter denotes the relative tolerance for the inner low-
precision CG iterations and defaults to 0.01.

Have a look at examples/banchmarks/solver.cpp for an example.

A mixed-precision solver makes sense only if the matrix and right-hand-side vector
are supplied in double precision.

The mixed-precision solver is currently available with the OpenCL compute back-
end only.
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Description ViennaCL option constant
Classical Ruge-Stiiben (RS) | VIENNACI_AMG_COARSE_RS
One-Pass VIENNACIL_AMG_COARSE_ONEPASS
RSO VIENNACL_AMG_COARSE_RS0

RS3 VIENNACIL_AMG_COARSE_RS3
Aggregation VIENNACL_AMG_COARSE_AG
Smoothed aggregation VIENNACL_AMG_COARSE_SA

Table 7.1: AMG coarsening methods available in ViennaCL. Per default, classical RS coars-
ening is used.

Description | ViennaCL option constant
Direct VIENNACL_AMG_INTERPOL_DIRECT
Classic VIENNACL_AMG_INTERPOL_ONEPASS

RSO0 coarsening | VIENNACL_AMG_INTERPOL_RSO
RS3 coarsening | VIENNACL_AMG_INTERPOL_RS3

Table 7.2: AMG interpolation methods available in ViennaCL. Per default, direct interpo-
lation is used.

7.2 Additional Preconditioners

In addition to the preconditioners discussed in Sec. 4.3, two more preconditioners are avail-
able with the OpenCL backend and are described in the following.

7.2.1 Algebraic Multigrid

Algebraic Multigrid preconditioners are only available with the OpenCL backend A
and are experimental in ViennaCL 1.5.2. Interface changes as well as consider-
able performance improvements may be included in future releases!

Algebraic Multigrid preconditioners depend on uBLAS. A

Algebraic multigrid mimics the behavior of geometric multigrid on the algebraic level and
is thus suited for black-box purposes, where only the system matrix and the right hand side
vector are available [19]. Many different flavors of the individual multigrid ingredients
exists [20], of which the most common ones are implemented in ViennaCL.

The two main ingredients of algebraic multigrid are a coarsening algorithm and an inter-
polation algorithm. The available coarsening methods are listed in Tab. 7.1. The available
interpolation methods are given in Tab. 7.2. In addition, the following parameters can be
controlled in the amg_tag and can be passed to the constructor:

e Strength of dependence threshold (default: 0.25)

e Interpolation weight (default: 1)
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Jacobi smoother weight (default: 1)

Number of pre-smoothing steps (default: 1)

Number of post-smoothing steps (default: 1)

Number of coarse levels

Note that the efficiency of the various AMG flavors are typically highly problem-
specific. Therefore, failure of one method for a particular problem does NOT imply
that other coarsening or interpolation strategies will fail as well.

7.2.2 Sparse Approximate Inverses

Sparse Approximate Inverse preconditioners are only available with the OpenCL A

backend and are experimental in ViennaCL 1.5.2. Interface changes as well as
considerable performance improvements may be included in future releases!

Sparse Approximate Inverse preconditioners depend on uBLAS. A

An alternative construction of a preconditioner for a sparse system matrix A is to compute
a matrix M with a prescribed sparsity pattern such that

|AM — I||p — min, (7.1)

where || - || denotes the Frobenius norm. This is the basic idea of sparse approximate
inverse (SPAI) preconditioner. It becomes increasingly attractive because of their inherent
high degree of parallelism, since the minimization problem can be solved independently for
each column of M. ViennaCL provides two preconditioners of this family: The first is the
classical SPAI algorithm as described by Grote and Huckle [21], the second is the factored
SPAI (FSPAI) for symmetric matrices as proposed by Huckle [22].

SPAI can be employed for a CPU matrix M of type Mat rixType as follows:

// setup SPAI preconditioner, purely CPU-based
viennacl::linalg::spai_precond<MatrixType>
spai_cpu (M, viennacl::linalg::spai_tag(le-3, 3, 5e-2));

//solve (e.g. using stab. Bi-conjugate gradient solver)

vcl_result = viennacl::linalg::solve (M,
rhs,
viennacl::linalg::bicgstab_tag(),
spai_cpu);

The first parameter denotes the residual norm threshold for the full matrix, the second pa-
rameter the maximum number of pattern updates, and the third parameter is the thresh-
old for the residual of each minimization problem.

For GPU-matrices, only parts of the setup phase are computed on the CPU, because compute-
intensive tasks can be carried out on the GPU:
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// setup SPAI preconditioner, GPU-assisted
viennacl::linalg::spai_precond<GPUMatrixType>
spai_gpu(vcl_matrix, viennacl::linalg::spai_tag(le-3, 3, 5e-2));

//solve (e.g. using conjugate gradient solver)

vcl_result = viennacl::linalg::solve(vcl_matrix,
vcl_rhs,
viennacl::linalg::bicgstab_tag(),
spai_gpu);

The GPUMat rixType is typically a viennacl::compressed_matrix type.

For symmetric matrices, FSPAI can be used with the conjugate gradient solver:

viennacl::linalg::fspai_precond<MatrixType> fspai_cpu(M, viennacl::linalg::
fspai_tag());

//solve (e.g. using stab. Bi-conjugate gradient solver)
vcl_result = viennacl::1linalg::solve (M,
rhs,
viennacl::1linalg::cg_tag(),
fspai_cpu);

Our experience is that FSPAI is typically more efficient than SPAI when applied to the
same matrix, both in computational effort and in terms of convergence acceleration of the
iterative solvers.

At present, there is no GPU-accelerated FSPAI included in ViennaCL. A

Note that FSPAI depends on the ordering of the unknowns, thus bandwidth reduction
algorithms may be employed first, cf. Sec. 7.4.

7.3 Fast Fourier Transform

The fast Fourier transform is experimental in ViennaCL 1.5.2 and available A
with the OpencCL backend only. Interface changes as well as considerable perfor-
mance improvements may be included in future releases!

Since there is no standardized complex type in OpenCL at the time of the release of ViennaCL
1.5.2, vectors need to be set up with real- and imaginary part before computing a fast
Fourier tranform (FFT). In order to store complex numbers zy, z1, etc. in a viennacl::
vector, say v, the real and imaginary parts are mapped to even and odd entries of v
respecﬁvebn v[0] = Real(z_0), v[1l] = Imag(z_0), v[2] = Real(z_1), v[3] = Imag(
z_1), etc.

The FFT of v can then be computed either by writing to a second vector output or by
directly writing the result to v

viennacl::fft (v, output);
viennacl::inplace_fft (v);
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Conversely, the inverse FFT is computed as

viennacl::ifft (v, output);
viennacl::inplace_ifft (v);

In viennacCL 1.5.2 the FFT with complexity Nlog N is computed for vectors
with a size of a power of two only. For other vector sizes, a standard discrete
Fourier transform with complexity N? is employed. This is subject to change in
future versions.

7.4 Bandwidth Reduction

Bandwidth reduction algorithms are experimental in ViennaCL 1.5.2. Interface
changes as well as considerable performance improvements may be included in
future releases!

