
iParameterEstimation User Guide

Bob Zimmermann

Washington University in St. Louis

Box 1045

One Brookings Drive

St. Louis, MO 63130

2

Preface

Welcome to iParameterEstimation! I hope this program is useful to you and
your lab. It will take some getting used to, and I hope I can guide you through
the toughest points here.

At writing time, the software is just barely released. Hopefully there aren’t
any discrepancies between the current version and the one used at writing. In
general, you can feel free to contact me at rpz@cse.wustl.edu if you are having
problems with the program. I’ll try and respond as soon as I can, but I am no
longer in the country or working on this, so there might be an issue.

iParameterEstimation is a maximum likelihood estimator for generalized
hidden Markov Models. Expectation maximization is not implemented, and
will probably never be implemented.1

You may find many things odd and idiosyncratic about iParameterEstima-
tion. The goal of the project when we started was not only to tackle estimating
parameters for N-SCAN or Twinscan, but to create the basis a reliable tool for
analysis that could ostensibly be extended for any system at all using a gener-
alized hidden Markov model. This may or may not be practical at this point,
but it certainly is a possibility if anyone became interested.

You are probably reading this for the sake of retraining N-SCAN to run on
your favorite organism. Why is there not a straight, simple way to do this?
There are a few reasons, and I’m hoping that in the end learning from this
guide will be somewhat rewarding, anyway.

1. Parameter estimation isn’t that easy anyway. There is a reason this
code base is behemouth, and it is because making it easy isn’t easy. Brent
lab has written several programs over the years to estimate parameters
and have had to rewrite every time the model has changed, essentially.
I’m trying to put an end to this.

2. Parameter estimation has to be done well. A lot of care was taken
into making the counting correct and complete for all input training ex-

1This is because the maximization step is the only step iParameterEstimation would have
to offer as a component to Twinscan or N-SCAN, and this step is really trivial with respect
to the rest of the package, and the details of implementing the forward-backward algorithm.
I would recommend that you implement it in the predictor itself, as that will be faster and
involve less bookkeeping. iParameterEstimation would probably serve as a good starting point
for seeding your parameters. For a good reference on EM in HMMs see [11], [10], and [4].

3

4

amples. This also leads to extending the code without having to actually
reimplement parts of it that would be otherwise painful and error-prone.
Through experience in Brent lab, several mistakes have been made in the
past, and I’ve corrected a lot of them.

3. Genscan/Twinscan/N-SCAN doesn’t use a “pure” hidden Markov
model. You’ll find several “hacks” if you dig deep enough into us-
age. There are several differences between the “pure” generalized hidden
Markov model and the one that we use for gene prediction. In explicitly
requesting all these differences, we have a transparent understanding of
how the parameters are estimated as well as an avenue to change and
experiment with them.

4. Parameter estimation should be flexible. I’ve tried to include as
much extensibility and flexibility on all levels as possible. This isn’t really
easy or fully realizable. If I wanted it to be fast, I would have written it in
C. If I wanted it to have short, simple inputs, I would have used my own,
non-XML parser. The emphasis is on flexibility and extensibility, while
maintaining a high level of accuracy, reliability and user-friendliness. This
motivated a lot of the design choices.

Hopefully you aren’t already disillusioned.
The writing, if you haven’t already detected, is highly informal, and will not

contain too many mathematical formuale or any other formalisms. The idea is
to get you going with parameter estimation, hopefully give you a notion of what
to expect, and also give ME time to do other things.

The contents may be incomplete, and of course, if you see a problem, come
up with a correction and send it to me! Or just complain, and I may listen.

I hope this is helpful to you. Good luck!
BZ

Contents

1 Introduction 9
1.1 What is Parameter Estimation? 9
1.2 What is iParameterEstimation? 10
1.3 What Can iParameterEstimation Do For You? 10

2 Preliminaries 13
2.1 XML . 13
2.2 DTD . 14

2.2.1 Element definitions . 15
2.2.2 Attribute lists . 16
2.2.3 Including DTDs . 16

2.3 GTF . 16
2.3.1 Introduction . 17
2.3.2 GTF Field Definitions . 17
2.3.3 Examples . 20

2.4 Terms . 21
2.4.1 Probabilistic Terms . 21
2.4.2 Genomic Terms . 23
2.4.3 Bioinformatics Terms . 23
2.4.4 Brent Lab Terms . 24

3 Installation 25
3.1 Installing via RPM . 25
3.2 Installing via deb . 26
3.3 Installing Manually . 26
3.4 Testing your installation . 28

4 Getting Started 29
4.1 Input Files . 29

4.1.1 The Instance File . 30
4.1.2 gHMM files . 32
4.1.3 Feature Map Files . 33

4.2 Running iParameterEstimation 33
4.3 A note on directory structure . 35

5

6 CONTENTS

4.4 Output Files . 36
4.5 A Word About Warnings . 37

5 HMMs to Hacks to Gene Prediction 39
5.1 What is the parsing problem? . 39
5.2 What is a hidden Markov model? 40

5.2.1 What does an HMM look like? 40
5.2.2 What is a generalized HMM? 41
5.2.3 How does this relate to parameter estimation? 42

5.3 Biological HMMs . 43
5.4 The models that make up a gene predicting gHMM 45

5.4.1 Length distributions . 45
5.4.2 Content models . 46
5.4.3 Isochore-divided models 48
5.4.4 Conservation models . 49
5.4.5 Bayesian network tree models 49

5.5 Hacks . 49
5.5.1 Initial probabilities . 50
5.5.2 Transition probabilities 50
5.5.3 Log-probability space . 50
5.5.4 The null model . 50
5.5.5 Inframe stop-codon tracking shadow states 52
5.5.6 Codon-level explicit length distributions 52

6 Getting Deeper: feature maps and gHMMs 53
6.1 How iParameterEstimation Converts Annotations 55

6.1.1 Overview . 55
6.1.2 Boundary, ordinality and quantity definition: L, N and + . 55
6.1.3 Models and submodels use L, too 57
6.1.4 What about the rest of the feature real estate? 59

6.2 Exploring the gHMM file . 59
6.2.1 author and date . 59
6.2.2 states . 60
6.2.3 zoe gtf conversion . 62
6.2.4 init model . 62
6.2.5 trans model . 63
6.2.6 pseudo transitions . 63
6.2.7 state durations . 63
6.2.8 null region definitions 64
6.2.9 sequence models, etc. 64

6.3 Duration Models . 65
6.3.1 Smoothing . 66

6.4 Sequence models . 66
6.4.1 A note on length, focus, and so on 67
6.4.2 The model classes . 67
6.4.3 The five meta-models . 69

CONTENTS 7

7 Common Tasks with gHMM Files 71
7.1 Removing/Changing Isochores 71
7.2 Changing the Intron Duration Model 72
7.3 Smoothing Methods on Durations 72
7.4 Fitting a geometric tail to an explicit length duration 73
7.5 (Un)tweaking Transition Probabilities 73
7.6 Notes on Changing Content Models 74

A Instance Reference Guide 75
A.1 Identification section . 75

A.1.1 author element . 75
A.1.2 date element . 75

A.2 The input files section . 75
A.2.1 gHMM file element . 75
A.2.2 feature map files element 76
A.2.3 annotation files element 76
A.2.4 seq files element . 76

A.3 Options in the instance file . 77
A.3.1 Runtime options . 77
A.3.2 Output options . 78
A.3.3 Annotation options . 80
A.3.4 Model options . 80
A.3.5 N-SCAN options . 82
A.3.6 Sequence options . 84

B gHMM Reference Guide 85
B.1 Terms, types and symbols . 85

B.1.1 Terms . 85
B.1.2 Types . 85
B.1.3 Symbols . 86

B.2 The author section . 86
B.2.1 author element . 86

B.3 The date section . 86
B.3.1 date element . 87

B.4 The states section . 87
B.4.1 states element . 87
B.4.2 state element . 87
B.4.3 pseudostate element . 89

B.5 The Zoe GTF conversion section 90
B.5.1 zoe gtf conversion element 90

B.6 The initial model section . 91
B.6.1 init model element . 91
B.6.2 init prob element . 91
B.6.3 An example . 92

B.7 The transition model section . 93
B.7.1 trans model element . 93

8 CONTENTS

B.7.2 fixed transition element 93
B.8 The pseudo-transitions section 94

B.8.1 pseudo transitions element 94
B.8.2 pseudo transition element 95

B.9 The duration model section . 95
B.9.1 duration model element 96
B.9.2 duration submodel element 96
B.9.3 duration distribution element 97
B.9.4 fixed duration distribution element 98

B.10 The null region definitions section 99
B.10.1 null region definitions element 99

B.11 The sequence models section . 100
B.11.1 sequence models element 100
B.11.2 string model element . 101
B.11.3 default string model element 104
B.11.4 string submodel element 105
B.11.5 fixed string model element 107
B.11.6 fixed string submodel element 108

C Feature Map Reference Guide 111
C.1 The author section . 111

C.1.1 author element . 111
C.2 The date section . 111

C.2.1 date element . 112
C.3 The title section . 112

C.3.1 title element . 112
C.4 The file type description section 112

C.4.1 file type description element 112
C.5 The filename extension section 113

C.5.1 filename extension element 113
C.6 The feature mappings section . 113

C.6.1 feature mappings element 113
C.6.2 feature mapping element 113

D Sequence Types Included in iPE 115
D.1 Dna . 115
D.2 Cons . 116
D.3 Est . 116
D.4 Malign . 117
D.5 Array . 117
D.6 Other Sequence Types . 118

E How Exponential Tails Are Fit 119

Chapter 1

Introduction

Why is this book so long, and why are you reading it? Good question. Param-
eter estimation tools are commonly simple and terse, and designed for specific
purposes. Our lab has a long-term commitment to gene prediction, so I have
built a parameter estimation tool that will adapt to present and future uses.
iParameterEstimation was designed for estimating parameters for anything in-
volving sequences with annotations, on any model which vaguely resembels a
hidden Markov model, although it can be used for anything at all. Here’s an
introduction to the key ideas of this project.

1.1 What is Parameter Estimation?

Broadly stated, parameter estimation is guessing the most likely numbers that
model a phenomenon. For example, if you were trying to find out the probability
of rolling a 1 with a single die, you might guess that the probability is one in
six. The actual probability of this event occurring might depend on the die
itself, how it is rolled, and where it is rolled. So you might decide to gather
information about rolls under certain conditions, for example rolled by your
friend Bob on your coffee table from about ten inches above the table. Then
you could count the total number of times he rolls a one, and get an estimation
of the true frequency of rolling ones.

Even then, there might be some other factors biasing the rolls. In essence,
we do not have complete information about how the rolls are being generated,
and thus don’t know a priori the true parameterization of this model. But we
do have a good idea of how this model looks. We know for certain that the die
will probably roll onto the table in some way in which the roller cannot control.
And we thus have a good idea that there is very little relationship between
consecutive rolls.

