Generated by Cython 0.16 on Thu Nov 29 08:42:16 2012
Raw output: pytables.c
1: ### pytables extensions ###
/* "pandas/src/pytables.pyx":1 * ### pytables extensions ### #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * from numpy cimport ndarray, int32_t, float64_t, int64_t */ __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(((PyObject *)__pyx_t_1)); if (PyObject_SetAttr(__pyx_m, __pyx_n_s____test__, ((PyObject *)__pyx_t_1))<
0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(((PyObject *)__pyx_t_1)); __pyx_t_1 = 0;
2:
3: from numpy cimport ndarray, int32_t, float64_t, int64_t
4: cimport numpy as np
5:
6: cimport cython
7:
8: import numpy as np
/* "pandas/src/pytables.pyx":8 * cimport cython * * import numpy as np #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* import operator * import sys */ __pyx_t_1 = __Pyx_Import(((PyObject *)__pyx_n_s__numpy), 0, -1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 8; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyObject_SetAttr(__pyx_m, __pyx_n_s__np, __pyx_t_1)<
0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 8; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
9: import operator
/* "pandas/src/pytables.pyx":9 * * import numpy as np * import operator #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* import sys * */ __pyx_t_1 = __Pyx_Import(((PyObject *)__pyx_n_s__operator), 0, -1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 9; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyObject_SetAttr(__pyx_m, __pyx_n_s__operator, __pyx_t_1)<
0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 9; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
10: import sys
/* "pandas/src/pytables.pyx":10 * import numpy as np * import operator * import sys #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * np.import_array() */ __pyx_t_1 = __Pyx_Import(((PyObject *)__pyx_n_s__sys), 0, -1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 10; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyObject_SetAttr(__pyx_m, __pyx_n_s__sys, __pyx_t_1)<
0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 10; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
11:
12: np.import_array()
/* "pandas/src/pytables.pyx":12 * import sys * * np.import_array() #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* np.import_ufunc() * */ import_array();
13: np.import_ufunc()
/* "pandas/src/pytables.pyx":13 * * np.import_array() * np.import_ufunc() #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * */ import_ufunc();
14:
15:
16: from cpython cimport (PyDict_New, PyDict_GetItem, PyDict_SetItem,
17: PyDict_Contains, PyDict_Keys,
18: Py_INCREF, PyTuple_SET_ITEM,
19: PyTuple_SetItem,
20: PyTuple_New,
21: PyObject_SetAttrString)
22:
23: @cython.boundscheck(False)
24: @cython.wraparound(False)
25: def create_hdf_rows_2d(ndarray index, ndarray[np.uint8_t, ndim=1] mask, list values):
/* "pandas/src/pytables.pyx":25 * @cython.boundscheck(False) * @cython.wraparound(False) * def create_hdf_rows_2d(ndarray index, ndarray[np.uint8_t, ndim=1] mask, list values): #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* """ return a list of objects ready to be converted to rec-array format """ * */ static PyObject *__pyx_pf_6pandas_9_pytables_create_hdf_rows_2d(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_index, PyArrayObject *__pyx_v_mask, PyObject *__pyx_v_values) { unsigned int __pyx_v_i; unsigned int __pyx_v_b; unsigned int __pyx_v_n_index; unsigned int __pyx_v_n_blocks; unsigned int __pyx_v_tup_size; PyArrayObject *__pyx_v_v = 0; PyObject *__pyx_v_l = 0; PyObject *__pyx_v_tup = 0; PyObject *__pyx_v_val = 0; __Pyx_LocalBuf_ND __pyx_pybuffernd_mask; __Pyx_Buffer __pyx_pybuffer_mask; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("create_hdf_rows_2d", 0); __pyx_pybuffer_mask.pybuffer.buf = NULL; __pyx_pybuffer_mask.refcount = 0; __pyx_pybuffernd_mask.data = NULL; __pyx_pybuffernd_mask.rcbuffer = &__pyx_pybuffer_mask; { __Pyx_BufFmt_StackElem __pyx_stack[1]; if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_mask.rcbuffer->pybuffer, (PyObject*)__pyx_v_mask, &__Pyx_TypeInfo_nn___pyx_t_5numpy_uint8_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 25; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __pyx_pybuffernd_mask.diminfo[0].strides = __pyx_pybuffernd_mask.