The bandwidth of a sparse matrix is defined as the maximum difference of the indices of
nonzero entries in a row, taken over all rows. A low bandwidth typically allows for the
use of efficient banded matrix solvers instead of iterative solvers. Moreover, better cache
utilization as well as lower fill-in in LU-factorization based algorithms can be expected.

For a given sparse matrix with large bandwidth, VviennaCL provides routines for renum-
bering the unknowns such that the reordered system matrix shows much smaller band-
width. Typical applications stem from the discretization of partial differential equations
by means of the finite element or the finite difference method. The algorithms employed
are as follows:

e Classical Cuthill-McKee algorithm [23]
e Iterated Cuthill-McKee algorithm with different seeds [23]

e Gibbs-Poole-Stockmeyer algorithm, cf. [24]

The iterated Cuthill-McKee algorithm applies the classical Cuthill-McKee algorithm to
different starting nodes with small, but not necessarily minimal degree as root node into
account. While this iterated application is more expensive in times of execution times,
it may lead to better results than the classical Cuthill-McKee algorithm. A parameter
a € [0, 1] controls the number of nodes considered: All nodes with degree d fulfilling

dmin < d < dpin + a(dmax - dmin)

are considered, where dy,i, and d,,. are the miminum and maximum nodal degrees in the
graph. A second parameter gmax specifies the number of additional root nodes considered.

The algorithms are called for a mat rix of a type compatible with std: :vector< std::map
<int, double> > by

r = viennacl::reorder (matrix, viennacl::cuthill_mckee_tag());
r = viennacl::reorder (matrix,

viennacl::advanced_cuthill mckee_tag(a, gmax));
r = viennacl::reorder (matrix, viennacl::gibbs_poole_stockmeyer_tag());
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and return the permutation array. In ViennaCL 1.5.2, the user then needs to manually
reorder the sparse matrix based on the permutation array. Example code can be found in
examples/tutorial /bandwidth-reduction.cpp.

7.5 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization is experimental in ViennaCL 1.5.2 and avail- A
able with the OpenCL backend only. Interface changes as well as considerable
performance improvements may be included in future releases!

In various fields such as text mining, a matrix V' needs to be factored into factors W and H
such that the function

fOW,H) = ||V - WH|

is minimized. The algorithm proposed by Lee and Seoung [25] is available in ViennaCL in
the header file viennacl/linalg/nmf.hpp as

viennacl::matrix<ScalarType> V(sizel, size2);
viennacl: :matrix<ScalarType> W(sizel, k);
viennacl::matrix<ScalarType> H(k, size2);

viennacl::linalg::nmf_config conf;
viennacl::linalg::nmf (v_ref, w_nmf, h_nmf, conf);

For an overview of the parameters (tolerances) of the configuration object conf, please refer
to the Doxygen documentation in doc/doxygen/.
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Chapter 8

Configuring OpenCL Contexts and
Devices

Support for multiple devices was officially added in OpenCL 1.1. Among other things, this
allows e.g. to use all CPUs in a multi-socket CPU mainboard as a single OpenCL com-
pute device. Nevertheless, the efficient use of multiple OpenCL devices is far from trivial,
because algorithms have to be designed such that they take distributed memory and syn-
chronization issues into account.

Support for multiple OpenCL devices and contexts was introduced in ViennaCL with ver-
sion 1.1.0. In the following we give a description of the provided functionality.

In ViennaCL 1.5.2 there is no native support for automatically executing oper- A
ations over multiple GPUs. Partition of data is left to the user.

8.1 Context Setup

Unless specified otherwise (see Chap. 10), ViennaCL silently creates its own context and
adds all available default devices with a single queue per device to it. All operations are
then carried out on this context, which can be obtained with the call

viennacl::ocl::current_context ();

This default context is identified by the ID 0 (of type long). ViennaCL uses the first plat-
form returned by the OpenCL backend for the context. If a different platform should be
used on a machine with multiple platforms available, this can be achieved with

viennacl::ocl::set_context_platform_index (id, platform_index);

where the context ID is id and platform_index refers to the array index of the platform
as returned by c1GetPlat formIDs ().

By default, only the first device in the context is used for all operations. This device can be
obtained via

viennacl::ocl::current_context () .current_device () ;
viennacl::ocl::current_device(); //equivalent to above
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A user may wish to use multiple OpenCL contexts, where each context consists of a subset
of the available devices. To setup a context with ID id with a particular device type only,
the user has to specify this prior to any other viennaCL related statements:

//use only GPUs:

viennacl::ocl::set_context_device_type(id, viennacl::ocl::gpu_tag());
//use only CPUs:

viennacl::ocl::set_context_device_type(id, wviennacl::ocl::cpu_tag());
//use only the default device type
viennacl::ocl::set_context_device_type (id, viennacl::ocl::default_tag());

//use only accelerators:
viennacl::ocl::set_context_device_type(id, viennacl::ocl::accelerator_tag()

)i

Instead of using the tag classes, the respective OpenCIL constants CL_DEVICE_TYPE_GPU
etc. can be supplied as second argument.

Another possibility is to query all devices from the current platform:

std::vector< viennacl::ocl::device > devices =
viennacl::ocl::platform() .devices();

and create a custom subset of devices, which is then passed to the context setup routine:

//take the first and the third available device from ’‘devices’
std::vector< viennacl::ocl::device > my_devices;
my_devices.push_back (devices[0]);

my_devices.push_back (devices[2]);

//Initialize the context with ID ’“id’ with these devices:

viennacl::ocl::setup_context (id, my_devices);

Similarly, contexts with other IDs can be set up.

For details on how to initialize ViennaCL with already existing contexts, see Chap-
ter 10.

The library user is reminded that memory objects within a context are allocated for all
devices within a context. Thus, setting up contexts with one device each is optimal in
terms of memory usage, because each memory object is then bound to a single device only.
However, memory transfer between contexts (and thus devices) has to be done manually
by the library user then. Moreover, the user has to keep track in which context the indi-
vidual ViennaCL objects have been created, because all operands are assumed to be in the

currently active context.

8.2 Switching Contexts and Devices

ViennaCL always uses the currently active OpenCL context with the currently active device
to enqueue compute kernels. The default context is identified by ID ’0’. The context with
ID id can be set as active context with the line.

viennacl::ocl::switch_context (id);
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Subsequent kernels are then enqueued on the active device for that particular context.

Similar to setting contexts active, the active device can be set for each context. For example,
setting the second device in the context to be the active device, the lines

viennacl::ocl::current_context () .switch_device (1) ;

are required. In some circumstances one may want to pass the device object directly, e.g. to
set the second device of the platform active:

std::vector<viennacl::ocl::device> const & devices =
viennacl::ocl::platform() .devices();
viennacl::ocl::current_context () .switch_device (devices[1l]);

If the supplied device is not part of the context, an error message is printed and the active
device remains unchanged.

8.3 Setting OpenCL Compiler Flags

Each OpenCL context provides a member function .build_options (), which can be used
to pass OpenCL compiler flags prior to compilation. Note that flags need to be passed to the
context prior to the compilation of the respective kernels, i.e. prior the first instantiation
of the respective matrix or vector types.