This resembles the problem of understanding how to model biological phe-
nomena, now doesn’t it? We don’t have complete information, but we make
guesses about it and generalizations about the mainstream events, and form a

9

10 CHAPTER 1. INTRODUCTION

model on which to estimate parameters.
The model for our die-rolling event is simple, however estimating parameters

for large data sets on complex models such as these is unweildy, tedious and
largely uninteresting. This contributes to a large amount of mistakes in the
forms little bugs in uncommented Perl scripts and C code. This has produced
a lot of agony and distaste for parameter estimation, and for many, the entire
process is a complete mystery.

1.2 What is iParameterEstimation?

iParameterEstimation is an attempt at deconvoluting parameter estimation.
The parameter estimation scripts in Brent lab, to date, have been largely inac-
cessible. iParameterEstimation tries to fix this by not only making the process
clean and correct, but also modifyable and extensible.

The art of estimating parameters not only implies counting, but also model
design. No amount of additional estimation with new sequence from the same
species can make a notable improvement to your model. Models must change
and improve. Writing scripts to do this correctly is boring.

iParameterEstimation can do this gracefully and simply. The beauty of
the program is that it has no prior knowledge of the model that you are
attempting to estimate parameters for. It takes in a complete description of the
model and produces exactly what you would expect.

iParameterEstimation is even extensible at the code level. It assumes noth-
ing about the annotation format or the sequence file format that you input. You
may write new, small modules that will read in other annotation or sequence
formats, and plop them into the mainstream of the program for counting. It
will even let you add new kinds of sequence models, new kinds of smoothing
methods, and new ways of matching piecewise distributions.

1.3 What Can iParameterEstimation Do For You?

iParameterEstimation has loads of uses (and potential uses, given more coding
on my part :), and here are a few:

• Re-Estimate parameters for your favorite organism. While most
higher Eukariotes have similar sequence features, slight performance gains
can be seen in re-estimating parameters for a specific species.

• Perform experiments with different informant species. You can
see if another species works better for gene prediction just by changing
the input files and rerunning the same model you had before.

• Perform sequence analysis. You can get all the sequence features in
FASTA-formatted files returned to you from iParameterEstimation. Use
these to look at trends in different phenomena.

1.3. WHAT CAN IPARAMETERESTIMATION DO FOR YOU? 11

• Speed up Twinscan/N-SCAN’s performance. You can eliminate
costly parts of predicting by tweaking the models such that fewer things
need to be predicted, and get a performance boost.

• Do parameter estimation for your own project. iParameterEsti-
mation outputs XML files which are parsible by any number of readily
available libraries and can be used as inputs to your research project. The
code is completely adaptable to any type of HMM or other model, so this
might be a good starting point for you.

While we have primarily used iParameterEstimation for Twinscan and N-
SCAN, there are any number of uses you can put it to. If you have any ideas,
feel free to contact me at rpz@cse.wustl.edu.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

This chapter is designed to introduce you to some of the technical things that go
into iParameterEstimation that you may or may not be familiar with, as well as
a broad idea of the goal of parameter estimation. A lot of documentation exists
on the web for this stuff, but I’m attempting to produce a quick introduction
to what you need to know.

2.1 XML

XML is short for Extensible Markup Language, which is thus ideal for an ex-
tensible system such as iParameterEstimation. XML allows you to specify a
data heirarchy, its keywords and the data itself. Thus it allows documents to
be created whose data format is completely specified by the user (in this case,
me).

XML is a sparse language which really only specifies very little in terms of
rules, and thus the tokens are largely defined by the user. I’ve done all of the
defining for you, so you won’t have to worry too much about making up your
own language to input into iParameterEstimation.

XML looks a lot like HTML, so if you’re familiar with that, this should be
a piece of cake. Let’s take a look at a simple XML file:

<?xml version="1.0"?>

<!DOCTYPE notes SYSTEM "notes.dtd">

<notes>

<note to="Bob" from="happy_user">

Thanks for writing parameter estimation!

</note>

<note to="Bob" from="sad_user">

I hate XML!

</note>

<!-- I hate this note -->

13

14 CHAPTER 2. PRELIMINARIES

</notes>

At the top is the obligatory cryptic nonsense <?xml version="1.0"?>which
specifies the version of XML, 1.0, which will probably be the only verison of
XML. Thanks, guys. Next is location of the Ducoment Type Definition. This
is where the document format is specified. We’ll get to that later.

The guts is a heirarchical data structure rooted at “notes”. The root ele-
ment, or unit of data in XML, is denoted by a pair of tags, caret-bracketed
representations of elements (as in <notes>), one beginning the element and one
ending the element. All of the element’s “children” are enclosed between these
two tags.

The name of the element is also referred to as the tag, and this gets a bit
confusing. In the case of the first child, the tag is “note”. The element has
two attributes, who the note is from and who the note is to. In general, you
have to follow the name="value" syntax for all attributes. Attributes generally
define characteristics of the data element, and the stuff between the tags is
either more elements or simply character data (in our example, the note itself).
Sometimes an element will have no data between the start and end. This can
be abbreviated with a start/end tag:

<empty_note to="Bob" from="quiet_user" />

You can include notes about the XML code you’re writing in the form of
comments. The syntax of a comment is shown in the above code, beginning
with a <!-- and ending with a -->. You may also put comment delimiters
around XML code. This practice, casually referred to as “commenting out”, is
generally good practice. It makes sure that if you change your mind and want
to reinsert the code, you can do so without re-typing it.

XML has many tight specifications about how to properly form elements.
This generally isn’t a big problem if you make your XML look like the above
code.

There are several XML editors out there. Since XML files get long and
overwhelming, you might want to be able to collapse the longer elements that
you’re not concerned with, and also have checked syntax. I, personally, haven’t
gotten any of these to work and mostly edit them by hand or with a handful of
scripts (some of them are provided).

2.2 DTD

You can probably skip this section on a first pass through the guide if you don’t
plan on modifying models.

DTD stands for Document Type Definition. It describes what a well-formed
document looks like for a certain type you’ve specified. In our case, this includes
what a well formed generalized hidden Markov model file looks like. It also serves
as a rough documentation for the format of the XML file. If you ever have a
problem with the parsing of the XML file, it could be for one of two reasons:

2.2. DTD 15

1. Your XML file syntax not look like the syntax in the section above, or

2. It does not match the DTD specification.

So what does a DTD file look like? Worse than an XML file. Here’s an
example:

<!ELEMENT notes (thread*, note+, empty_note*, memo*, thread*)>

<!ELEMENT note (#PCDATA)>

<!ELEMENT empty_note EMPTY>

<!ELEMENT thread (note|memo)+>

<!ELEMENT memo ANY>

<!ATTLIST note

from CDATA ""

to CDATA #REQUIRED >

<!ATTLIST empty_note

from CDATA ""

to CDATA #REQUIRED >

<!ATTLIST thread >

<!ATTLIST memo >

2.2.1 Element definitions

This is a description for the example document we gave in the last section. Each
element type is described with respect to its contents and attributes. The root
node, notes, is first. Within the parens we indicate that it may contain notes
and empty notes. The funny symbols after the element names are quantifiers
which specify how many of these elements can be occur as a child element. The
‘+’ indicates that at least 1 of this kind of element must be present, the ‘*’
indicates 0 or more may be present and the ‘?’ indicates up to 1 element of this
type may be present.

Another important thing to note about this content specifier is that it defines
a specific sequence of elements that are expected to follow. If these are out of
order in the XML file, a parse error will occur and everything stops.

Moving on to the other elements, the note has a funny symbol in its contents,
#PCDATA. This stands for Parsed Character DATA, which is a reserved word
in DTD indicating any sort of ’free text’ which is meaningful to the program
receiving the data. In our case, it is simply a text note, which our XML parser
presumably reads and stores somewhere.

We see another reserved word, EMPTY, as the contents of the empty note.
This explicitly indicates that nothing may be contained within a empty note

element. The thread element contains 1 or more note OR anonymous note
element. The pipe (“|”) symbol represents an “or”. Additionally, memos, which
are of a more general nature (and are broadcast so they have no to or from

attributes), contain anything, indicated by ANY. That means it can have parsed
character data, or any of the elements described in the DTD.

16 CHAPTER 2. PRELIMINARIES

2.2.2 Attribute lists

Moving on to the ATTLISTs, we see definitions of the attributes of each element
we defined above. All attributes in an XML file will be defined in an ATTLIST.
For each attlist, we first indicate which element we’re defining attributes for (in
the first case, a note), then define each of the attributes. The from attribute is
CDATA (character data) with default value "". This is the value that the from

attribute is given if no from attribute is listed in a note tag1.
Unlike the from field, the third token of the to attribute definition is an-

other reserved DTD word, #REQUIRED. This indicates that the attribute must
be specified for every instantiation of the element note. If it is not, parsing will
stop.

The remaining ATTLISTs are fairly similar, except the thread ATTLIST,
which has no attributes at all. It is not necessary to include this, however
as a convention I tend to, to express no attributes are associated with this el-
ement type. The root node has no ATTLIST, and as a rule it is a good idea to
make it simply a container for the document.

All whitespace in DTDs and XML files is completely flexible, tabs are only
for readability.

2.2.3 Including DTDs

DTDs allow you to identify what kind of an XML file we are working with. We
can put a special tag at the beginning of an XML file to indicate this, as in our
previous example:

<!DOCTYPE notes SYSTEM "notes.dtd">

This indicates that the machine should look for the notes.dtd file in order
to figure out how to check the contents of the XML file. Note that no path is
given. There are several possibilities for how to resolve the correct path, but the
one in UNIX libxml is to check the environment variable SGML SEARCH PATH.

2.3 GTF

Parameter estimation is sometimes referred to as “learning”. The idea is that
you give the machine a set of examples which represent true positives of the
phenomenon you want to “learn”, and then the system is ready to try and
guess “on its own” what examples are true positives and which are not.

In our case, we’re predicting genes. Our examples will be gene transcript
annotations and our predictions will be the output of our gene predictor.

iParameterEstimation is designed such that it could be extended to take in
any type of annotation format, with a little elbow grease. Currently, however,

1The funny thing about default values is that they are completely ignored by libxml. They
do indicate what the value should be if no attribute of this type is given, however it is up to
the programmer to insure that the default values are heeded.

2.3. GTF 17

it only accepts GTF. We use this format because we have developed several
scripts at Brent lab to check to see if these are clean annotations (many of the
RefSeq genes on the UCSC genome browser are totally bogus).

Below I’ve included the GTF 2.2 annotation format specification from the
Brent Lab website, http://mblab.wustl.edu.

2.3.1 Introduction

GTF stands for Gene transfer format. It borrows from GFF, but has additional
structure that warrants a separate definition and format name.

Structure is as GFF, so the fields are: <seqname> <source> <feature>

<start> <end> <score> <strand> <frame> [attributes] [comments]

Here is a simple example with 3 translated exons. Order of rows is not
important.