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_mask.diminfo[0].shape = __pyx_pybuffernd_mask.rcbuffer->pybuffer.shape[0]; /* "pandas/src/pytables.pyx":25 * @cython.boundscheck(False) * @cython.wraparound(False) * def create_hdf_rows_2d(ndarray index, ndarray[np.uint8_t, ndim=1] mask, list values): #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* """ return a list of objects ready to be converted to rec-array format """ * */ __pyx_k_tuple_15 = PyTuple_New(12); if (unlikely(!__pyx_k_tuple_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 25; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_k_tuple_15); __Pyx_INCREF(((PyObject *)__pyx_n_s__index)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 0, ((PyObject *)__pyx_n_s__index)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__index)); __Pyx_INCREF(((PyObject *)__pyx_n_s__mask)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 1, ((PyObject *)__pyx_n_s__mask)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__mask)); __Pyx_INCREF(((PyObject *)__pyx_n_s__values)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 2, ((PyObject *)__pyx_n_s__values)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__values)); __Pyx_INCREF(((PyObject *)__pyx_n_s__i)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 3, ((PyObject *)__pyx_n_s__i)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__i)); __Pyx_INCREF(((PyObject *)__pyx_n_s__b)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 4, ((PyObject *)__pyx_n_s__b)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__b)); __Pyx_INCREF(((PyObject *)__pyx_n_s__n_index)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 5, ((PyObject *)__pyx_n_s__n_index)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__n_index)); __Pyx_INCREF(((PyObject *)__pyx_n_s__n_blocks)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 6, ((PyObject *)__pyx_n_s__n_blocks)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__n_blocks)); __Pyx_INCREF(((PyObject *)__pyx_n_s__tup_size)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 7, ((PyObject *)__pyx_n_s__tup_size)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__tup_size)); __Pyx_INCREF(((PyObject *)__pyx_n_s__v)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 8, ((PyObject *)__pyx_n_s__v)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__v)); __Pyx_INCREF(((PyObject *)__pyx_n_s__l)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 9, ((PyObject *)__pyx_n_s__l)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__l)); __Pyx_INCREF(((PyObject *)__pyx_n_s__tup)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 10, ((PyObject *)__pyx_n_s__tup)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__tup)); __Pyx_INCREF(((PyObject *)__pyx_n_s__val)); PyTuple_SET_ITEM(__pyx_k_tuple_15, 11, ((PyObject *)__pyx_n_s__val)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__val)); __Pyx_GIVEREF(((PyObject *)__pyx_k_tuple_15)); /* "pandas/src/pytables.pyx":25 * @cython.boundscheck(False) * @cython.wraparound(False) * def create_hdf_rows_2d(ndarray index, ndarray[np.uint8_t, ndim=1] mask, list values): #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* """ return a list of objects ready to be converted to rec-array format """ * */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6pandas_9_pytables_1create_hdf_rows_2d, NULL, __pyx_n_s_18); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 25; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyObject_SetAttr(__pyx_m, __pyx_n_s__create_hdf_rows_2d, __pyx_t_1)<
0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 25; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_k_codeobj_16 = (PyObject*)__Pyx_PyCode_New(3, 0, 12, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_k_tuple_15, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_17, __pyx_n_s__create_hdf_rows_2d, 25, __pyx_empty_bytes); if (unlikely(!__pyx_k_codeobj_16)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 25; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
26: """ return a list of objects ready to be converted to rec-array format """
27:
28: cdef:
29: unsigned int i, b, n_index, n_blocks, tup_size
30: ndarray v
31: list l
32: object tup, val
33:
34: n_index = index.shape[0]