To pass the -c1-mad-enable flag to the current context, the line

viennacl::ocl::current_context () .build_options ("-cl-mad-enable");

is sufficient. Confer to the OpencCL standard for a full list of flags.
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Chapter 9

Custom OpenCL Compute Kernels

For custom algorithms the built-in functionality of VviennaCL may not be sufficient or not
fast enough. In such cases it can be desirable to write a custom OpenCL compute kernel,
which is explained in this chapter. The following steps are necessary and explained one
after another:

e Write the OpenCL source code
e Compile the compute kernel

e Launching the kernel

A tutorial on this topic can be found at examples/tutorial/custom-kernels.cpp.

9.1 Setting up the OpenCL Source Code

The OpenCL source code has to be provided as a string. One can either write the source
code directly into a string within C++ files, or one can read the OpenCL source from a file.
For demonstration purposes, we write the source directly as a string constant:

const char * my_compute_program =

" _kernel void elementwise_prod (\n"

" __global const float * vecl,\n"
" __global const float * vec2, \n"
w __global float % result,\n"

0 unsigned int size) \n"

"{ \n"

" for (unsigned int i = get_global_id(0); i < size; i1 += get_global_size
(0))\n"

" result[i] = vecl[i] * vec2[i];\n"

"}i\n";

The kernel takes three vector arguments veci, vec2 and result and the vector length
variable size abd computes the entry-wise product of the vectors vec1 and vec2 and writes
the result to the vector result. For more detailed explanation of the OpenCL source code,
please refer to the specification available at the Khronos group webpage [6].

48



9.2 Compilation of the OpenCL Source Code

The source code in the string constant my_compute_kernel has to be compiled to an OpenCL
program. An OpenCL program is a compilation unit and may contain several different com-
pute kernels, so one could also include another kernel function inplace_elementwise_prod

which writes the result directly to one of the two operands vecl or vec2 in the same
program.

viennacl::ocl::program & my_prog =
viennacl::ocl::current_context () .add_program(my_compute_program,
"my_compute_program") ;

The next step is to extract the kernel object my_kernel from the compiled program (an
explicit kernel registration was needed prior to ViennaCL 1.5.0, but is no longer needed):

viennacl::ocl::kernel & my_kernel = my_prog.get_kernel ("elementwise_prod");

Now, the kernel is set up to use the function elementwise_prod compiled into the program
my_prog.

Note that C++ references to kernels and programs may become invalid as other A
kernels or programs are added. Therefore, first allocate the required ViennaCL

objects and compile/add all custom kernels, before you start taking references to

custom programs or kernels.

Instead of extracting references to programs and kernels directly at program compilation,
one can obtain them at other places within the application source code by

viennacl::ocl::program & prog =
viennacl::ocl::current_context () .get_program("my_compute_program") ;
viennacl::ocl::kernel & my_kernel = my_prog.get_kernel ("elementwise_prod");

This simplifies application development considerably, since no program and kernel objects
need to be passed around.

9.3 Launching the OpenCL Kernel

Before launching the kernel, one may adjust the global and local work sizes (readers not
familiar with that are encouraged to read the OpencCL standard [6]). The following code
specifies a one-dimensional execution model with 16 local workers and 128 global workers:

my_kernel.local_work_size (0, 16);
my_kernel.global_work_size (0, 128);

In order to use a two-dimensional execution, additionally parameters for the second di-
mension are set by

my_kernel.local_work_size(l, 16);
my_kernel.global_work_size(l, 128);

However, for the simple kernel in this example it is not necessary to specify any work sizes
at all. The default work sizes (which can be found in viennacl/ocl/kernel.hpp) suffice
for most cases.
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To launch the kernel, the kernel arguments are set in the same way as for ordinary func-
tions. We assume that three viennaCL vectors vecl, vec2 and result have already been
set up:

viennacl::ocl: :enqueue (my_kernel (vecl, vec2, result, cl_uint (vecl.size())

))

Per default, the kernel is enqueued in the first queue of the currently active device. A cus-
tom queue can be specified as optional second argument, cf. the reference documentation
located in doc/doxygen/.

Integer arguments need to be provided using the corresponding OpenCL types
cl_int, cl_uint, ete. Do not pass arguments of type size_t, because size_t
might differ on the host and the compute device.

50

%



Chapter 10

Using ViennaCL in User-Provided
OpenCL Contexts

Many projects need similar basic linear algebra operations, but essentially operate in their
own OpenCL context. To provide the functionality and convenience of ViennaCL to such
existing projects, existing contexts can be passed to ViennaCL and memory objects can be
wrapped into the basic linear algebra types vector, matrix and compressed_matrix. This
chapter is devoted to the description of the necessary steps to use ViennaCL on contexts
provided by the library user.

An example of providing a custom context to ViennaCL can be found in
examples/tutorial/custom-contexts.cpp

10.1 Passing Contexts to ViennaCL

ViennaCL 1.5.2 is able to handle an arbitrary number of contexts, which are identified
by a key value of type long. By default, ViennaCL operates on the context identified by 0,
unless the user switches the context, cf. Chapter 8.

According to the OpenCL standard, a context contains devices and queues for each device.
Thus, it is assumed in the following that the user has successfully created a context with
one or more devices and one or more queues per device.

In the case that the context contains only one device my_device and one queue my_queue,
the context can be passed to ViennaCL with the code

cl_context my_context = ...; //a context
cl_device_id my_device = ...; //a device in my_context
cl_command_gueue my_queue = ...; //a queue for my_device

//supply existing context ’‘my_context’
// with one device and one queue to ViennaCL using id ’707:
viennacl::ocl::setup_context (0, my_context, my_device, my_qgueue);

If a context ID other than 0, say, id is used, the user-defined context has to be selected
using

viennacl::ocl::switch_context (id);
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It is also possible to provide a context with several devices and multiple queues per device.
To do so, the device IDs have to be stored in a STL vector and the queues in a STL map:

cl_context my_context = ...; //a context

cl_device_id my_devicel = ...; //a device in my_context
cl_device_id my_device2 = ...; //another device in my_context
cl_command_queue my_queuel = ...; //a queue for my_devicel
cl_command_gueue my_queue2 = ...; //another queue for my_devicel
cl_command_gueue my_queue3 = ...; //a queue for my_device2

//setup existing devices for ViennaCL:
std::vector<cl_device_id> my_devices;
my_devices.push_back (my_devicel);
my_devices.push_back (my_device?2);

//setup existing queues for ViennaCL:

std: :map<cl_device_id,
std::vector<cl_command_queue> > my_dueues;

my_queues [my_devicel] .push_back (my_queuel) ;

my_queues [my_devicel] .push_back (my_queue2) ;

my_queues [my_device2] .push_back (my_gqueue3) ;

//supply existing context with multiple devices
//and queues to ViennaCL using id 707 :
viennacl::ocl::setup_context (0, my_context, my_devices, my_queues) ;

It is not necessary to pass all devices and queues created within a particular context to
ViennaCL, only those which ViennaCL should use have to be passed. ViennaCL will by
default use the first queue on each device. The user has to care for appropriate synchro-
nization between different queues.