381 iscan CDS 380 401 . + 0 gene_id "1"; transcript_id "1.1";

381 iscan CDS 501 650 . + 2 gene_id "1"; transcript_id "1.1";

381 iscan CDS 700 707 . + 2 gene_id "1"; transcript_id "1.1";

381 iscan start_codon 380 382 . + 0 gene_id "1"; transcript_id "1.1";

381 iscan stop_codon 708 710 . + 0 gene_id "1"; transcript_id "1.1";

The whitespace in this example is provided only for readability. In GTF,
fields must be separated by a single TAB and no white space.

2.3.2 GTF Field Definitions

<seqname>

The name of the sequence. Commonly, this is the chromosome ID or contig ID.
Note that the coordinates used must be unique within each sequence name in
all GTFs for an annotation set.

<source>

The source column should be a unique label indicating where the annotations
came from — typically the name of either a prediction program or a public
database.

<feature>

The following feature types are required: “CDS”, “start codon”, “stop codon”.
The features “5UTR”, “3UTR”, “inter”, “inter CNS”, “intron CNS” and ”exon”
are optional. All other features will be ignored. The types must have the correct
capitalization shown here.

CDS represents the coding sequence starting with the first translated codon
and proceeding to the last translated codon. Unlike Genbank annotation, the
stop codon is not included in the CDS for the terminal exon. The optional feature
“5UTR” represents regions from the transcription start site or beginning of the

18 CHAPTER 2. PRELIMINARIES

known 5’ UTR to the base before the start codon of the transcript. If this
region is interrupted by introns then each exon or partial exon is annotated as
a separate 5UTR feature. Similarly, “3UTR” represents regions after the stop
codon and before the polyadenylation site or end of the known 3’ untranslated
region. Note that the UTR features can only be used to annotate portions of
mRNA genes, not non-coding RNA genes.

The feature “exon” more generically describes any transcribed exon. There-
fore, exon boundaries will be the transcription start site, splice donor, splice
acceptor and poly-adenylation site. The start or stop codon will not necessarily
lie on an exon boundary.

The “start codon” feature is up to 3bp long in total and is included in the
coordinates for the ”CDS” features. The “stop codon” feature similarly is up
to 3bp long and is included in the coordinates for the “3UTR” features, if used.

The “start codon” and “stop codon” features are not required to be atomic;
they may be interrupted by valid splice sites. A split start or stop codon ap-
pears as two distinct features. All “start codon” and “stop codon” features
must have a 0,1,2 in the <frame> field indicating which part of the codon is
represented by this feature. Contiguous start and stop codons will always have
frame 0.

The “inter” feature describes an intergenic region, one which is by al-
most all accounts not transcribed. The “inter CNS” feature describes an inter-
genic conserved noncoding sequence region. All of these should have an empty
transcript id attribute, since they are not transcribed and do not belong to
any transcript. The “intron CNS” feature describes a conserved noncoding se-
quence region within an intron of a transcript, and should have a transcript id

associated with it.

<start> <end>

Integer start and end coordinates of the feature relative to the beginning of
the sequence named in <seqname>. <start> must be less than or equal to
<end>. Sequence numbering starts at 1. Values of <start> and <end> that
extend outside the reference sequence are technically acceptable, but they are
discouraged.

<score>

The score field indicates a degree of confidence in the feature’s existence and
coordinates. The value of this field has no global scale but may have relative
significance when the <source> field indicates the prediction program used to
create this annotation. It may be a floating point number or integer, and not
necessary and may be replaced with a dot.

<frame>

0 indicates that the feature begins with a whole codon at the 5’ most base. 1
means that there is one extra base (the third base of a codon) before the first

2.3. GTF 19

whole codon and 2 means that there are two extra bases (the second and third
bases of the codon) before the first codon. Note that for reverse strand features,
the 5’ most base is the <end> coordinate.

Here are the details excised from the GFF spec. Important: Note comment
on reverse strand.

‘0’ indicates that the specified region is in frame, i.e. that its first base
corresponds to the first base of a codon. ‘1’ indicates that there is one extra
base, i.e. that the second base of the region corresponds to the first base of
a codon, and ‘2’ means that the third base of the region is the first base of a
codon. If the strand is ‘-’, then the first base of the region is value of <end>,
because the corresponding coding region will run from <end> to <start> on the
reverse strand.

Frame is calculated as (3 - ((length-frame) mod 3)) mod 3.

1. (length-frame) is the length of the previous feature starting at the first
whole codon (and thus the frame subtracted out).

2. (length-frame) mod 3 is the number of bases on the 3’ end beyond the last
whole codon of the previous feature.

3. 3-((length-frame) mod 3) is the number of bases left in the codon after
removing those that are represented at the 3’ end of the feature.

4. (3-((length-frame) mod 3)) mod 3 changes a 3 to a 0, since three bases
makes a whole codon, and 1 and 2 are left unchanged.

[attributes]

All nine features have the same two mandatory attributes at the end of the
record:

• gene id value; A globally unique identifier for the genomic locus of the
transcript. If empty, no gene is associated with this feature.

• transcript id value; A globally unique identifier for the predicted tran-
script. If empty, no transcript is associated with this feature.

These attributes are designed for handling multiple transcripts from the same
genomic region. Any other attributes or comments must appear after these two
and will be ignored.

Attributes must end in a semicolon which must then be separated from the
start of any subsequent attribute by exactly one space character (NOT a tab
character).

Textual attributes should be surrounded by doublequotes.

These attributes are required even for non-mRNA transcribed regions such
as “inter” and “inter CNS” features.

20 CHAPTER 2. PRELIMINARIES

[comments]

Comments begin with a hash (‘#’) and continue to the end of the line. Nothing
beyond a hash will be parsed. These may occur anywhere in the file, including
at the end of a feature line.

2.3.3 Examples

Here is an example of a gene on the negative strand including UTR regions.
Larger coordinates are 5’ of smaller coordinates. Thus, the start codon is 3 bp
with largest coordinates among all those bp that fall within the CDS regions.
Similarly, the stop codon is the 3 bp with coordinates just less than the smallest
coordinates within the CDS regions and the largest coordenates among all those
within the 3UTR regions.

140 iscan inter 5141 8522 . - . gene_id ""; transcript_id "";

140 iscan inter_CNS 8523 9711 . - . gene_id ""; transcript_id "";

140 iscan inter 9712 13182 . - . gene_id ""; transcript_id "";

140 iscan 3UTR 65149 65487 . - . gene_id "0"; transcript_id "0.1";

140 iscan 3UTR 66823 66995 . - . gene_id "0"; transcript_id "0.1";

140 iscan stop_codon 66993 66995 . - 0 gene_id "0"; transcript_id "0.1";

140 iscan CDS 66996 66999 . - 1 gene_id "0"; transcript_id "0.1";

140 iscan intron_CNS 70103 70151 . - . gene_id "0"; transcript_id "0.1";

140 iscan CDS 70207 70294 . - 2 gene_id "0"; transcript_id "0.1";

140 iscan CDS 71696 71807 . - 0 gene_id "0"; transcript_id "0.1";

140 iscan start_codon 71805 71806 . - 0 gene_id "0"; transcript_id "0.1";

140 iscan start_codon 73222 73222 . - 2 gene_id "0"; transcript_id "0.1";

140 iscan CDS 73222 73222 . - 0 gene_id "0"; transcript_id "0.1";

140 iscan 5UTR 73223 73504 . - . gene_id "0"; transcript_id "0.1";

Note the frames of the coding exons. For example:

1. The first CDS (from 71807 to 71696) always has frame zero.

2. Frame of the 1st CDS =0, length =112. (3-((length - frame) mod 3)) mod
3 = 2, the frame of the 2nd CDS.

3. Frame of the 2nd CDS=2, length=88. (3-((length - frame) mod 3)) mod
3 = 1, the frame of the terminal CDS.

4. Alternatively, the frame of terminal CDS can be calculated without the
rest of the gene. Length of the terminal CDS=4. length mod 3 =1, the
frame of the terminal CDS.

Note the split start codon. The second start codon region has a frame of 2,
since it is the second base, and has an accompanying CDS feature, since CDS
always includes the start codon.

Here is an example in which the ”exon” feature is used. It is a 5 exon gene
with 3 translated exons.

2.4. TERMS 21

381 iscan exon 150 200 . + . gene_id "381"; transcript_id "381.1";

381 iscan exon 300 401 . + . gene_id "381"; transcript_id "381.1";

381 iscan CDS 380 401 . + 0 gene_id "381"; transcript_id "381.1";

381 iscan exon 501 650 . + . gene_id "381"; transcript_id "381.1";

381 iscan CDS 501 650 . + 2 gene_id "381"; transcript_id "381.1";

381 iscan exon 700 800 . + . gene_id "381"; transcript_id "381.1";

381 iscan CDS 700 707 . + 2 gene_id "381"; transcript_id "381.1";

381 iscan exon 900 1000 . + . gene_id "381"; transcript_id "381.1";

381 iscan start_codon 380 382 . + 0 gene_id "381"; transcript_id "381.1";

381 iscan stop_codon 708 710 . + 0 gene_id "381"; transcript_id "381.1";

Several Perl scripts have been written for checking, parsing, correcting, and com-
paring GTF-formatted annotations. Most of the important ones are included
the Eval package, which comes equipped with a GTF parsing Perl package
GTF.pm.

The Eval documentation contains a complete code-level documentation of
GTF.pm, suitable for able Perl programmers to create and parse GTF files.

The script validate gtf.pl included in the Eval package is particularly
useful for checking that your GTF annotation is consistent and well-formed.
This can also be done over the web.

You can retrieve all of these at http://mblab.wustl.edu.

2.4 Terms

In this section I’m listing some terms that you might want to familiarize yourself
with in order to follow along. These are not intended as authoritative definitions,
but rather to indicate which definition will be used in this text.2

2.4.1 Probabilistic Terms

• parameter - refers to a number which defines the likelihood of an event.
This can refer to either the actual number, or its meaning to the model.

• model - in our case, a probabilistic model, and specifically, a parameter-
ized probabalistic model. A collection of parameters which in some way
define the character of a phenomenon.

• distribution - a function (sometimes probability density function) which
differentiates the probability of an event between different examples.

• Gaussian distribution - (sometimes “normal distribution”) a distri-
bution function whose greatest density is focused at its mean and low-
est density focused on the extremites of the mean. (PDF: Pr(X) =

1

σ
√

2π
e−

(x−µ)2

2σ2).

• exponential distribution - a distribution with a constant average rate
of change whose mean is focused near 0, and whose tail limits at 0 as the
function approaches infinity. (PDF: Pr(X) = λe−λx).

2Rule of thumb: Wikipedia is your friend.

22 CHAPTER 2. PRELIMINARIES

• geometric distribution - the discrete case of the exponential distribu-
tion (PDF: Pr(n) = (1 − p)np).

• function smoothing - one of many techniques applied to an emperical
distribution to eliminate radical differentials between two nearby exam-
ples.