/* "pandas/src/pytables.pyx":34 * object tup, val * * n_index = index.shape[0] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* n_blocks = len(values) * tup_size = n_blocks+1 */ __pyx_v_n_index = (__pyx_v_index->dimensions[0]);
35: n_blocks = len(values)
/* "pandas/src/pytables.pyx":35 * * n_index = index.shape[0] * n_blocks = len(values) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* tup_size = n_blocks+1 * l = [] */ if (unlikely(((PyObject *)__pyx_v_values) == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 35; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __pyx_t_1 = PyList_GET_SIZE(((PyObject *)__pyx_v_values)); __pyx_v_n_blocks = __pyx_t_1;
36: tup_size = n_blocks+1
/* "pandas/src/pytables.pyx":36 * n_index = index.shape[0] * n_blocks = len(values) * tup_size = n_blocks+1 #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* l = [] * for i from 0<
= i<
n_index: */ __pyx_v_tup_size = (__pyx_v_n_blocks + 1);
37: l = []
/* "pandas/src/pytables.pyx":37 * n_blocks = len(values) * tup_size = n_blocks+1 * l = [] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* for i from 0<
= i<
n_index: * */ __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 37; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_v_l = __pyx_t_2; __pyx_t_2 = 0;
38: for i from 0 <= i < n_index:
/* "pandas/src/pytables.pyx":38 * tup_size = n_blocks+1 * l = [] * for i from 0<
= i<
n_index: #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * if not mask[i]: */ __pyx_t_3 = __pyx_v_n_index; for (__pyx_v_i = 0; __pyx_v_i<
__pyx_t_3; __pyx_v_i++) {
39:
40: if not mask[i]:
/* "pandas/src/pytables.pyx":40 * for i from 0<
= i<
n_index: * * if not mask[i]: #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * tup = PyTuple_New(tup_size) */ __pyx_t_4 = __pyx_v_i; __pyx_t_5 = (!(*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_uint8_t *, __pyx_pybuffernd_mask.rcbuffer->pybuffer.buf, __pyx_t_4, __pyx_pybuffernd_mask.diminfo[0].strides))); if (__pyx_t_5) {
41:
42: tup = PyTuple_New(tup_size)
/* "pandas/src/pytables.pyx":42 * if not mask[i]: * * tup = PyTuple_New(tup_size) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* val = index[i] * PyTuple_SET_ITEM(tup, 0, val) */ __pyx_t_2 = ((PyObject *)PyTuple_New(__pyx_v_tup_size)); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 42; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_XDECREF(__pyx_v_tup); __pyx_v_tup = __pyx_t_2; __pyx_t_2 = 0;
43: val = index[i]
/* "pandas/src/pytables.pyx":43 * * tup = PyTuple_New(tup_size) * val = index[i] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* PyTuple_SET_ITEM(tup, 0, val) * Py_INCREF(val) */ __pyx_t_2 = __Pyx_GetItemInt(((PyObject *)__pyx_v_index), __pyx_v_i, sizeof(unsigned int)+1, PyLong_FromUnsignedLong); if (!__pyx_t_2) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 43; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_XDECREF(__pyx_v_val); __pyx_v_val = __pyx_t_2; __pyx_t_2 = 0;
44: PyTuple_SET_ITEM(tup, 0, val)
/* "pandas/src/pytables.pyx":44 * tup = PyTuple_New(tup_size) * val = index[i] * PyTuple_SET_ITEM(tup, 0, val) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* Py_INCREF(val) * */ PyTuple_SET_ITEM(__pyx_v_tup, 0, __pyx_v_val);
45: Py_INCREF(val)
/* "pandas/src/pytables.pyx":45 * val = index[i] * PyTuple_SET_ITEM(tup, 0, val) * Py_INCREF(val) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * for b from 0<
= b<
n_blocks: */ Py_INCREF(__pyx_v_val);
46:
47: for b from 0 <= b < n_blocks:
/* "pandas/src/pytables.pyx":47 * Py_INCREF(val) * * for b from 0<
= b<
n_blocks: #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * v = values[b][:, i] */ __pyx_t_6 = __pyx_v_n_blocks; for (__pyx_v_b = 0; __pyx_v_b<
__pyx_t_6; __pyx_v_b++) {
48:
49: v = values[b][:, i]
/* "pandas/src/pytables.pyx":49 * for b from 0<
= b<
n_blocks: * * v = values[b][:, i] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* PyTuple_SET_ITEM(tup, b+1, v) * Py_INCREF(v) */ __pyx_t_2 = PyLong_FromUnsignedLong(__pyx_v_i); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_7 = PyTuple_New(2); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_7); __Pyx_INCREF(__pyx_k_slice_1); PyTuple_SET_ITEM(__pyx_t_7, 0, __pyx_k_slice_1); __Pyx_GIVEREF(__pyx_k_slice_1); PyTuple_SET_ITEM(__pyx_t_7, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyObject_GetItem(PyList_GET_ITEM(__pyx_v_values, __pyx_v_b), ((PyObject *)__pyx_t_7)); if (!__pyx_t_2) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(((PyObject *)__pyx_t_7)); __pyx_t_7 = 0; if (!(likely(((__pyx_t_2) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_2, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_XDECREF(((PyObject *)__pyx_v_v)); __pyx_v_v = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "pandas/src/pytables.pyx":49 * for b from 0<