ViennaCL does not destroy the provided context automatically upon exit. The user
should thus call c1ReleaseContext () as usual for destroying the context.

10.2 Wrapping Existing Memory with ViennaCL Types

Now as the user provided context is supplied to ViennaCL, user-created memory objects
have to be wrapped into ViennaCL data-types in order to use the full functionality. Typi-
cally, one of the types scalar, vector, matrix and compressed_matrix are used:

cl_mem my_memoryl = ...;

cl_mem my_memory?2 5008
cl_mem my_memory3 = ...;
cl_mem my_memory4 = ...;
cl_mem my_memory5 = ...;

//wrap my_memoryl into a vector of size 10
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viennacl: :vector<float> my_vec (my_memoryl, 10);

//wrap my_memoryZ2 into a row-major matrix of size 10x10
viennacl: :matrix<float> my_matrix (my_memory2, 10, 10);

//wrap my_memory3 into a CSR sparse matrix with 10 rows and 20 nonzeros
viennacl: :compressed_matrix<float> my_sparse (my_memory3,

my_memory4,

my_memory5, 10, 10, 20);

//use my_vec, my_matrix, my_sparse as usual

The following has to be emphasized:

e Resize operations on ViennaCL data types typically results in the object owning a
new piece of memory.

e copy() operations from CPU RAM usually allocate new memory, so wrapped memory
is “forgotten”

e On construction of the ViennaCL object, clRetainMem () is called once for the pro-
vided memory handle. Similarly, ciReleaseMem () is called as soon as the memory is
not used any longer.

The user has to ensure that the provided memory is larger or equal to the size of
the wrapped object.

Be aware the wrapping the same memory object into several different ViennaCL
objects can have unwanted side-effects. In particular, wrapping the same memory
in two ViennaCL vectors implies that if the entries of one of the vectors is modified,
this is also the case for the second.
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Chapter 11

Structured Matrix Types

Structured matrix types are experimental in ViennaCL 1.5.2. Interface changes A
as well as considerable performance improvements may be included in future re-
leases!

There are a number of structured dense matrices for which some algorithms such as
matrix-vector products can be computed with much lower computational effort than for the
general dense matrix case. In the following, four structured dense matrix types included in
ViennaCL are discussed. Example code can be found in examples/tutorial/structured
-matrices.cpp.

11.1 Circulant Matrix

A circulant matrix is a matrix of the form

Co Cp—1 e C2 C1
C1 €0  Cn—1 C2
C1 Co
Cn—2 . . Cp—1
Chn—1 Cn—2 e C1 Co

and available in ViennaCL via

#include "viennacl/circulant_matrix.hpp"

std::size_t s = 42;
viennacl::circulant_matrix circ_mat (s, s);

The circulant_matrix type can be manipulated in the same way as the dense matrix
type matrix. Note that writing to a single element of the matrix is structure-preserving,
e.g. changing circ_mat (1,2) will automatically update circ_mat (0,1), circ_mat (2, 3)
and so on.
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11.2 Hankel Matrix

A Hankel matrix is a matrix of the form

Qo o e
o Qa0 o
~ 0 0
Q - 0

and available in ViennaCL via

#include "viennacl/hankel matrix.hpp"

std::size_t s = 42;
viennacl: :hankel matrix hank_mat (s, s);

The hankel_matrix type can be manipulated in the same way as the dense matrix type
mat rix. Note that writing to a single element of the matrix is structure-preserving, e.g. chang-
ing hank_mat (1, 2) in the example above will also update hank_mat (0, 3), hank_mat (2, 1)
and.hank_mat(3,0).

11.3 Toeplitz Matrix

A Toeplitz matrix is a matrix of the form

Q -
~-~ 0 2 o
o Q o0
e ov" o Q.

and available in ViennaCL via

#include "viennacl/toeplitz_matrix.hpp"

std::size_t s = 42;
viennacl::toeplitz_matrix toep_mat (s, s);

The toeplitz_matrix type can be manipulated in the same way as the dense matrix
type matrix. Note that writing to a single element of the matrix is structure-preserving,
e.g. changing toep_mat (1,2) in the example above will also update toep_mat (0,1) and
toep_mat (2, 3).

11.4 Vandermonde Matrix

A Vandermonde matrix is a matrix of the form

1 g o ... ot
1 ay o} ... ay!
1

1 am o2 ant

and available in ViennaCL via
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#include "viennacl/vandermonde_matrix.hpp"

std::size_t s = 42;
viennacl: :vandermonde_matrix vand_mat (s, s);

The vandermonde_matrix type can be manipulated in the same way as the dense matrix
type matrix, but restrictions apply. For example, the addition or subtraction of two Van-
dermonde matrices does not yield another Vandermonde matrix. Note that writing to a
single element of the matrix is structure-preserving, e.g. changing vand_mat (1, 2) in the
example above will automatically update vand_mat (1, 3), vand_mat (1, 4), etc.
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Part 111

Miscellaneous
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Chapter 12

Design Decisions

During the implementation of ViennaCL, several design decisions have been necessary,
which are often a trade-off among various advantages and disadvantages. In the following,
we discuss several design decisions and their alternatives.

12.1 Transfer CPU-GPU-CPU for Scalars

The ViennaCL scalar type scalar<> essentially behaves like a CPU scalar in order to make
any access to GPU ressources as simple as possible, for example

float cpu_float = 1.0f;
viennacl::1linalg::scalar<float> gpu_float = cpu_float;

gpu_float = gpu_float * gpu_float;
gpu_float —-= cpu_£float;
cpu_float = gpu_float;

As an alternative, the user could have been required to use copy as for the vector and
matrix classes, but this would unnecessarily complicate many commonly used operations
like

if (norm_2 (gpu_vector) < le-10) { ... }

or

gpu_vector[0] = 2.0f;

where one of the operands resides on the CPU and the other on the GPU. Initialization of
a separate type followed by a call to copy is certainly not desired for the above examples.

However, one should use scalar<> with care, because the overhead for transfers from CPU
to GPU and vice versa is very large for the simple scalar<> type.

Use scalar<> with care, it is much slower than built-in types on the CPU!

58



12.2 Transfer CPU-GPU-CPU for Vectors

The present way of data transfer for vectors and matrices from CPU to GPU to CPU is
to use the provided copy function, which is similar to its counterpart in the Standard
Template Library (STL):

std::vector<float> cpu_vector (10);
ViennaCL: :LinAlg: :vector<float> gpu_vector (10);

/* fill cpu_vector here x/

//transfer values to gpu:
copy (cpu_vector.begin (), cpu_vector.end(), gpu_vector.begin());

/* compute something on GPU here #*/

//transfer back to cpu:
copy (gpu_vector.begin (), gpu_vector.end(), cpu_vector.begin());

A first alternative approach would have been to to overload the assignment operator like
this:

//transfer values to gpu:
gpu_vector = cpu_vector;

/* compute something on GPU here #*/

//transfer back to cpu:
cpu_vector = gpu_vector;

The first overload can be directly applied to the vector-class provided by ViennaCL. How-
ever, the question of accessing data in the cpu_vector object arises. For std: :vector and
C arrays, the bracket operator can be used, but the parenthesis operator cannot. However,
other vector types may not provide a bracket operator. Using STL iterators is thus the
more reliable variant.