• conditional independence - an assumption that states that given back-
ground information x, the probability of event y is unchanged. That is,
Pr(y|x) = Pr(y).

• pseudocount - A method of making up for unobserved data by adding
one or more counts to the total counts used in determining the probability
of an event.

• Markov chain - a discrete-time stochastic3 process4 which approximates
the likelihood of an event happening given all previous events. It has the
Markov property of being conditional on only the current state.

• higher order Markov chain - a Markov chain which is dependent on
more than on previous event to generate the current event. For example,
if it has rained for 5 days, how likely is it to rain tomorrow? We can
model this (pretty näıvely) with a higher-order Markov chain. We can
assume that the weather before 5 days ago has no influence on the weather
tomorrow (probably incorrectly), and create a “5th order” Markov chain,
modelling the occurence of rain on the 6th day.

• hidden Markov model - a probabilistic state machine with the Markov
property. The idea is that some variable is “hidden”. An example (taken
from [6]) is the case of Casino which occasionally uses a loaded die. If you
are given the rolls, the hidden variable is the kind of die being used. This
is often called a probabilistic state machine, one which moves from one
state to the next with probability given by the current state (a 1st order
Markov chain). For more detailed descriptions, see [6].

• generalized hidden Markov model - a hidden Markov model where
the stay in a particular state modeled by any arbitrary length distribution.
This type of hidden Markov model is ideal for gene prediction. Features
such as coding exons don’t follow an exponential length distribution, as
is imposed on ordinary hidden Markov models. The use of a generalized
hidden Markov model allows for an arbitrary length distribution, as well
as modeling features in an exon, such as the acceptor and donor site. For
more information, see [10], [6] and [4].

• fitting - A model is said to be fit to the data if there is sufficient training
data to obtain reliable parameters. There are two possible problems that

3read: probabilistic
4read: function

2.4. TERMS 23

can occur when attempting to fit a model. If there is too little data, the
model is said to be overfit, because the sparse examples make the param-
eters the result of few, possibly inaccurate examples. Another problem is
underfitting, where the model has too few parameters to reliably discrim-
inate between true positive examples and negative ones.

2.4.2 Genomic Terms

• G+C Isochore - commonly, one of 4 or less ranges of DNA guanine plus
cytosine percent content in genomic DNA sequences.

• transcript - a collection of boundaries in a DNA sequence which is posited
to be transcribed. These boundaries represent exons.

• gene - a collection of one or more transcripts which are believed to be
originating from the same transcription process, due to similarity in splice
pattern.

• acceptor site - a ∼40 base pair window upstream of an internal or ter-
minal exon (or internal UTR exon) which contains the pyrimidine tract,
the branch point, and the AG consensus site.

• donor site - a ∼9 base pair window upstream and downstream of an
internal or initial exon (or internal UTR exon) which contains the GT
donor consensus site.

2.4.3 Bioinformatics Terms

• feature - any section of a genomic sequence that has a certain characteris-
tic. For example, an initial exon feature would be a coding exon beginning
with an ATG and ending with a donor site.

• alignment - a matching of two sequences which have clear indication of
similarity. For a more detailed treatment, see [6].

• BLAST - Basic Local Alignment and Search Tool. A program for finding
good local alignments of two sequences. Two major flavors exist, NCBI-
BLAST and our weopon of choice, WU-BLAST [7].

• BLASTZ - variant of BLAST designed to be more sensitive in aligning
(i.e. generate more alignments). See [12].

• MULTIZ - multiple sequence aligner. Takes several outputs of BLASTZ
and merges them into a multiple sequence alignment. See [1].

• Twinscan - the external name the research project in [9]. This is essen-
tially Genscan [5] plus the conservation sequence.

• target sequence - the genomic sequence on which genes are being pre-
dicted.

24 CHAPTER 2. PRELIMINARIES

• informant - species aiding prediction by providing conservation informa-
tion.

• conservation sequence - a sequence representing the result of a two-way
alignment with WU-BLAST. The conservation alphabet includes three
characters, “|” for match, “:” for mismatch or gap, and “.” for unaligned.
Internally, this is represented as the numbers 0, 1, and 2 for mismatch/gap,
match, and unaligned, respectively.

• N-SCAN - the external name for the research project in [8]. This is
essentially Genscan plus a Baysian network representing the differing evo-
lutionary rates in a multiple alignment of one or more informant species.

2.4.4 Brent Lab Terms

• iscan - the standalone program which predicts genes using a conservation
sequence or multiple alignment. Essentially, it is Twinscan, N-SCAN,
Twinscan-EST, N-SCAN EST and our implementation of Genscan.

• zoe - Ian Korf’s daughter, whose name permeates the iscan code. is-
can is often referred to as the ‘zoe codebase,’ and files input and output
from iscan in native format are said to be in ‘zoe’ format. This includes
parameter files, which are suffixed with .zhmm.

Chapter 3

Installation

iParameterEstimation should work on any UNIX system with Perl 5 installed.
Certain prerequisites are required, but these can easily be obtained.

There are two main ways to install iParameterEstimation: with the pre-built
rpm (Redhat Package Manager) package, or by hand. I personally recommend
using an rpm client like yum or yast, since it will do a lot of things automatically
and smoothly for you, as well as prevent you from reinstalling the same thing
twice in different spots if you are updating.

3.1 Installing via RPM

The rpm (Redhat Package Manager) installation offers a potentially cleaner, less
interactive install. We recommend that you use the rpm wrapper that comes
with your linux distribution (for example, yum with RedHat, yast with Suse).
This will automatically resolve, fetch and install dependencies for you.

Whether you rpm by hand or do it with a package manager, you will need
to install the eval rpm, which is available on the site http://mblab.wustl.edu.

Here we provide a guide to the manual installation, if you are doing one.

1. Check your dependencies. You will basically need the eval rpm, which
you can download from the website. Install it with rpm -Uvh eval.*.rpm.

You will also need the perl-libxml-enno, perl-libxml-perl and perl-XML-
LibXML packages, which can be downloaded from any number of stan-
dard sites with rpm packages for an OS distribution. This may follow
you further down more chains of dependencies, so keep following until all
dependencies are resolved. With yum or yast you can usually just request
the package by name.

2. Install the rpm. Simply use the rpm update command to do this:

rpm -Uvh ipe-1.0-1.i386.rpm

25

26 CHAPTER 3. INSTALLATION

This will place all the install files in /usr/bin, /usr/lib or /usr/lib64
(depending on your archetecture), /usr/share/man and /usr/share/iPE,
where you’ll find the documentation and configuration files.

It will also create a file which sets the system-wide SGML SEARCH PATH

variable to /usr/share/sgml, where the DTD files are stored.

3.2 Installing via deb

The debian package manager is orthoganal to RPM, however it is equally sup-
ported in iPE. You can retrieve the .deb file from http://mblab.wustl.edu,
and install it with dpkg -i ipe.*.deb. You will also need to install the eval

debian package prior to installing iPE.

3.3 Installing Manually

1. Get root access. Go beat up your administrator, unless he’s nice. Oth-
erwise, just hand this over to him.

2. Make sure Perl 5 is installed. Type perl -v on a command prompt,
and you should get something like

This is perl, v5.8.8 built for darwin-2level

Copyright 1987-2006, Larry Wall

...

with more information following.

3. Make sure you have other prerequisites installed. The modules
XML::Parser::Checker and XML::LibXML are required. These can be
installed using the CPAN module, for example,

perl -MCPAN -e ’install XML::LibXML’

This can run into a number of snags, with getting dependencies or tests
failing. It’s often advisible to try to find a package, RPM or otherwise,
that automatically this, or you can also bypass the tests by building them
in the .cpan build directory.

The eval module is also required. This can be obtained from the Brent
Lab website at http://mblab.wustl.edu.

4. Select an install directory. For typical users this will be /usr/bin and
/usr/lib, however if you intend to run on NFS, you may want to select
the NFS mounted directories as an install point.

3.3. INSTALLING MANUALLY 27

iParameterEstimation will install itself into the directories share, where
the manpages and DTD files will be kept, lib where the module files will
be kept, and bin where the run script will be kept.

5. Run the install script. If you haven’t already, unpack the tarball you
found on http://mblab.wustl.edu (gzip -cd iPE.tar.gz | tar xvf

-). You will find the script install ipe.sh in the top level directory of
iPE. Run it as root (or sudo ./install ipe.sh).

First you will be prompted for a prefix for installation:

Please enter a prefix (or just press enter for the default)

where your bin and lib directories are

Install prefix: [/usr]

If you want to install the lib, bin and share under a different directory
besides /usr, enter a full path here (with a leading “/”). Hit enter to take
the default (in brackets).

Now select where the configuration files will go:

A standard set of configuration files used for parameter estimation

come bundled in this package. They should be place somewhere where

everyone can use them.

Where to put configuration files: [/usr/share/iPE/conf]

Here, you are asked where to put the configuration files that come with
iParameterEstimation that help you run the program. These include var-
ious models, standard command options, and feature maps (we’ll get into
the detail of these later). You’ll want this in a place where all users who
want to use iParameterEstimation can see and read the files (not neces-
sarily write). Hit enter to take the default (in brackets).

Next select where the DTD files will be stored:

DTD files are description files which describe the format of XML files,

which are the input to iParameterEstimation. They need to be system-wide

accessible in order to run iParamterEstimation.

Where to put DTD files: [/usr/share/sgml]

As described in a previous chapter, DTD files define what XML files look
like, and XML files are the main input to iParameterEstimation. These
files are small and harmless, so installing them here is fine, unless for some
reason you want to group them with other DTD files. Hit enter to take
the default (in brackets).

28 CHAPTER 3. INSTALLATION

iParameterEstimation comes with user-level documentation in PDF form.

You may install them anywhere on the system.

Where to put documentation: [/usr/share/iPE/doc]

This manual, as well as example files will be installed to this directory.
Again, pick a spot where everyone can read but not necessarily write.

After this, iParameterEstimation should install itself.

6. Set the environment variable SGML SEARCH PATH. This points to the
location of your DTD files so iParameterEstimation can find them when
run. Find a system-wide login script or create one that executes the line
(in bash):

export SGML_SEARCH_PATH=/path/to/dtd/files

where the path is the path where you specified for your DTD files. In
many systems, you can make a new bash script in /etc/profile.d to do
this.

3.4 Testing your installation

The easy way to do this is just run the executable, ipestimate from any loca-
tion. You should get a usage statement if everything is OK:

$ ipestimate

iParameterEstimation v1.0.0 06 June 2007

Copyright (C) 2005-2007 Washington University in Saint Louis

by Bob Zimmermann and Brent Lab

http://mblab.wustl.edu

Usage: ipestimate instance-file

iParameterEstimation gets all command line-type options from an XML file

called the instance file. For more details, see the user guide that came

with this package, or http://mblab.wustl.edu/software/iparameterestimation.