= b<
n_blocks: * * v = values[b][:, i] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* PyTuple_SET_ITEM(tup, b+1, v) * Py_INCREF(v) */ __pyx_k_slice_1 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_k_slice_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_k_slice_1); __Pyx_GIVEREF(__pyx_k_slice_1);
50: PyTuple_SET_ITEM(tup, b+1, v)
/* "pandas/src/pytables.pyx":50 * * v = values[b][:, i] * PyTuple_SET_ITEM(tup, b+1, v) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* Py_INCREF(v) * */ PyTuple_SET_ITEM(__pyx_v_tup, (__pyx_v_b + 1), ((PyObject *)__pyx_v_v));
51: Py_INCREF(v)
/* "pandas/src/pytables.pyx":51 * v = values[b][:, i] * PyTuple_SET_ITEM(tup, b+1, v) * Py_INCREF(v) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * l.append(tup) */ Py_INCREF(((PyObject *)__pyx_v_v)); }
52:
53: l.append(tup)
/* "pandas/src/pytables.pyx":53 * Py_INCREF(v) * * l.append(tup) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * return l */ __pyx_t_8 = PyList_Append(__pyx_v_l, __pyx_v_tup); if (unlikely(__pyx_t_8 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 53; __pyx_clineno = __LINE__; goto __pyx_L1_error;} goto __pyx_L5; } __pyx_L5:; }
54:
55: return l
/* "pandas/src/pytables.pyx":55 * l.append(tup) * * return l #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * @cython.boundscheck(False) */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_l)); __pyx_r = ((PyObject *)__pyx_v_l); goto __pyx_L0; __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_7); { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_mask.rcbuffer->pybuffer); __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} __Pyx_AddTraceback("pandas._pytables.create_hdf_rows_2d", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; goto __pyx_L2; __pyx_L0:; __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_mask.rcbuffer->pybuffer); __pyx_L2:; __Pyx_XDECREF((PyObject *)__pyx_v_v); __Pyx_XDECREF(__pyx_v_l); __Pyx_XDECREF(__pyx_v_tup); __Pyx_XDECREF(__pyx_v_val); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* Python wrapper */ static PyObject *__pyx_pw_6pandas_9_pytables_3create_hdf_rows_3d(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6pandas_9_pytables_2create_hdf_rows_3d[] = " return a list of objects ready to be converted to rec-array format "; static PyMethodDef __pyx_mdef_6pandas_9_pytables_3create_hdf_rows_3d = {__Pyx_NAMESTR("create_hdf_rows_3d"), (PyCFunction)__pyx_pw_6pandas_9_pytables_3create_hdf_rows_3d, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_6pandas_9_pytables_2create_hdf_rows_3d)}; static PyObject *__pyx_pw_6pandas_9_pytables_3create_hdf_rows_3d(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyArrayObject *__pyx_v_index = 0; PyArrayObject *__pyx_v_columns = 0; PyArrayObject *__pyx_v_mask = 0; PyObject *__pyx_v_values = 0; static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__index,&__pyx_n_s__columns,&__pyx_n_s__mask,&__pyx_n_s__values,0}; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("create_hdf_rows_3d (wrapper)", 0); __pyx_self = __pyx_self; { PyObject* values[4] = {0,0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__index); if (likely(values[0])) kw_args--; else goto __pyx_L5_argtuple_error; case 1: values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__columns); if (likely(values[1])) kw_args--; else { __Pyx_RaiseArgtupleInvalid("create_hdf_rows_3d", 1, 4, 4, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 2: values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__mask); if (likely(values[2])) kw_args--; else { __Pyx_RaiseArgtupleInvalid("create_hdf_rows_3d", 1, 4, 4, 2); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } case 3: values[3] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__values); if (likely(values[3])) kw_args--; else { __Pyx_RaiseArgtupleInvalid("create_hdf_rows_3d", 1, 4, 4, 3); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "create_hdf_rows_3d")<