The transfer from GPU to CPU would require to overload the assignment operator for the
CPU class, which cannot be done by ViennaCL. Thus, the only possibility within ViennaCL
is to provide conversion operators. Since many different libraries could be used in principle,
the only possibility is to provide conversion of the form

template <typename T>
operator T () {/+ implementation here x/}

for the types in ViennaCL. However, this would allow even totally meaningless conver-
sions, e.g. from a GPU vector to a CPU boolean and may result in obscure unexpected
behavior.

Moreover, with the use of copy functions it is much clearer, at which point in the source
code large amounts of data are transferred between CPU and GPU.
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12.3 Solver Interface

We decided to provide an interface compatible to uBLAS for dense matrix operations. The
only possible generalization for iterative solvers was to use the tagging facility for the
specification of the desired iterative solver.

12.4 Iterators

Since we use the iterator-driven copy function for transfer from CPU to GPU to CPU,
iterators have to be provided anyway. However, it has to be repeated that they are usually
VERY slow, because each data access (i.e. dereferentiation) implies a new transfer between
CPU and GPU. Nevertheless, CPU-cached vector and matrix classes could be introduced
in future releases of ViennaCL.

A remedy for quick iteration over the entries of e.g. a vector is the following:

std: :vector<double> temp (gpu_vector.size());

copy (gpu_vector.begin (), gpu_vector.end(), temp.begin());
for (std::vector<double>::iterator it = temp.begin();
it != temp.end();
++1it)

{
//do something with the data here

}
copy (temp.begin (), temp.end(), gpu_vector.begin());

The three extra code lines can be wrapped into a separate iterator class by the library user,
who also has to ensure data consistency during the loop.

12.5 Initialization of Compute Kernels

Since OpenCL relies on passing the OpenCL source code to a built-in just-in-time compiler
at run time, the necessary kernels have to be generated every time an application using
ViennaCL is started.

One possibility was to require a mandatory

viennacl::init ();

before using any other objects provided by ViennacCL, but this approach was discarded for
the following two reasons:

e If viennacl::init (); is accidentally forgotten by the user, the program will most
likely terminate in a rather uncontrolled way.

e It requires the user to remember and write one extra line of code, even if the default
settings are fine.

Initialization is instead done in a lazy manner when requesting OpenCL kernels. Kernels

with similar functionality are grouped together in a common compilation units. This allows
a fine-grained control over which source code to compile where and when. For example,
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there is no reason to compile the sparse matrix compute kernels at program startup if
there are no sparse matrices used at all.

Moreover, the just-in-time compilation of all available compute kernels in ViennaCL takes
several seconds. Therefore, a request-based compilation is used to minimize any overhead
due to just-in-time compilation.

The request-based compilation is a two-step process: At the first instantiation of an object
of a particular type from vViennaCL, the full source code for all objects of the same type is
compiled into a OpenCL program for that type. Each program contains plenty of compute
kernels, which are not yet initialized. Only if an argument for a compute kernel is set,
the kernel actually cares about its own initialization. Any subsequent calls of that kernel
reuse the already compiled and initialized compute kernel.

When benchmarking vViennacCL, first a dummy call to the functionality of interest
should be issued prior to taking timings. Otherwise, benchmark results include
the just-in-time compilation, which is a constant independent of the data size.
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Appendix A

Versioning

Each release of VviennaCL carries a three-fold version number, given by

ViennaCL X.Y.Z.

For users migrating from an older release of ViennaCL to a new one, the following guide-
lines apply:

e X is the major version number, starting with 1. A change in the major version number
is not necessarily API-compatible with any versions of ViennaCL carrying a different
major version number. In particular, end users of ViennaCL have to expect consider-
able code changes when changing between different major versions of ViennaCL.

e Y denotes the minor version number, restarting with zero whenever the major ver-
sion number changes. The minor version number is incremented whenever signifi-
cant functionality is added to ViennaCL. The API of an older release of ViennaCL
with smaller minor version number (but same major version number) is essentially
compatible to the new version, hence end users of ViennaCL usually do not have to
alter their application code, unless they have used a certain functionality that was
not intended to be used and removed in the new version.

e 7 is the revision number. If either the major or the minor version number changes,
the revision number is reset to zero. Releases of ViennacClL, that only differ in their
revision number, are API compatible. Typically, the revision number is increased
whenever bugfixes are applied, compute kernels are improved or some extra, not
significant functionality is added.

Always try to use the latest version of ViennaCL before submitting bug reports!
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Appendix B

Change Logs

Version 1.5.x

Version 1.5.2

While the work for the upcoming 1.6.0 release is in full progress, this maintenance release
fixes a couple of bugs and performance regressions reported to us:

e Fixed compilation problems on Visual Studio for the operations y += prod(a, x)
andy -= prod (A, x) with dense matrix A.

e Added a better performance profile for NVIDIA Kepler GPUs. For example, this in-
creases the performance of matrix-matrix multiplications to 600 GFLOPs in single
precision on a GeForce GTX 680. Thanks to Paul Dufort for bringing this to our
attention.

e Added support for the operation o = trans (B) for matrices A and B to the scheduler.

e Fixed compilation problems in block-ILU preconditioners when passing block bound-
aries manually.

e Ensured compatibility with OpenCL 1.0, which may still be available on older devices.

Version 1.5.1
This maintenance release fixes a few nasty bugs:

e Fixed a memory leak in the OpenCL kernel generator. Thanks to GitHub user dxyzab
for spotting this.

e Added compatibility of the mixed precision CG implementation with older AMD GPUs.
Thanks to Andreas Rost for the input.

e Fixed an error when running the QR factorization for matrices with less rows than
columns. Thanks to Karol Polko for reporting.

e Readded accidentally removed chapters on additional algorithms and structured ma-
trices to the manual. Thanks to Sajjadul Islam for the hint.
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¢ Fixed buggy OpenCL kernels for matrix additions and subtractions for column-major
matrices. Thanks to Tom Nicholson for reporting.

e Fixed an invalid default kernel parameter set for matrix-matrix multiplications on
CPUs when using the OpenCL backend. Thanks again to Tom Nicholson.

e Corrected a weak check used in two tests. Thanks to Walter Mascarenhas for provid-
ing a fix.

e Fixed a wrong global work size inside the SPAI preconditioner. Thanks to Andreas
Rost.