We’ll get into some test cases later in the Getting Started chapter.
If you have problems, make sure your PERL5LIB environment variable is set

to the locations of where iParameterEstimation was installed. (If you forgot
where, just rerun the script, and you can see the verbose output of the exact
locations.) Generally, /usr/lib is included in the PERL5LIB list.

You also have to make sure your SGML SEARCH PATH variable is set to the
location of the DTD files (often in /usr/share/sgml).

Chapter 4

Getting Started

As mentioned in the Preface, iParameterEstimation was intended as both a
parameter estimator for Twinscan/N-SCAN and a general purpose parameter
estimation tool. You will notice that iParameterEstimation inputs and outputs
many items that are relevant specifically to Twinscan/N-SCAN, but many of
the files input and output are generic in nature.

If you haven’t already, download iscan from http://genes.cs.wustl.edu, and
read about it in [5], [9] and [8]. iscan should come packaged with some pa-
rameter files with the extension .zhmm already. Take a look at them. Pretty
opaque, huh? Don’t worry about understanding them. If I’ve done my job, you
will never have to look at one of those.

4.1 Input Files

You might have noticed that when you type the ipestimate command, the
usage only asks for one file, an “instance” file, and no command line options.
There are many options passed to iParameterEstimation, however they are all
in files.

As shown in Figure 4.1, instance files point to all the files that will be
used by iParameterEstimation. It points to an annotation set (the training
examples), a gHMM file (the parameter definitions), and one or more feature
map files. In addition, instance files contain the “missing” commandline options
for iParameterEstimation. Included in the iParameterEstimation tarball is an
example set of input files. This should be installed where this documentation
file is. Let’s take a look at them one by one.

You can find some example input files in the documentation directory, which
was installed with iParameterEstimation (typically in /usr/share/iPE/doc).
You will find two sequence files which have been bzip2ed, they can be decom-
pressed with bzip2 -d.1

1If you don’t already have bzip2, get it. It is far superior to gzip for compressing sequence
files, especially conseq files.

29

30 CHAPTER 4. GETTING STARTEDI n s t a n c e F i l e
g H M M F i l e F e a t u r e M a pA n n o t a t i o n S e t . . .

Figure 4.1: The high-level shematic of an instance file

4.1.1 The Instance File

An instance file is designed to represent a single run of iParameterEstimation,
thereby freezing the training and keeping a record of how it was done2. The
instance file can be reused, of course, and if the run fails, it doesn’t hurt to just
revise it until it works.

Like most input files to iParameterEstimation, the instance file is an XML
file. Let’s take a look at the example file:

<?xml version="1.0"?>

<!DOCTYPE iPE_instance SYSTEM "iPE_instance.dtd">

Like all XML files, we start out by defining what kind of file is coming along.
This time we’re asserting that this file is defined in the DTD iPE instance.dtd.
Hopefully this file is within the paths contained in the environment variable
SGML SEARCH PATH. If not, check your installation.

<iPE_instance>

<author>Bob Zimmermann</author>

<date>5/8/06</date>

The root element is iPE instance, and all elements in this document are
contained within it. Its author and creation date are manually identified by the
user.

Next are the locations of the gHMM file and feature map files:

<gHMM_file>

gHMM.xml

</gHMM_file>

<feature_map_files>

gtf_map.xml

</feature_map_files>

2From experience, leaving a long paper trail to your experiments is wise, as results are
sometimes difficult to reproduce.

4.1. INPUT FILES 31

The gHMM file, broadly, defines our global gene prediction model. It defines
all the parameters that will be estimated and some that won’t. Our feature map
file explains how to convert the features in our annotation sets into features that
pertain to the gHMM. We’ll discuss these more later.

Now we get to our annotation set:

<annotation_files>

chr1.eval.short.gtf

</annotation_files>

<seq_files type="dna">

chr20.masked.short.fa

</seq_files>

<seq_files type="cons">

chr20.conseq.short.fa

</seq_files>

Each file in the annotation set corresponds to all the sequence files in the
order they’re defined. If there were additional annotations and sequences, they
would all correspond to each other. There must be equal numbers of files in
each of these.

Sequence files are defined by their identifying sequence type, such as “dna”,
and “cons”, shown above. Several different types of sequences can be input to
iParameterEstimation. Here are the important ones:

• dna - These are files of DNA sequences, containing all possible bases and
ambiguity codes.

• conseq - These are conservaetion sequence files, used in Twinscan. These
are sequences of 0’s, 1’s and 2’s, representing the result of an alignment
by WU-BLAST.

• estseq - These are EST sequence files, used in Twinscan-EST and N-
SCAN-EST [13].

• malign - These are alignment files, adapted from either MULTIZ or BLASTZ
runs. These are used with NSCAN.

Note that iParameterEstimation will input any number of these types of
sequences along with the annotation, as long as the properly correspond.

iParameterEstimation is sensitive to filename extensions. The following ex-
tensions are currently supported:

• .fa - FASTA-formatted file. The format begins with a header, starting
with a >, and continuing with a sequence definition. The following lines
are assumed to contain sequence.

• .conseq - RAW-formatted file. This is a file containing no header and no
whitespace. It simply contains the sequence.

32 CHAPTER 4. GETTING STARTED

• .align - Alignment file. The first line is a FASTA header. The definition
in the header is expected to contain comma-separated names of the target
sequence followed by each of the informant sequencs. The second line is
the target sequence, containing no gaps or whitespace. The following lines
are each of the informant sequences, in the order indicated by the header.

• .gtf - Gene Transfer Format file. This file is an annotation file, described
in the first chapter.

At the bottom of the file, you’ll see another element called <options> with
several subelements. These are used in place of commandline options. This way
we can preserve all inputs to iParameterEstimation without any extra work
except to save the file. Each option is an element with no attributes and a value
between the element’s start and end tags. For example:

<verbose>true</verbose>

In this example we have an option named verbose and have set it to true.
This is also an example of a boolean option. All other options have some sort
of value associated with it.

There are many options, and they are all detailed in the appendix, but here
are some of the important ones:

• verbose - This option tells iParameterEstimation whether or not to print
progress messages to stderr. If the messageOutputFile option is set,
then the output is redirected to that file.

• outputBaseDir - This is the base directory of all output files.

• zoeOutputFile - This is the name (not path) of the output parameter file
to be used with iscan.

• performCount, performNormalize, performScore - These are boolean
options (must be set to true or false) that indicate how far to take the
estimation. You can set all of these to true, and still extract the counts,
porbabilities and parameters from the output files listed in countOutputFile,
probOutputFile and xmlOutputFile.

4.1.2 gHMM files

The gHMM file is the complete definition of every parameter that is to be estimated
for iParameterEstimation. I won’t go into too much detail here, since you may
never have to look at these files.

These files are used to estimate parameters for the different flavors of iscan:
Twinscan, N-SCAN and their respective EST versions. All of these gHMM files
are provided with the software distribution in the conf directory. Sometimes
the gHMM file is modified for special runs on different organisms, for example ones
with less bias in different isochores, or shorter genomes. The included gHMM files
are optimized for the higher eukariotes, unless otherwise noted.

4.2. RUNNING IPARAMETERESTIMATION 33

4.1.3 Feature Map Files

feature map files map an annotation format’s features into features that can be
understood by the gHMM provided. For example, GTF only uses the CDS feature
to represent coding sequence, however, Twinscan’s gHMM uses initial, internal,
terminal and single exon types to represent coding exons. This is where the
feature map comes in.

In practice, only two feature maps are used, gtf map.xml and gtf map utr.xml.
The former is used in Twinscan without UTR predictions, and the latter is used
in Twinscan with UTR predictions, N-SCAN and their respective EST variants.

These will be discussed in more detail in the appendix.
All of these things come together to give you a complete picture of how

parameters were estimated for a particular run if iParameterEstimation. I highly
recommend you hold onto these after every successful run.

4.2 Running iParameterEstimation

Once you’ve done the work of preparing your annotation set and preparing the
configuration files correctly, you are pretty much on your way to estimating
parameters.

We’ll be running through the example provided, so first get a copy of the
example files in the installed documentation directory, then launch ipestimate.
The sequence files are bzip2 compressed, so you must decompress them before
running.

Run the following commands (if your example is in a different directory,
adjust for this):

login32 ~ $ mkdir iPE_test

login32 ~ $ cd iPE_test/

login32 iPE_test $ cp /usr/share/iPE/doc/example/* .

login32 iPE_test $ bzip2 -d *.bz2

login32 iPE_test $ ipestimate instance.xml

Here’s a step-by-step guide to what’s happening as you run iParameterEsti-
mation.

1. Perform sanity check.

If everything is correct, ipestimatewill begin working immediately. Some-
times some of the files are not present, or the output directory is missing,
or other things are mismatched. ipestimate begins by doing a “sanity
check” on most of these things so it doesn’t end up running for hours just
to find out it cannot write out the output file.

If, for example, I had not decompressed the files, I would have seen the
following error message:

iPE::Instance: No such file chr1.masked.short.fa.

34 CHAPTER 4. GETTING STARTED

2. Read in configuration files.

The instance file contains all our options and those are parsed first. We
should then see a message showing us that our gHMM and feature maps
are being parsed.

iParameterEstimation v1.0.0 06 June 2007

Copyright (C) 2005-2007 Washington University in Saint Louis

by Bob Zimmermann and Brent Lab

http://mblab.wustl.edu

[Reading gHMM.xml ... done]

[Reading feature maps ... done]

Initialization successful.

While parsing these files, ipestimate will check for any problems with
the syntax or content of the files.

After initialization is done, all the data structures required to count the
examples have been created.

3. Count examples.

ipestimate will now run in a loop over all the annotations and their
corresponding sequences that were defined in our instance file. In this
case there is only one set of annotations and sequences.

[Reading chr20.masked.short.fa ... done]

[Reading chr20.conseq.short.fa ... done]

[Getting G+C% levels for DNA ... done]

[Converting chr1.eval.short.gtf ... done]

[Outputting fasta files ... done]

[Counting durations and transitions ... done]

[Counting sequence models ... done]

First it reads in the sequence files, then gets the genomic G+C% percent-
age. It then converts the annotation formats into partial paths through
the given gHMM. Often, you will see several error messages about it kick-
ing out transcripts which it deems unworthy or truncating transcripts if
they step out of the bounds of the sequence. This is nothing to be con-
cerned about, however is informative in case you seem to see that most of
your annotations are invalid.

In the example instance file, we specified that we wanted to have all the
features and models output to FASTA files. In general, you probably
won’t want to do this, as it takes up extra disk space, but this can serve
as a good tool for analysis of sequences3.

3You can even bypass parameter estimation and just have it output these sequences for
you, by turning off the performCount, performNormalize, and performScore options.

4.3. A NOTE ON DIRECTORY STRUCTURE 35

Finally, the examples are counted. More warning messages may be gen-
erated here, especially if inframe stop codons are found in a transcript.
This can indicate a bad annotation or a mismatched annotation/sequence
set. You may want to double check your annotations if this happens.