0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L3_error;} } } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); } __pyx_v_index = ((PyArrayObject *)values[0]); __pyx_v_columns = ((PyArrayObject *)values[1]); __pyx_v_mask = ((PyArrayObject *)values[2]); __pyx_v_values = ((PyObject*)values[3]); } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("create_hdf_rows_3d", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L3_error;} __pyx_L3_error:; __Pyx_AddTraceback("pandas._pytables.create_hdf_rows_3d", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_index), __pyx_ptype_5numpy_ndarray, 1, "index", 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_columns), __pyx_ptype_5numpy_ndarray, 1, "columns", 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_mask), __pyx_ptype_5numpy_ndarray, 1, "mask", 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_values), (&PyList_Type), 1, "values", 1))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_r = __pyx_pf_6pandas_9_pytables_2create_hdf_rows_3d(__pyx_self, __pyx_v_index, __pyx_v_columns, __pyx_v_mask, __pyx_v_values); goto __pyx_L0; __pyx_L1_error:; __pyx_r = NULL; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; }
56:
57: @cython.boundscheck(False)
58: @cython.wraparound(False)
59: def create_hdf_rows_3d(ndarray index, ndarray columns, ndarray[np.uint8_t, ndim=2] mask, list values):
/* "pandas/src/pytables.pyx":59 * @cython.boundscheck(False) * @cython.wraparound(False) * def create_hdf_rows_3d(ndarray index, ndarray columns, ndarray[np.uint8_t, ndim=2] mask, list values): #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* """ return a list of objects ready to be converted to rec-array format """ * */ static PyObject *__pyx_pf_6pandas_9_pytables_2create_hdf_rows_3d(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_index, PyArrayObject *__pyx_v_columns, PyArrayObject *__pyx_v_mask, PyObject *__pyx_v_values) { unsigned int __pyx_v_i; unsigned int __pyx_v_n_columns; unsigned int __pyx_v_n_index; unsigned int __pyx_v_n_blocks; unsigned int __pyx_v_tup_size; PyArrayObject *__pyx_v_v = 0; PyObject *__pyx_v_l = 0; PyObject *__pyx_v_tup = 0; PyObject *__pyx_v_val = 0; long __pyx_v_c; PyObject *__pyx_v_b = NULL; __Pyx_LocalBuf_ND __pyx_pybuffernd_mask; __Pyx_Buffer __pyx_pybuffer_mask; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("create_hdf_rows_3d", 0); __pyx_pybuffer_mask.pybuffer.buf = NULL; __pyx_pybuffer_mask.refcount = 0; __pyx_pybuffernd_mask.data = NULL; __pyx_pybuffernd_mask.rcbuffer = &__pyx_pybuffer_mask; { __Pyx_BufFmt_StackElem __pyx_stack[1]; if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_mask.rcbuffer->pybuffer, (PyObject*)__pyx_v_mask, &__Pyx_TypeInfo_nn___pyx_t_5numpy_uint8_t, PyBUF_FORMAT| PyBUF_STRIDES, 2, 0, __pyx_stack) == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __pyx_pybuffernd_mask.diminfo[0].strides = __pyx_pybuffernd_mask.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_mask.diminfo[0].shape = __pyx_pybuffernd_mask.rcbuffer->pybuffer.shape[0]; __pyx_pybuffernd_mask.diminfo[1].strides = __pyx_pybuffernd_mask.rcbuffer->pybuffer.strides[1]; __pyx_pybuffernd_mask.diminfo[1].shape = __pyx_pybuffernd_mask.rcbuffer->pybuffer.shape[1]; /* "pandas/src/pytables.pyx":59 * @cython.boundscheck(False) * @cython.wraparound(False) * def create_hdf_rows_3d(ndarray index, ndarray columns, ndarray[np.uint8_t, ndim=2] mask, list values): #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* """ return a list of objects ready to be converted to rec-array format """ * */ __pyx_k_tuple_19 = PyTuple_New(16); if (unlikely(!__pyx_k_tuple_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_k_tuple_19); __Pyx_INCREF(((PyObject *)__pyx_n_s__index)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 0, ((PyObject *)__pyx_n_s__index)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__index)); __Pyx_INCREF(((PyObject *)__pyx_n_s__columns)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 1, ((PyObject *)__pyx_n_s__columns)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__columns)); __Pyx_INCREF(((PyObject *)__pyx_n_s__mask)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 2, ((PyObject *)__pyx_n_s__mask)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__mask)); __Pyx_INCREF(((PyObject *)__pyx_n_s__values)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 3, ((PyObject *)__pyx_n_s__values)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__values)); __Pyx_INCREF(((PyObject *)__pyx_n_s__i)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 4, ((PyObject *)__pyx_n_s__i)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__i)); __Pyx_INCREF(((PyObject *)__pyx_n_s__j)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 5, ((PyObject *)__pyx_n_s__j)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__j)); __Pyx_INCREF(((PyObject *)__pyx_n_s__n_columns)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 6, ((PyObject *)__pyx_n_s__n_columns)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__n_columns)); __Pyx_INCREF(((PyObject *)__pyx_n_s__n_index)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 7, ((PyObject *)__pyx_n_s__n_index)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__n_index)); __Pyx_INCREF(((PyObject *)__pyx_n_s__n_blocks)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 8, ((PyObject *)__pyx_n_s__n_blocks)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__n_blocks)); __Pyx_INCREF(((PyObject *)__pyx_n_s__tup_size)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 9, ((PyObject *)__pyx_n_s__tup_size)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__tup_size)); __Pyx_INCREF(((PyObject *)__pyx_n_s__v)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 10, ((PyObject *)__pyx_n_s__v)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__v)); __Pyx_INCREF(((PyObject *)__pyx_n_s__l)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 11, ((PyObject *)__pyx_n_s__l)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__l)); __Pyx_INCREF(((PyObject *)__pyx_n_s__tup)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 12, ((PyObject *)__pyx_n_s__tup)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__tup)); __Pyx_INCREF(((PyObject *)__pyx_n_s__val)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 13, ((PyObject *)__pyx_n_s__val)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__val)); __Pyx_INCREF(((PyObject *)__pyx_n_s__c)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 14, ((PyObject *)__pyx_n_s__c)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__c)); __Pyx_INCREF(((PyObject *)__pyx_n_s__b)); PyTuple_SET_ITEM(__pyx_k_tuple_19, 15, ((PyObject *)__pyx_n_s__b)); __Pyx_GIVEREF(((PyObject *)__pyx_n_s__b)); __Pyx_GIVEREF(((PyObject *)__pyx_k_tuple_19)); /* "pandas/src/pytables.pyx":59 * @cython.boundscheck(False) * @cython.wraparound(False) * def create_hdf_rows_3d(ndarray index, ndarray columns, ndarray[np.uint8_t, ndim=2] mask, list values): #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* """ return a list of objects ready to be converted to rec-array format """ * */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6pandas_9_pytables_3create_hdf_rows_3d, NULL, __pyx_n_s_18); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_1); if (PyObject_SetAttr(__pyx_m, __pyx_n_s__create_hdf_rows_3d, __pyx_t_1)<
0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
60: """ return a list of objects ready to be converted to rec-array format """
61:
62: cdef:
63: unsigned int i, j, n_columns, n_index, n_blocks, tup_size
64: ndarray v
65: list l
66: object tup, val
67:
68: n_index = index.shape[0]
/* "pandas/src/pytables.pyx":68 * object tup, val * * n_index = index.shape[0] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* n_columns = columns.shape[0] * n_blocks = len(values) */ __pyx_v_n_index = (__pyx_v_index->dimensions[0]);
69: n_columns = columns.shape[0]
/* "pandas/src/pytables.pyx":69 * * n_index = index.shape[0] * n_columns = columns.shape[0] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* n_blocks = len(values) * tup_size = n_blocks+2 */ __pyx_v_n_columns = (__pyx_v_columns->dimensions[0]);
70: n_blocks = len(values)
/* "pandas/src/pytables.pyx":70 * n_index = index.shape[0] * n_columns = columns.shape[0] * n_blocks = len(values) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* tup_size = n_blocks+2 * l = [] */ if (unlikely(((PyObject *)__pyx_v_values) == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __pyx_t_1 = PyList_GET_SIZE(((PyObject *)__pyx_v_values)); __pyx_v_n_blocks = __pyx_t_1;
71: tup_size = n_blocks+2
/* "pandas/src/pytables.pyx":71 * n_columns = columns.shape[0] * n_blocks = len(values) * tup_size = n_blocks+2 #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* l = [] * for i from 0<