Version 1.5.0

This new minor release number update focuses on a more powerful API, and on first steps
in making ViennaCL more accessible from languages other than C++. In addition to many
internal improvements both in terms of performance and flexibility, the following changes
are visible to users:

e API-change: User-provided OpenCL kernels extract their kernels automatically. A
call to add_kernel () is now obsolete, hence the function was removed.

e API-change: Device class has been extend and supports all informations defined in
the OpenCL 1.1 standard through member functions. Duplicate compute_units ()
and max_work_group_size () have been removed (thanks for Shantanu Agarwal for
the input).

e API-change: viennacl: :copy () from a ViennaCL object to an object of non-ViennaCL
type no longer tries to resize the object accordingly. An assertion is thrown if the sizes
are incorrect in order to provide a consistent behavior across many different types.

e Datastructure change: Vectors and matrices are now padded with zeros by default,
resulting in higher performance particularly for matrix operations. This padding
needs to be taken into account when using fast_copy (), particularly for matrices.

e Fixed problems with CUDA and CMake+CUDA on Visual Studio.
e coordinate_matrix<> now also behaves correctly for tiny matrix dimensions.
e CMake 2.6 as new minimum requirement instead of CMake 2.8.

e Vectors and matrices can be instantiated with integer template types (long, int, short,
char).

e Added support for element_prod() and element_div () for dense matrices.
e Added element_pow () for vectors and matrices.
e Added norm_frobenius () for computing the Frobenius norm of dense matrices.

e Added unary element-wise operations for vectors and dense matrices: element_sin
(), element_sqrt (), ete.

e Multiple OpenCL contexts can now be used in a multi-threaded setting (one thread
per context).
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Multiple inner products with a common vector can now be computed efficiently via
e.g. inner_prod(x, tie(y, z));

Added support for prod(a, B), where A is a sparse matrix type and B is a dense
matrix (thanks to Albert Zaharovits for providing parts of the implementation).

Added diag () function for extracting the diagonal of a vector to a matrix, or for gen-
erating a square matrix from a vector with the vector elements on a diagonal (similar
to MATLAB).

Added row () and column() functions for extracting a certain row or column of a
matrix to a vector.

Sparse matrix-vector products now also work with vector strides and ranges.

Added async_copy () for vectors to allow for a better overlap of computation and
communication.

Added compressed_compressed_matrix type for the efficient representation of CSR
matrices with only few nonzero rows.

Added possibility to switch command queues in OpenCL contexts.
Improved performance of Block-ILU by removing one spurious conversion step.
Improved performance of Cuthill-McKee algorithm by about 40 percent.

Improved performance of power iteration by avoiding the creation of temporaries in
each step.

Removed spurious status message to cout in matrix market reader and nonnegative
matrix factorization.

The OpenCL kernel launch logic no longer attempts to re-launch the kernel with
smaller work sizes if an error is encountered (thanks to Peter Burka for pointing this
out).

Reduced overhead for lenghty expressions involving temporaries (at the cost of in-
creased compilation times).

vector and matrix are now padded to dimensions being multiples of 128 per default.
This greatly improves GEMM performance for arbitrary sizes.

Loop indices for OpenMP parallelization are now all signed, increasing compatibility
with older OpenMP implementations (thanks to Mrinal Deo for the hint).

Complete rewrite of the generator. Now uses the scheduler for specifying the opera-
tion. Includes a full device database for portable high performance of GEMM kernels.

Added micro-scheduler for attaching the OpenCL kernel generator to the user API.

Certain BLAS functionality in ViennaCL is now also available through a shared li-
brary (libviennacl).

Removed the external kernel parameter tuning factility, which is to be replaced by an
internal device database through the kernel generator.
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Completely eliminated the OpenCL kernel conversion step in the developer repository
and the source-release. One can now use the developer version without the need for
a Boost installation.

Version 1.4.x

Version 1.4.2

This is a maintenance release, particularly resolving compilation problems with Visual
Studio 2012.

Largely refactored the internal code base, unifying code for vector, vector_range,
and vector_slice. Similar code refactoring was applied to matrix, matrix_range,
and matrix_slice. This not only resolves the problems in VS 2012, but also leads to
shorter compilation times and a smaller code base.

Improved performance of matrix-vector products of compressed_matrix on CPUs us-
ing OpenCL.

Resolved a bug which shows up if certain rows and columns of a compressed_matrix
are empty and the matrix is copied back to host.

Fixed a bug and improved performance of GMRES. Thanks to Ivan Komarov for re-
porting via sourceforge.

Added additional Doxygen documentation.

Version 1.4.1

This release focuses on improved stability and performance on AMD devices rather than
introducing new features:

Included fast matrix-matrix multiplication kernel for AMD’s Tahiti GPUs if matrix
dimensions are a multiple of 128. Our sample HD7970 reaches over 1.3 TFLOPs in
single precision and 200 GFLOPs in double precision (counting multiplications and
additions as separate operations).

All benchmark FLOPs are now using the common convention of counting multiplica-
tions and additions separately (ignoring fused multiply-add).

Fixed a bug for matrix-matrix multiplication with matrix_s1ice<> when slice dimen-
sions are multiples of 64.

Improved detection logic for Intel OpenCL SDK.
Fixed issues when resizing an empty compressed_matrix.

Fixes and improved support for BLAS-1-type operations on dense matrices and vec-
tors.

Vector expressions can now be passed to inner_prod() and norm_1 (), norm_2 () and
norm_inf () directly.
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Improved performance when using OpenMP.
Better support for Intel Xeon Phi (MIC).

Resolved problems when using OpenCL for CPUs if the number of cores is not a power
of 2.

Fixed a flaw when using AMG in debug mode. Thanks to Jakub Pola for reporting.

Removed accidental external linkage (invalidating header-only model) of SPAI-related
functions. Thanks again to Jakub Pola.

Fixed issues with copy back to host when OpenCL handles are passed to CTORs of
vector, matrix, or compressed_matrix. Thanks again to Jakub Pola.

Added fix for segfaults on program exit when providing custom OpenCL queues.
Thanks to Denis Demidov for reporting.

Fixed bug in copy () to hyb_matrix as reported by Denis Demidov (thanks!).

Added an overload for result_of::alignment for vector_expression. Thanks again
to Denis Demidov.

Added SSE-enabled code contributed by Alex Christensen.

Version 1.4.0

The transition from 1.3.x to 1.4.x features the largest number of additions, improvements,
and cleanups since the initial release. In particular, host-, OpenCL-, and CUDA-based
execution is now supported. OpenCL now needs to be enabled explicitly! New features and
feature improvements are as follows:

Added host-based and CUDA-enabled operations on ViennaCL objects. The default is
now a host-based execution for reasons of compatibility. Enable OpenCL- or CUDA-
based execution by defining the preprocessor constant VIENNACI_WITH_OPENCL and
VIENNACL_WITH_CUDA respectively. Note that CUDA-based execution requires the use
of nvcc.

Added mixed-precision CG solver (OpenCL-based).

Greatly improved performance of ILUO and ILUT preconditioners (up to 10-fold). Also
fixed a bug in ILUT.

Added initializer types from Boost.uBLAS (unit_vector, zero_vector, scalar_vector
, identity _matrix, zero_matrix, scalar_matrix). Thanks to Karsten Ahnert for
suggesting the feature.

Added incomplete Cholesky factorization preconditioner.

Added element-wise operations for vectors as available in Boost.uBLAS (element_prod
, element_div).

Added restart-after-N-cycles option to BiCGStab.