4. Wrap up and output files. Once the counting is complete, ipestimate
will smooth, normalize, and convert probabilities to scores, and finally
output one or more files:

Counting complete.

[Outputting counts.xml ... done]

[Smoothing counts ... done]

[Outputting smoothed_counts.xml ... done]

[Maximizing parameters ... done]

[Outputting prob.xml ... done]

[Outputting parameters.xml ... done]

[Outputting parameters.zhmm ... done]

If all went well, you can use the file parameters.zhmm with iscan to predict
genes.

4.3 A note on directory structure

It’s a fairly good idea to keep things organized in general, and since iParame-
terEstimation outputs a lot of files in different places, it’s a good idea to keep
these things in line.

When I run iPE, I usually keep a top level directory for the experiment called
experimentid estimation, where experimentid is some sort of rational name
for the experiment. Below that directory I usually keep several subdirectories:

• conf - This is where I keep my instance files, and if I make any custom
gHMMs, I put them here too. I generally make a brand new instance file
if there is a major change to the way I’m estimating things, so the old
experiment is kept documented.

• out - This is the output directory where all the first-draft parameter files
go, as well as any other output files. If there are any mess-ups that aren’t
used, I leave them here.

• final - This is where I keep copies of parameter files from out that might
go on the record. This keeps the directory clean, and points you to the
important files in a mess of unimportant files in out.

• annotations, seq, etc. - If I’ve made custom annotations for this estima-
tion which are not on our system-wide database, I keep them here.

36 CHAPTER 4. GETTING STARTED

The advantage of this is that when you’re done and ready to archive, you
can make a tarball of the entire directory tree, and chuck it. It’s helpful to put
the location of the archive as a comment in the final parameter file that comes
out of the experiment.

4.4 Output Files

Our example run spit out a great deal of files. The only one of current practical
use is the parameter.zhmm file, however the others can be used for parameter
analysis and sequence analysis. Note that the names and paths of these files
were all specified in your instance file (under the options element), so there is
nothing special about the names of the files below.

• counts.xml - This is an XML file containing all the counts in the models
from the examples passed into iParameterEstimation. The file will look a
lot like the gHMM file, but will contain some additional elements such as
transitions and comments about how the file was generated.

• smoothed counts.xml - This XML file contains the counts after they have
been processed through smoothing for sparse data. The actual values don’t
all represent something meaningful with respect to the original counts, but
do with respect to the counted distribution itself.

• prob.xml - This XML file contains the normalized probabilities for all the
models. This should contain models which all sum to 14

• parameters.zhmm and parameters.xml - These files are your parameter
files. The .zhmm (“zoe” HMM) is of use to iscan. These are all either
probabilities, log scores, or log-odds ratios of probabilities, depending on
what is expected by iscan, and indicated by the gHMM file.

• features and models directories - These contain the output sequences
that correspond to the examples (annotations) passed to iParameterEsti-
mation.

Congratulations! You’ve made a successful run of iParameterEstimation.
At this point, you should know enough to learn and understand basic operation
iParameterEstimation with the aid of the Appendices. The rest of the book
will be dedicated to explaining concepts for tuning iParameterEstimation for
your specific needs. Most of this is not necessary to know for a high level
understanding of the program.

4There are some exceptions here–but most of them are specified in your gHMM file. More
on this later.

4.5. A WORD ABOUT WARNINGS 37

4.5 A Word About Warnings

iPE outputs warnings associated with the instance run. These are often wordy,
and hopefully self-explanatory for the most part.

In our example, the warnings were redirected to a file in warnings.txt.
This should contain the most common and disconcerting warning that iPE users
encounter:

$ cat warnings.txt

0 samples in duration distribution Intron

for isochore 100.0. There is probably no

sequence in the 100.0 isochore group

0 samples in duration distribution Intron

for isochore 43.0. There is probably no

sequence in the 43.0 isochore group

0 samples in duration distribution Intron

for isochore 57.0. There is probably no

sequence in the 57.0 isochore group

WARNING: scoring GEOMETRIC duration Intron with mean 0 because no samples were found.

WARNING: scoring GEOMETRIC duration Intron with mean 0 because no samples were found.

WARNING: scoring GEOMETRIC duration Intron with mean 0 because no samples were found.

Here we see 3 warnings about 3 models. This may or may not make sense
right now, but let me tell you what they mean: you don’t have enough genomic
sequence from your organism in some of the isochore levels you have chosen. In
this case, it’s human, and really there is a lot of sequnce of all isochores, but
we’ve only used chromosome 20, so there is less sequence.

When this happens in “real life”, you should eliminate isochores from your
model. Doing this should be explained in the appendix somehwere, but if I
never get around to it, just look for instances of the word “isochore” and “ISO”
use only the number “100” instead of more than one number. Sorry, bro, but
that’s how it’s gotta be.

38 CHAPTER 4. GETTING STARTED

Chapter 5

HMMs to Hacks to Gene
Prediction

This chapter is designed to give you a broad, pragmatic overview of how HMM
gene prediction works to ease you into the major concepts of parameter estima-
tion. If you do have a theoretical background in HMMs and probability, a lot
of this will be a breeze, however some of the sections explaining implementation
details may be pertinent to you. First we’re going to look at what the gene
finding problem is, then look at HMMs and how they relate to gene finding and
finally look at some of the practical transforms applied to the model in order to
make it computationally feasible.

5.1 What is the parsing problem?

Gene prediction is a parsing problem. Given a sequence of DNA letters, we
want our computer program to parse them into transcripts made up of exons
and introns. This parse will take the form of a GTF file which annotates the
input sequence at the locations that our predictor “guessed” where the exons
were.

How does the predictor guess these locations? Certainly any set of coordi-
nates could be output, but we want some sort of way of telling what a good
guess is and what a bad guess is. The way we do this is through a “machine”
that can take in an input and assign a value the likelihood of a region being an
exon or not.

A common approach (and our approach) is the use of a hidden Markov
model.

39

40 CHAPTER 5. HMMS TO HACKS TO GENE PREDICTION

5.2 What is a hidden Markov model?

An HMM is a probabilistic state machine in which some variable is unobservable
or “hidden”. The state the machine is in indicates the unobservable value.

An example of something we might model with a hidden Markov model is
a nefarious friend who occasionally uses a tails-heads coin (fair) and a heads-
heads coin (unfair). We can only observe the coin flips, but we cannot observe
our friend switching coins. (This is much like our gene finding problem: we
can observe the DNA, but we can’t observe the exons.) Since the results of
the coin flips are going to be related to which coin is being flipped, we can tie
these observables to the unobservables through a probability distribution. We
call this the “emission” probabilities, the probabilities that the hidden Markov
model emits the observables.

5.2.1 What does an HMM look like?

The nice thing about HMMs is that you can draw them. Our example is shown
in Figure 5.1.

Concretely, an HMM is defined as:

• A set of states S (the bubbles in our diagram)

• Prior probabilities of being in the state πS

• Transition probabilities between the states τS×S (the arrows in our dia-
gram)

• The emission probabilities within each state eS(Σ)

In our example, the set of states is the fair coin and the unfair coin modes
of our nefarious friend, the priors are average amount of time he uses a fair coin
and unfair coin, the transition probabilities are the frequencies of him switching
from one coin to the next, and the emission probabilities are 50/50 (heads/tails)
for the fair coin, and 100/0 for the unfair coin.

Figure 5.1: An example of a hidden Markov model.

5.2. WHAT IS A HIDDEN MARKOV MODEL? 41F a i rC o i n F a i rC o i n F a i rC o i n U n f a i rC o i n U n f a i rC o i n
T a i l s T a i l s H e a d H e a d H e a d

Figure 5.2: A graphical model representation of an HMM. The states above the
dotted line are hidden, the flip results below are observable. The hidden Markov
model in Figure 5.1 could have generated the observables shown here.

An HMM is a generative model, that is, the model is hypothesized to gen-
erate the observables.1 A way to visualize this is shown in Figure 5.2. The
key property in our speedup is how this model generates the observables. The
observable only depends on the current state of the machine, and the current
state of the machine only depends on the state immediately previous to it.

This is known as the Markov property. Formally, we define it as the inde-
pendence assumption that asserts that all future states of a stochastic process
are dependent only on the present state of the process, or

Pr(Xi|Xi−1, Xi−2, ...X0) = Pr(Xi|Xi−1)

This enables us to compute the most likely outcome more quickly.
The important thing to take away from this section is that a full parameter-

ization of an HMM is the initial probabilities (πS), the transition probabilities
(τS×S), and the emission probabilities (eS(Σ)). These emission probabilities are
tied to the states of the machine, and characterize the states by providing the
bridge between the model and the observables.

5.2.2 What is a generalized HMM?

In our previous example, the transition probability from the Fair state to another
Fair state was a constant probability. Without proving it, this implies the period
of time that we stay in any state in an ordinary HMM is destributed by the
geometric probability density function.

What if this doesn’t resemble the true distribution? What if our friend
decides to stick with the Fair coin on average for 20 flips, but rarely switches

1It is interesting to stop and think here for a moment. Since we’re modeling transcriptional
machinery, why are we using something like an HMM which in no way resembles this? The
reason is that it works, and it’s one of the best ideas anyone has come up with for modeling
gene structure.

42 CHAPTER 5. HMMS TO HACKS TO GENE PREDICTION

Figure 5.3: The generalized hidden Markov model version of our coin-flipping
problem.

after 1 flip or 40 flips? The way to model this is to use a generalized hidden
Markov model (gHMM).

A generalized hidden Markov model is essentially the same, except that self
transitions are not modeled with the Markov property. Instead they are modeled
arbitrarily, and any function can be attributed to the probability of staying in a
certain state. We introduce a new parameter set to our original hidden markov
model:

• Duration probabilities within each state lS(t)

The transitions between the states still carry the Markov property, but the
transitions within the states don’t. We would redraw our fair/unfair HMM as
shown in Figure 5.3.

Without going into detail, our computer the oracle now has to compute
optimal parses differently under this model. Since the length of the hidden
feature is no longer only dependent on the previous state, it is going to have to
consider all possible lengths of a feature. This costs us in time, but also gives
us the benefit of being able to model more complex things.

Let’s say we know something about the beginnings and ends of each feature,
say, an exon which begins with an acceptor site and ends with a donor site. As
long as we’re going ahead and taking the time to consider the entire feature,
we might as well model all these things, the donor, the acceptor, and the DNA
content while we’re at it.

This is a very high level discussion of HMMs, and for more detail you might
look at [6] or [10].

5.2.3 How does this relate to parameter estimation?

When we say we are estimating parameters for a gHMM, we are estimating the
probabilities described above. The parameter file that is output by iParameter-
Estimation program completely describes the gHMM that will be used for gene
prediction, including the states, initial probabilities, transition probabilities,
length probabilities and emission probabilities.