= i<
n_index: */ __pyx_v_tup_size = (__pyx_v_n_blocks + 2);
72: l = []
/* "pandas/src/pytables.pyx":72 * n_blocks = len(values) * tup_size = n_blocks+2 * l = [] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* for i from 0<
= i<
n_index: * */ __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 72; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_v_l = __pyx_t_2; __pyx_t_2 = 0;
73: for i from 0 <= i < n_index:
/* "pandas/src/pytables.pyx":73 * tup_size = n_blocks+2 * l = [] * for i from 0<
= i<
n_index: #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * for c from 0<
= c<
n_columns: */ __pyx_t_3 = __pyx_v_n_index; for (__pyx_v_i = 0; __pyx_v_i<
__pyx_t_3; __pyx_v_i++) {
74:
75: for c from 0 <= c < n_columns:
/* "pandas/src/pytables.pyx":75 * for i from 0<
= i<
n_index: * * for c from 0<
= c<
n_columns: #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * if not mask[i, c]: */ __pyx_t_4 = __pyx_v_n_columns; for (__pyx_v_c = 0; __pyx_v_c<
__pyx_t_4; __pyx_v_c++) {
76:
77: if not mask[i, c]:
/* "pandas/src/pytables.pyx":77 * for c from 0<
= c<
n_columns: * * if not mask[i, c]: #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * tup = PyTuple_New(tup_size) */ __pyx_t_5 = __pyx_v_i; __pyx_t_6 = __pyx_v_c; __pyx_t_7 = (!(*__Pyx_BufPtrStrided2d(__pyx_t_5numpy_uint8_t *, __pyx_pybuffernd_mask.rcbuffer->pybuffer.buf, __pyx_t_5, __pyx_pybuffernd_mask.diminfo[0].strides, __pyx_t_6, __pyx_pybuffernd_mask.diminfo[1].strides))); if (__pyx_t_7) {
78:
79: tup = PyTuple_New(tup_size)
/* "pandas/src/pytables.pyx":79 * if not mask[i, c]: * * tup = PyTuple_New(tup_size) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * val = columns[c] */ __pyx_t_2 = ((PyObject *)PyTuple_New(__pyx_v_tup_size)); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 79; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_XDECREF(__pyx_v_tup); __pyx_v_tup = __pyx_t_2; __pyx_t_2 = 0;
80:
81: val = columns[c]
/* "pandas/src/pytables.pyx":81 * tup = PyTuple_New(tup_size) * * val = columns[c] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* PyTuple_SET_ITEM(tup, 0, val) * Py_INCREF(val) */ __pyx_t_2 = __Pyx_GetItemInt(((PyObject *)__pyx_v_columns), __pyx_v_c, sizeof(long), PyInt_FromLong); if (!__pyx_t_2) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_XDECREF(__pyx_v_val); __pyx_v_val = __pyx_t_2; __pyx_t_2 = 0;
82: PyTuple_SET_ITEM(tup, 0, val)
/* "pandas/src/pytables.pyx":82 * * val = columns[c] * PyTuple_SET_ITEM(tup, 0, val) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* Py_INCREF(val) * */ PyTuple_SET_ITEM(__pyx_v_tup, 0, __pyx_v_val);
83: Py_INCREF(val)
/* "pandas/src/pytables.pyx":83 * val = columns[c] * PyTuple_SET_ITEM(tup, 0, val) * Py_INCREF(val) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * val = index[i] */ Py_INCREF(__pyx_v_val);
84:
85: val = index[i]
/* "pandas/src/pytables.pyx":85 * Py_INCREF(val) * * val = index[i] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* PyTuple_SET_ITEM(tup, 1, val) * Py_INCREF(val) */ __pyx_t_2 = __Pyx_GetItemInt(((PyObject *)__pyx_v_index), __pyx_v_i, sizeof(unsigned int)+1, PyLong_FromUnsignedLong); if (!__pyx_t_2) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_v_val); __pyx_v_val = __pyx_t_2; __pyx_t_2 = 0;
86: PyTuple_SET_ITEM(tup, 1, val)
/* "pandas/src/pytables.pyx":86 * * val = index[i] * PyTuple_SET_ITEM(tup, 1, val) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* Py_INCREF(val) * */ PyTuple_SET_ITEM(__pyx_v_tup, 1, __pyx_v_val);
87: Py_INCREF(val)
/* "pandas/src/pytables.pyx":87 * val = index[i] * PyTuple_SET_ITEM(tup, 1, val) * Py_INCREF(val) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * for b from 0<
= b<
n_blocks: */ Py_INCREF(__pyx_v_val);
88:
89: for b from 0 <= b < n_blocks:
/* "pandas/src/pytables.pyx":89 * Py_INCREF(val) * * for b from 0<
= b<
n_blocks: #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * v = values[b][:, i, c] */ __pyx_t_8 = __pyx_v_n_blocks; for (__pyx_t_9 = 0; __pyx_t_9<
__pyx_t_8; __pyx_t_9++) { __pyx_t_2 = PyInt_FromLong(__pyx_t_9); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __Pyx_XDECREF(__pyx_v_b); __pyx_v_b = __pyx_t_2; __pyx_t_2 = 0; /* "pandas/src/pytables.pyx":89 * Py_INCREF(val) * * for b from 0<
= b<