Added level-scheduling for ILU-preconditioners. Performance strongly depends on
matrix pattern.
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e Added least-squares example including a function inplace_qgr_apply_trans_Q() to
compute the right hand side vector Q7'b without rebuilding Q.

e Improved performance of LU-factorization of dense matrices.
e Improved dense matrix-vector multiplication performance (thanks to Philippe Tillet).
e Reduced overhead when copying to/from ublas: :compressed_matrix.

e ViennaCL objects (scalar, vector, etc.) can now be used as global variables (thanks to
an anonymous user on the support-mailinglist).

e Refurbished OpenCL vector kernels backend. All operations of the type vl = a v2 @
b v3 with vectors v1, v2, v3 and scalars a and b including += and -= instead of = are
now temporary-free. Similarly for matrices.

e matrix_range and matrix_slice as well as vector_range and vector_slice can
now be used and mixed completely seamlessly with all standard operations except
lu_factorize().

e Fixed a bug when using copy() with iterators on vector proxy objects.

e Final reduction step in inner_prod() and norms is now computed on CPU if the
result is a CPU scalar.

e Reduced kernel launch overhead of simple vector kernels by packing multiple kernel
arguments together.

e Updated SVD code and added routines for the computation of symmetric eigenvalues
using OpenCL.

e custom_operation’s constructor now support multiple arguments, allowing multiple
expression to be packed in the same kernel for improved performances. However, all
the datastructures in the multiple operations must have the same size.

e Further improvements to the OpenCL kernel generator: Added a repeat feature for
generating loops inside a kernel, added element-wise products and division, added
support for every one-argument OpenCL function.

e The name of the operation is now a mandatory argument of the constructor of cust om_operation

e Improved performances of the generated matrix-vector product code.
e Updated interfacing code for the Eigen library, now working with Eigen 3.x.y.

e Converter in source-release now depends on Boost.filesystem3 instead of Boost.filesystem2,
thus requiring Boost 1.44 or above.

Version 1.3.x

Version 1.3.1

The following bugfixes and enhancements have been applied:
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e Fixed a compilation problem with GCC 4.7 caused by the wrong order of function
declarations. Also removed unnecessary indirections and unused variables.

e Improved out-of-source build in the src-version (for packagers).
e Added virtual destructor in the runt ime_wrapper-class in the kernel generator.
¢ Extended flexibility of submatrix and subvector proxies (ranges, slices).

e Block-ILU for compressed_matrix is now applied on the GPU during the solver cycle
phase. However, for the moment the implementation file in
viennacl/linalg/detail/ilu/opencl_block_ilu.hpp needs tobeincluded sep-
arately in order to avoid an OpenCL dependency for all ILU implementations.

e SVD now supports double precision.

e Slighly adjusted the interface for NMF. The approximation rank is now specified by
the supplied matrices W and H.

e Fixed a problem with matrix-matrix products if the result matrix is not initialized
properly (thanks to Laszlo Marak for finding the issue and a fix).

e The operations C+ = prod(A, B) and C— = prod(A, B) for matrices A, B, and C no
longer introduce temporaries if the three matrices are distinct.

Version 1.3.0

Several new features enter this new minor version release. Some of the experimental
features introduced in 1.2.0 keep their experimental state in 1.3.x due to the short time
since 1.2.0, with exceptions listed below along with the new features:

e Full support for ranges and slices for dense matrices and vectors (no longer experi-
mental)

e QR factorization now possible for arbitrary matrix sizes (no longer experimental)

e Further improved matrix-matrix multiplication performance for matrix dimensions
which are a multiple of 64 (particularly improves performance for NVIDIA GPUs)

e Added Lanczos and power iteration method for eigenvalue computations of dense and
sparse matrices (experimental, contributed by Giinther Mader and Astrid Rupp)

e Added singular value decomposition in single precision (experimental, contributed by
Volodymyr Kysenko)

e Two new ILU-preconditioners added: ILUO (contributed by Evan Bollig) and a block-
diagonal ILU preconditioner using either ILUT or ILUO for each block. Both precon-
ditioners are computed entirely on the CPU.

e Automated OpenCL kernel generator based on high-level operation specifications
added (many thanks to Philippe Tillet who had a lot of fun fun fun working on this)

e Two new sparse matrix types (by Volodymyr Kysenko): e11_matrix for the ELL for-
mat and hyb_matrix for a hybrid format (contributed by Volodymyr Kysenko).
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e Added possibility to specify the OpenCL platform used by a context

e Build options for the OpenCL compiler can now be supplied to a context (thanks to
Krzysztof Bzowski for the suggestion)

e Added nonnegative matrix factorization by Lee and Seoung (contributed by Volodymyr
Kysenko).

Version 1.2.x

Version 1.2.1

The current release mostly provides a few bug fixes for experimental features introduced
in 1.2.0. In addition, performance improvements for matrix-matrix multiplications are
applied. The main changes (in addition to some internal adjustments) are as follows:

¢ Fixed problems with double precision on AMD GPUs supporting c1_amd_fp64 instead
of c1_khr_fp64 (thanks to Sylvain R.)

e Considerable improvements in the handling of matrix_range. Added project() func-
tion for convenience (cf. Boost.uBLAS)

e Further improvements of matrix-matrix multiplication performance (contributed by
Volodymyr Kysenko)

e Improved performance of QR factorization

e Added direct element access to elements of compressed_matrix using operator ()
(thanks to sourceforge.net user Sulif for the hint)

¢ Fixed incorrect matrix dimensions obtained with the transfer of non-square sparse
Eigen and MTL matrices to ViennaCL objects (thanks to sourceforge.net user ggrocca
for pointing at this)

Version 1.2.0

Many new features from the Google Summer of Code and the IuE Summer of Code enter
this release. Due to their complexity, they are for the moment still in experimental state
(see the respective chapters for details) and are expected to reach maturity with the 1.3.0
release. Shorter release cycles are planned for the near future.

e Added a bunch of algebraic multigrid preconditioner variants (contributed by Markus
Wagner)

e Added (factored) sparse approximate inverse preconditioner (SPAI, contributed by
Nikolay Lukash)

e Added fast Fourier transform (FFT) for vector sizes with a power of two, standard
Fourier transform for other sizes (contributed by Volodymyr Kysenko)

e Additional structured matrix classes for circulant matrices, Hankel matrices, Toeplitz
matrices and Vandermonde matrices (contributed by Volodymyr Kysenko)

71



Added reordering algorithms (Cuthill-McKee and Gibbs-Poole-Stockmeyer, contributed
by Philipp Grabenweger)

Refurbished CMake build system (thanks to Michael Wild)
Added matrix and vector proxy objects for submatrix and subvector manipulation
Added (possibly GPU-assisted) QR factorization

Per default, a viennacl::ocl::context now consists of one device only. The ratio-
nale is to provide better out-of-the-box support for machines with hybrid graphics
(two GPUs), where one GPU may not be capable of double precision support.

Fixed problems with viennacl::compressed_matrix which occurred if the number
of rows and columns differed

Improved documentation for the case of multiple custom kernels within a program

Improved matrix-matrix multiplication kernels (may lead to up to 20 percent perfor-
mance gains)

Fixed problems in GMRES for small matrices (dimensions smaller than the maxi-
mum number of Krylov vectors)

Version 1.1.x

Version 1.1.2

This final release of the ViennaCL 1.1.x family focuses on refurbishing existing function-
ality:

Fixed a bug with partial vector copies from CPU to GPU (thanks to sourceforge.net
user kaiwen).