5.3. BIOLOGICAL HMMS 43

iParameterEstimation takes the input annotations and converts these anno-
tations (via the input feature maps and the gHMM file) to valid state sequences
and uses these to estimate parameters. The result is a long file with a lot of
numbers in it that characterize the features (exons, introns, acceptors, donors,
etc.), and the gene predictor uses this to predict genes.

5.3 Biological HMMs

Twinscan and N-SCAN use a gHMM that largely resembles the one Genscan
uses, shown in Figure 5.4. There are two sets of duplicated states, one for genes
on the forward (+) strand, and ones for genes on the reverse (-) strand.

Each of the states shown is “tied” to one or more models, specific to the
feature that the state implies. These models are simply a set of numbers which
score the input sequence (based on probability). A higher score for a segment
of input sequence will imply that the sequence is more likely to belong to that
model as opposed to any other.

As mentioned earlier, a state can have several models tied to it. The states
“Einit” and “Eterm” are initial and terminal exons. Initial exons are modeled
with a start codon model and a donor site model. Terminal exons are modeled
with an acceptor site model and a stop codon model. The “Esngl” state repre-
sents a single-exon state, including a start and stop codon. The states labeled
“E” are internal coding exons, and they include an acceptor site model and a
donor site model.

There are three “E” states, one for each reading frame. The states are
used to track the total length of the coding portion of a transcript, in order to
make sure its length is divisible by three.2 This provides a somewhat informal
constraint on the lengths of stays in these states: a terminal exon must round
off the coding portion of the transcript length to be divisible by three, and the
internal and initial exon states transition to intron states only if they have a
compatible reading frame.

Also as mentioned earlier, a generalized hidden Markov model has some
function lS(t) which defines how likely it is to stay in the state for a duration of
t. This can be any probability density function, including the geometric PDF.
States with the geometric PDF are faster to compute, so for the states which
are roughly geometrically distributed, a geometric PDF is used for lS(t). All
diamond-shaped states in Figure 5.4 are modeled using the geometric distribu-
tion as lS(t).

To get a picture of what is going on, imagine that every sequence that you
put into a gene predictor has some “true” path through this state diagram,
beginning at intergenic, eventually transitioning to a promotor and through
some transcript sequence, then finally back to intergenic, several times. There

2Note this is needed because of the Markov property: each state is only aware of the
previous state, so in order to track reading frame, we need to keep track of where the previous
exon left off.

44 CHAPTER 5. HMMS TO HACKS TO GENE PREDICTION

Figure 5.4: The Genscan generalized hidden Markov model for gene prediction
[4].

5.4. THE MODELS THAT MAKE UP A GENE PREDICTING GHMM 45

Figure 5.5: An explicit length distribution for exons, taken from [4].

are several possible paths through this with every sequence, and the gene finder
finds the most probable path, given the model.

5.4 The models that make up a gene predicting
gHMM

Several different models have bene established, mostly in [4], as being best for
predicting genes. This is a summary of the types of models used.

5.4.1 Length distributions

Exons are modeled with an explicit length distribution, also known as a his-
togram. It assigns a different probability to each base, based on the frequency
of each observed length in the training set. An example of this is shown in
Figure 5.5. Typically all internal exons are modeled under the same length dis-
tribution, and intitial, terminal and single exons are modeled under a different
distribution.

Introns roughly follow a geometric length distribution in human genomic
DNA, but in some genomes a heterogeneous length distribution, one with an
explicit section for the first 1000 or so lengths (depending on the genome), and
then the end is a “geometric tail”. (Thus all possible intron lengths are modeled,
but the first 1000 are modeled more carefully.)

An important thing to note here is that a limit is placed on every explicit
length distribution. We define a model within a certain range, and outside of

46 CHAPTER 5. HMMS TO HACKS TO GENE PREDICTION

Figure 5.6: A first-order Markov chain for DNA. The states are the current
DNA letter, and the transitions are the probabilities of the next letter given the
current letter (represented by arrows).

that range the lengths are disallowed. This means that the gene predictor only
has to look at the possible lengths in that range, and the rest of the lengths
are not considered. Shortening the range speeds up the predictions, since fewer
lengths are checked for optimality.

5.4.2 Content models

In our HMM examples above, we saw a single emission probability assigned to
each observation. Given the fact that DNA only contains four letters, it would
be hard to distinguish coding regions from noncoding regions with only the
likelihood of seeing an A, C, G or T in an exon.

Higher-order Markov chains

Markov chains are probabilistic models like HMMs, except that there is no
hidden variable. The current state is apparent from the observations, and a
probability is assigned to each next state, given the current state. This can prove
to be more informative about the sequence’s function, since more information
is present. An example of a Markov chain for DNA is shown in Figure 5.6.

For the most part, however, the current base of context is not enough in-
formation to predict the next base. To remedy this we use something called

5.4. THE MODELS THAT MAKE UP A GENE PREDICTING GHMM 47

1 2 3 4 5 6 7 8 9 10 11 12

A 0.18 0.14 0.17 0.49 0.16 0.15 1.00 0.00 0.00 0.11 0.26 0.12

C 0.35 0.38 0.45 0.06 0.51 0.60 0.00 0.00 0.00 0.21 0.39 0.30

G 0.33 0.34 0.34 0.42 0.30 0.22 0.00 0.00 1.00 0.50 0.18 0.40

T 0.14 0.14 0.04 0.03 0.04 0.03 0.00 1.00 0.00 0.17 0.17 0.19

Table 5.1: An example of a weight matrix model for a start codon. The 6 bases
upstream and 3 bases downstream of the consensus are modeled.

a higher-order Markov chain. An ordinary Markov chain would be referred to
as a 1st order Markov chain, because it relies on one state for context. A 2nd

or 3rd order Markov chain uses 2 or 3 previous states, respectively. Typically,
the DNA content of introns and intergenic regions are modeled with 5th order
Markov chains.

Periodic higher-order Markov chains

Coding region DNA sequence has been shown to have content bias in each of the
three codon positions. In order to take advantage of this, gene predictors often
use a 3-periodic 5th order Markov chain. This was introduced in GeneMark [2],
a program for predicting genes in prokaryotic organisms.

A periodic Markov chain is one which cycles through different state transition
probabilities. That is every nth state is predicted with a the same Markov chain
in an n-periodic Markov chain. For coding region, this is 3 different Markov
chains, one for each codon position.

Position-specific scoring matrices

In the cases of start codons, stop codons, acceptors and donor sites, the bias in
composition is position dependent. For example, a start codon is required to
have an “ATG” sequence at the predicted site. To take advantage of this, gene
predictors use a model called a position-specific scoring matrix (PSSM). This is
also referred to as a weight matrix model (WMM).

The idea is that the area being predicted with a specific consensus site is
given different probabilities for each base at each position. The bases surround-
ing the consensus are often modeled as well, if a bias is detected. An example
of this is shown in Table 5.1.

Higher-order position-specific scoring matrices

Often more information can be gained by including more bases of context in
each position of a PSSM can yeild a better predictor. The basic idea is to use
a Markov chain at each position in the PSSM. The result is called an nth order
PSSM or weight array model (WAM). The acceptor site is modeled with a 2nd

order WAM.
When data was sparse (i.e. when Genscan was released), the data was under-

fit to a higher-order PSSM. Burge introduced the windowed weight array model

48 CHAPTER 5. HMMS TO HACKS TO GENE PREDICTION

Figure 5.7: The maximal dependence decomposition estimated for Genscan.

(WWAM), a model which averages the examples in surrounding positions in
order to give a closer fit to the data. Now that data is typically sufficient to
estimate reliable parameters, this is no longer used, but remains in the iParam-
eterEstimation as an artifact.

Sequence decision trees

Burge found relationships in donor sites between distal bases in the typical 9
base long WMM model. In order to compensate for this, he used something he
called the maximal dependence decomposition, and that we call the sequence
decision tree.

The idea is that χ2 statistics are applied to all pairs of positions to determine
statistically significant relationships between distal positions, and then the pair
with the greatest difference are “decomposed” into two different WMMs, and
the cycle is repeated until all statistically significant pairs of positions. Burge’s
results are shown in Figure 5.7.

We rely on Burge’s estimation and do not re-estimate the decomposition.
Parameters are reestimated for each of the leaf nodes in Figure 5.7. In addition
to the weight matrix models, a transition probability is applied to coming from
the root node to each of the leaf nodes.

5.4.3 Isochore-divided models

Several biases were found in [4] that show that the distributions of higher-
order Markov chains, duration distributions, priors and transition functions
look different depending on the G+C% content, i.e. the percentage of G’s and

5.5. HACKS 49

C’s in the target sequence.3 Some of the models are thus divided into isochores,
and used depending on the G+C% of the input sequence to Twinscan/N-SCAN.

The current method for estimating parameters is to consider 1,000,000-base
non-overlapping windows for their G+C% content. All the models within each
window are scored dependent on the G+C% content of that window.

When defining isochores, a sequence is said to be in a certain isochore if it
has less or equal the content of the isochore number, and more than the smaller
isochore number. For example, if the isochores were 43%, 51%, 57% and 100%,
anything more than 57% would go in the 100% isochore bucket, anything more
than 51% and less or equal to 57% would go in the 57% bucket and so on. All
isochore models must have a 100% bucket defined.

5.4.4 Conservation models

The primary contribution of Twinscan/N-SCAN to the gene prediction world
is the use of conservation models. With Twinscan, a sequence called the con-
servation sequence (conseq) is fed in along with the target sequence to the gene
predictor to enhance prediction. Twinscan uses a separate set of models for the
conservation sequence, mirroring the target sequence models. The scores for
both are “multiplied”, i.e.

Pr(feature|θ) = Pr(DNA|θ) Pr(Conseq |θ)

under the assumption that the conservation and target sequences are indepen-
dent. The models used for conservation sequence are higher-order Markov chains
and weight array models.

5.4.5 Bayesian network tree models

N-SCAN implenets Bayesian network tree (BNTREE) models. These are de-
tailed in [8]. Unlike the conservation sequence, these model multiple align-
ment phylogenies. The probabilities are factored such that the original Genscan
Pr(DNA) is factored out so the probabilities again look like

Pr(feature|θ) = Pr(DNA|θ) Pr(malign |θ)

Sam Gross, author of N-SCAN, developed an expectation-maximization algo-
rithm to estimate the branch lengths on the phylogenetic tree.

5.5 Hacks

There are several implementation details which are slightly different from the
theoretical perspective on computing the optimal path through a gHMM. Here
are a few:

3The percentage of G’s and C’s is the same in the forward strand and the reverse strand
since G and C are complements.

50 CHAPTER 5. HMMS TO HACKS TO GENE PREDICTION

5.5.1 Initial probabilities

In HMMs, initial (prior) probabilities for each state are correctly estimated by
the frequency per position of each state. In our coin example, if our friend used
an unfair coin a quarter of the time and a fair coin the rest of the time, the
priors for the Fair and Unfair states would be .75 and .25, respectively.