n_blocks: #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * v = values[b][:, i, c] */ __pyx_t_11 = PyInt_FromLong(__pyx_t_9); if (unlikely(!__pyx_t_11)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_11); __Pyx_XDECREF(__pyx_v_b); __pyx_v_b = __pyx_t_11; __pyx_t_11 = 0;
90:
91: v = values[b][:, i, c]
/* "pandas/src/pytables.pyx":91 * for b from 0<
= b<
n_blocks: * * v = values[b][:, i, c] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* PyTuple_SET_ITEM(tup, b+2, v) * Py_INCREF(v) */ __pyx_t_2 = PyObject_GetItem(((PyObject *)__pyx_v_values), __pyx_v_b); if (!__pyx_t_2) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_2); __pyx_t_10 = PyLong_FromUnsignedLong(__pyx_v_i); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_10); __pyx_t_11 = PyInt_FromLong(__pyx_v_c); if (unlikely(!__pyx_t_11)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_11); __pyx_t_12 = PyTuple_New(3); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_12); __Pyx_INCREF(__pyx_k_slice_2); PyTuple_SET_ITEM(__pyx_t_12, 0, __pyx_k_slice_2); __Pyx_GIVEREF(__pyx_k_slice_2); PyTuple_SET_ITEM(__pyx_t_12, 1, __pyx_t_10); __Pyx_GIVEREF(__pyx_t_10); PyTuple_SET_ITEM(__pyx_t_12, 2, __pyx_t_11); __Pyx_GIVEREF(__pyx_t_11); __pyx_t_10 = 0; __pyx_t_11 = 0; __pyx_t_11 = PyObject_GetItem(__pyx_t_2, ((PyObject *)__pyx_t_12)); if (!__pyx_t_11) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(((PyObject *)__pyx_t_12)); __pyx_t_12 = 0; if (!(likely(((__pyx_t_11) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_11, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_XDECREF(((PyObject *)__pyx_v_v)); __pyx_v_v = ((PyArrayObject *)__pyx_t_11); __pyx_t_11 = 0; /* "pandas/src/pytables.pyx":91 * for b from 0<
= b<
n_blocks: * * v = values[b][:, i, c] #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* PyTuple_SET_ITEM(tup, b+2, v) * Py_INCREF(v) */ __pyx_k_slice_2 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_k_slice_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_k_slice_2); __Pyx_GIVEREF(__pyx_k_slice_2);
92: PyTuple_SET_ITEM(tup, b+2, v)
/* "pandas/src/pytables.pyx":92 * * v = values[b][:, i, c] * PyTuple_SET_ITEM(tup, b+2, v) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* Py_INCREF(v) * */ __pyx_t_11 = PyNumber_Add(__pyx_v_b, __pyx_int_2); if (unlikely(!__pyx_t_11)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_11); __pyx_t_1 = __Pyx_PyIndex_AsSsize_t(__pyx_t_11); if (unlikely((__pyx_t_1 == (Py_ssize_t)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; PyTuple_SET_ITEM(__pyx_v_tup, __pyx_t_1, ((PyObject *)__pyx_v_v));
93: Py_INCREF(v)
/* "pandas/src/pytables.pyx":93 * v = values[b][:, i, c] * PyTuple_SET_ITEM(tup, b+2, v) * Py_INCREF(v) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * l.append(tup) */ Py_INCREF(((PyObject *)__pyx_v_v)); __pyx_t_9 = __Pyx_PyInt_AsLong(__pyx_v_b); if (unlikely((__pyx_t_9 == (long)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} }
94:
95: l.append(tup)
/* "pandas/src/pytables.pyx":95 * Py_INCREF(v) * * l.append(tup) #<
<
<
<
<
<
<
<
<
<
<
<
<
<
* * return l */ __pyx_t_13 = PyList_Append(__pyx_v_l, __pyx_v_tup); if (unlikely(__pyx_t_13 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 95; __pyx_clineno = __LINE__; goto __pyx_L1_error;} goto __pyx_L7; } __pyx_L7:; } }
96:
97: return l
/* "pandas/src/pytables.pyx":97 * l.append(tup) * * return l #<
<
<
<
<
<
<
<
<
<
<
<
<
<
*/ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_l)); __pyx_r = ((PyObject *)__pyx_v_l); goto __pyx_L0; __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_10); __Pyx_XDECREF(__pyx_t_11); __Pyx_XDECREF(__pyx_t_12); { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_mask.rcbuffer->pybuffer); __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} __Pyx_AddTraceback("pandas._pytables.create_hdf_rows_3d", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; goto __pyx_L2; __pyx_L0:; __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_mask.rcbuffer->pybuffer); __pyx_L2:; __Pyx_XDECREF((PyObject *)__pyx_v_v); __Pyx_XDECREF(__pyx_v_l); __Pyx_XDECREF(__pyx_v_tup); __Pyx_XDECREF(__pyx_v_val); __Pyx_XDECREF(__pyx_v_b); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* Python wrapper */ static int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_7ndarray___getbuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); __Pyx_RefNannyFinishContext(); return __pyx_r; }