Corrected error estimations in CG and BiCGStab iterative solvers (thanks to Riccardo
Rossi for the hint).

Improved performance of CG and BiCGStab as well as Jacobi and row-scaling pre-
conditioners considerably (thanks to Farshid Mossaiby and Riccardo Rossi for a lot of
input).

Corrected linker statements in CMakeLists.txt for MacOS (thanks to Eric Chris-
tiansen).

Improved handling of ViennaCL types (direct construction, output streaming of matrix-
and vector-expressions, etc.).

Updated old code in the coordinate_matrix type and improved performance (thanks
to Dongdong Li for finding this).

Using size_t instead of unsigned int for the size type on the host.

Updated double precision support detection for AMD hardware.
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e Fixed a name clash in direct_solve.hpp and ilu.hpp (thanks to sourceforge.net user
random).

e Prevented unsupported assignments and copies of sparse matrix types (thanks to
sourceforge.net user kszyh).

Version 1.1.1

This new revision release has a focus on better interaction with other linear algebra li-
braries. The few known glitches with version 1.1.0 are now removed.

e Fixed compilation problems on MacOS X and OpenCL 1.0 header files due to unde-
fined an preprocessor constant (thanks to Vlad-Andrei Lazar and Evan Bollig for
reporting this)

e Removed the accidental external linkage for three functions (we appreciate the report
by Gordon Stevenson).

e New out-of-the-box support for Eigen [3] and MTL 4 [4] libraries. Iterative solvers
from ViennaCL can now directly be used with both libraries.

e Fixed a problem with GMRES when system matrix is smaller than the maximum
Krylov space dimension.

e Better default parameter for BLASS3 routines leads to higher performance for matrix-
matrix-products.

e Added benchmark for dense matrix-matrix products (BLAS3 routines).

e Added viennacl-info example that displays infos about the OpenCL backend used by
ViennaCL.

e Cleaned up CMakeLists.txt in order to selectively enable builds that rely on external
libraries.

e More than one installed OpenCL platform is now allowed (thanks to Aditya Patel).

Version 1.1.0
A large number of new features and improvements over the 1.0.5 release are now available:

e The completely rewritten OpenCL back-end allows for multiple contexts, multiple de-
vices and even to wrap existing OpenCL resources into ViennaCL objects. A tutorial
demonstrates the new functionality. Thanks to Josip Basic for pushing us into that
direction.

e The tutorials are now named according to their purpose.
e The dense matrix type now supports both row-major and column-major storage.

e Dense and sparse matrix types now now be filled using STL-emulated types (std::
vector< std::vector<NumericT> > and std: :vector< std: :map< unsigned int,

NumericT> >)
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e BLAS level 3 functionality is now complete. We are very happy with the general out-
of-the-box performance of matrix-matrix-products, even though it cannot beat the ex-
tremely tuned implementations tailored to certain matrix sizes on a particular device
yet.

e An automated performance tuning environment allows an optimization of the kernel
parameters for the library user’s machine. Best parameters can be obtained from a
tuning run and stored in a XML file and read at program startup using pugixml.

e Two new preconditioners are now included: A Jacobi preconditioner and a row-scaling
preconditioner. In contrast to ILUT, they are applied on the OpenCL device directly.

e Clean compilation of all examples under Visual Studio 2005 (we recommend newer
compilers though...).

e Error handling is now carried out using C++ exceptions.

e Matrix Market now uses index base 1 per default (thanks to Evan Bollig for reporting
that)

e Improved performance of norm X kernels.

e Iterative solver tags now have consistent constructors: First argument is the rela-
tive tolerance, second argument is the maximum number of total iterations. Other
arguments depend on the respective solver.

e A few minor improvements here and there (thanks go to Riccardo Rossi and anony-
mous sourceforge.net users for reporting the issues)

Version 1.0.x

Version 1.0.5
This is the last 1.0.x release. The main changes are as follows:

e Added a reader and writer for MatrixMarket files (thanks to Evan Bollig for suggest-
ing that)

e Eliminated a bug that caused the upper triangular direct solver to fail on NVIDIA
hardware for large matrices (thanks to Andrew Melfi for finding that)

e The number of iterations and the final estimated error can now be obtained from
iterative solver tags.

e Improvements provided by Klaus Schnass are included in the developer converter
script (OpenCL kernels to C++ header)

e Disabled the use of reference counting for OpenCL handles on Mac OS X (caused seg
faults on program exit)
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Version 1.0.4

The changes in this release are:

e All tutorials now work out-of the box with Visual Studio 2008.
e Eliminated all viennaCL related warnings when compiling with Visual Studio 2008.

e Better (experimental) support for double precision on ATI GPUs, but no norm_1,
norm_2, norm_inf and index_norm_inf functions using ATI Stream SDK on GPUs
in double precision.

e Fixed a bug in GMRES that caused segmentation faults under Windows.

e Fixed a bug in const_sparse_matrix_adapter (thanks to Abhinav Golas and Nico
Galoppo for almost simultaneous emails on that)

e Corrected incorrect return values in the sparse matrix regression test suite (thanks

to Klaus Schnass for the hint)

Version 1.0.3
The main improvements in this release are:

e Support for multi-core CPUs with ATI Stream SDK (thanks to Riccardo Rossi, UPC.
BARCELONA TECH, for suggesting this)

e inner_prod is now up to a factor of four faster (thanks to Serban Georgescu, ETH,
for pointing the poor performance of the old implementation out)

e Fixed a bug with plane_rotation that caused system freezes with ATI GPUs.

e Extended the doxygen generated reference documentation

Version 1.0.2
A bug-fix release that resolves some problems with the Visual C++ compiler.

e Fixed some compilation problems under Visual C++ (version 2005 and 2008).

e All tutorials accidentally relied on uBLAS. Now tutl and tut5 can be compiled with-
out uBLAS

e Renamed aux/ folder to auxiliary/ (caused some problems on windows machines)

Version 1.0.1

This is a quite large revision of ViennaCL 1.0.0, but mainly improves things under the
hood.

e Fixed a bug in lu_substitute for dense matrices

e Changed iterative solver behavior to stop if a certain relative residual is reached
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e ILU preconditioning is now fully done on the CPU, because this gives best overall
performance

e All OpenCL handles of ViennaCL types can now be accessed via member function
handle ()

Improved GPU performance of GMRES by about a factor of two.

Added generic norm_2 function in header file norm_2 . hpp

Wrapper for c1Flush () and c1Finish () added

Device information can be queried by device.info ()

Extended documentation and tutorials

Version 1.0.0

First release
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Appendix C

License

Copyright (c) 2010-2014 Institute for Microelectronics, Institute for Analysis and Scientific
Computing, TU Wien. Portions of this software are copyright by UChicago Argonne, LLC.
Argonne National Laboratory, with facilities in the state of Illinois, is owned by The United
States Government, and operated by UChicago Argonne, LL.C under provision of a contract
with the Department of Energy.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the ”Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish, dis-
tribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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