In real training examples, however, the true mass of intergenic region is
unknown, since genomes are not fully annotated. Thus the initial probabilities
are specified in the gHMM file by the user as estimates for the frequency of
intergenic region and introns in the target genome.

Exons are falsely given zero initial probability, because predicting a gene
that starts in the middle of an exon is impossible, as reading frame cannot be
known with out a start codon at the beginning (or a stop codon on the reverse
strand).

5.5.2 Transition probabilities

There is a tendency for our gene predicting gHMM to predict fewer exons per
gene than the actual average exons per gene. In order to preven this from
happening the transition probabilities to terminal exons (and initial exons on
the reverse strand) are fixed at a low probability. Similarly, transitions into

single-exon gene states are assigned low probability.

5.5.3 Log-probability space

When computing the optimal path through a gHMM, probabilities of entering,
transitioning, emitting and leaving are all multiplied together, one for each
letter in the input sequence. Since all probabilities are less than one, for any
substiantially long sequence, the probability is going to be very low.

Computers have are only finitely precise, that is they can only compute
numbers out to a limited number of decimal places. This presents a problem.

Part of the solution is to convert these probabilities into logs of probabilities
and add them together instead of multiply them. This is mathematically legal,
and the maximum path will still be maximum even though the numbers have
been transformed. That is for any sequence S, and HMM parameters θ, the
maximum parse F holds the property

argmax
i

log(Pr(Fi|S, θ)) = arg max
i

Pr(Fi|S, θ)

In practical terms, this is done for all duration and emission probabilities,
and stored as such in the parameter file.

5.5.4 The null model

Although the numbers will no longer become too small when converted to log
probabilities, the numbers will all be negative. For any substantially large se-

5.5. HACKS 51

quence, adding the probabilities together will go beyond the lower limits of the
computer’s capacity, and will again present another problem.

Enter one of the most confusing aspects of parameter estimation: the null
model.

The general idea is that we can pick any model from the HMM and use
it as a global null model, or negative model. Here the term “model” is used
a little loosely: it refers to a particular phenomenon, and not a probabilistic
model. Generally, the null model is comprised of non-coding regions, intronic
and intergenic.

iParameterEstimation is less ambiguous in its terminology for null models.
It asks the user to input null “regions” relative to the intergenic, and for each
model that has a corresponding null model, that is considered an instance of a
null “model”.

How does this help? If we take all the emission probabilites and divide
them (subtract in log space) by the probabilities under the null model, the log
probabilities will no longer all be negative. Specifically, this is

S(o|q) = log
Pr(o|q)

Pr(o|NULL)

where q is the positive model and o is the observation. We refer to these new
transfored probabilities as “log-odds ratios” or “scores”. In iscan the scores
are multiplied by ten and rounded to the nearest whole number. A log base 2
is used.

Observe also, that all states which are scored under the null model (intron
and intergenic states) will now have score 0:

S(o|NULL) = log
Pr(o|NULL)

Pr(o|NULL)
= log 1 = 0

This means that the score of any non-null feature will be a likelihood estimate
of how much it resembles the non-null phenomenon, e.g. an exon region with a
high score will be more likely an exon region rather than a non-coding region
on the magnitude of its score. Anything which scores negatively will be more
likely a non-coding region.

This, in and of itself, is probabilistically correct, and still yields the same
optimal path that the original gHMM did. The proof of this is beyond the scope
of this book.

Hacks to the null model

Although the Twinscan/N-SCAN null model asserts that the null model is tied
to intergenic and intron (non-coding) content, the actual null model is estimated
differently. For DNA content, parameter estimation scripts use the content of
the first 1000 bases of the first intron after the initial exon as examples for null
regions. The conservation models in both Twinscan and N-SCAN correctly use
both intergenic and intron sequences for examples of non-coding sequence.

52 CHAPTER 5. HMMS TO HACKS TO GENE PREDICTION

All the WAMs and WMMs have their own null model, determined by “pseudo-
sites”. iParameterEstimation searches the null examples for the consensus site
of each of the signal models (start, stop, donor, acceptor) and counts those to-
ward the null model. Unlike the content models, a 5th order model is not used,
instead iParameterEstimation uses an analagous model. All of these things are
explicitly specified in the gHMM file, so none of this is hidden from the user.

In addition, at consensus sites such as “GT”, “AG”, “ATG”, and so on, the
null model is a bit different. Although the null model is estimated at pseudo-
sites to help distinguish between true positives and false positives, the null scores
at consensus is actually estimated from the overall base composition bias of each
of the consensus characters. For example, if a genome were compeltely equally
biased, (Pr(A) = 1

4
, Pr(C) = 1

4
, etc.) the score at the consensus site would be

10 × log2

Pr(l|q)

Pr(l|NULL)
= 10 × log2

1
1

4

= 20

5.5.5 Inframe stop-codon tracking shadow states

An inframe stop codon can occur across multiple exons, if part of the codon
begins at the end of an internal exon. In order to prevent this from happening
in the gHMM context, special “shadow” states are added to the gHMM model
to track if the beginning of a potnential split stop codon has occurred in the
previous exon. These states include the Exon1T, Exon2TA and Exon2TG. These
are not modelled as separate states, and receive the same emission probabilities
and transition probabilities as their parent states.

iParameterEstimation does not internally acknowledge these, and they are
explicitly denoted shadow states in the gHMM file. (More on this later.)

5.5.6 Codon-level explicit length distributions

The evolutionary model for mutation in exons is proposed to be the insertion
or deletion of a whole codon instead of a base. Thus the length distributions
are modeled as a function of codon-level length probability. Internally, these
are still represented as single-base probabilities. To compensate for this, the
original histogram is computed as a codon-lev distribution, then output as a
base-level distribution, with the same probability assigned lengths 1-3, 4-6, and
so on. The total sum of this distribution ends up being 3, as a result, however
this is compensated for in the iscan code.4

4At the time of writing this, this is not actually compesnated for in the code, however, this
is a bug that should be fixed, and the standard will remain this way.

Chapter 6

Getting Deeper:
feature maps and gHMMs

This chapter covers many of the main concepts you need in order to understand
how to revise the models in iParamterEstimation. The two files involved in
tuning the models are the feature map and gHMM files.

The feature map file is a relatively short file that provides a description of
which annotation features can be mapped to states in the gHMM.

The gHMM file is a long XML file which completely specifies the gHMM
to be used for parameter estimation and gene prediction. Any generalized (or
ordinary) hidden Markov model can be specified in this file, but the general
expectation is that it relates to gene prediction.

Several example gHMM and feature map files are provided for you with the
iPE package, usually under /usr/share/iPE/conf. You may never need to
edit these files, but being able to do so affords you complete control over the
experiment you are running.

You will notice in reading this chapter that some of the elements and at-
tributes are specific to iscan. These are all necessary for the correct functioning
of iscan. I have covered the details in the appendix, however as a rule of thumb,
if the particular feature doesn’t make sense to you, don’t change it. Just copy
it from something else. Your life will be easier.

To begin, I’ll talk a little bit about the process that iParameterEstimation
uses to convert annotations into models (along the way we’ll learn how feature
maps are constructed), then give an overview of the gHMM file and finally talk
a little bit about the available models themselves.

53

54 CHAPTER 6. GETTING DEEPER: FEATURE MAPS AND GHMMS

E x o n 1E i n i t 2 E t e r mI n t r o n 1I n t r o n 2U t r 5 U t r 3
C D S C D Ss t a r t _ c o d o n C D Ss t o p _ c o d o nA)

C)
S t a r t C o d i n gC o d i n g C o d i n gI n t r o nI n t r o n .U T R U T RD o n o r D o n o rA c c e p t o r A c c e p t o r S t o pD)

E x o n 1E i n i t 2 E t e r m U t r 3U t r 5B) F e a t u r e M a p sg H M M S t a t e D i a g r a mg H M M E m i s s i o n M o d e l s
Figure 6.1: An example conversion process for a 3-exon transcript. The GTF
feature map converts the GTF annotation in A into a collection of Twinscan
features in B. iParameterEstimation then uses the state diagram in order to
determine how to fill in the gaps to create the complete state sequence of this
transcript in C. Finally, these features are subdivided into particular models in
D by the models defined in the gHMM file.

6.1. HOW IPARAMETERESTIMATION CONVERTS ANNOTATIONS 55

6.1 How iParameterEstimation Converts Anno-

tations

iParameterEstimation can be seen as a mediator between the gene prediction
program and the transcription data. It takes in annotations, counts the ex-
amples and converts these into model parameters which describe the sequence
data input. In order to do this, it has to view the annotations and sequences
the same way the gene predictor does. In essence, it converts every annotation
into a state sequence that corresponds to the annotation’s correct prediction.

6.1.1 Overview

In order to get there, we need to define a number of things:

1. How the annotations correspond to state sequences (feature maps)

2. How the states connect to each other (states)

3. How the states are divided up into models (string models)

This is illustrated in Figure 6.1. As we see in our figure, the first step is
to make an intitial pass at converting the annotated features into states. Our
format is GTF, so the only annotated features are CDS, and the introns are
missing.

In order to fill in these extra features, iParameterEstimation takes a look at
the state diagram and tries to find paths through the state diagram which start
at, say, Einit2 and end at Exon1. If you take a look at Figure 5.4, you’ll notice
that there is only state that could go in between these two flanking states.1

While the state sequences will help us with the estimation of state durations
and transitions, we need to know the boundaries of the specific content models
iscan applies when scoring potential features. This is done in the model defi-
nitions. Each sequence model identifies which state(s) it belongs to as well as
where they are along the state sequence. For example, a start codon is defined
as beginning 6 bases before the consensus site to 3 bases after the end of the
start codon.

6.1.2 Boundary, ordinality and quantity definition: L, N

and +

In order for the user to input these features, states, models, and submodels
abstractly, iParameterEstimation provides two constructs for defining things
according to the boundaries of some object: L and N. Put simply, L is the length

1The Genscan HMM differs in the way it tracks reading frame from the Twinscan/N-SCAN
hmm. The right overhang is considered, and there are three initial exon states. As a result
the roles of internal exons and introns are reversed: an internal intron can transition to any
exon, but an exon can only transition to one internal intron. More on this in section 6.2.

56 CHAPTER 6. GETTING DEEPER: FEATURE MAPS AND GHMMS

of some feature and N is the total number of some group of feature or other
object.

Let’s see how this applies. Feature maps map coordinates of annotations
to coordinates of state sequences (as shown in Figure 6.1). This is done as a
collection of feature mappings which define a particular conversion of a certain
kind of feature to a single state. One feature may map to several different states.
(Keep reading, you’ll see.)

In the case of feature maps for GTF, we see that there is only one feature
of interest (for the most part), CDS. Unfortunately, this doesn’t differentiate
initial exons from internal exons from terminal exons from terminal exons. So
we’ll want to define our initial exons as being the first CDS feature (on the plus
strand) and terminal exons as being the last CDS feature in a multi-exon gene.
This is done as follows (taken from the gtf map.xml file):

<feature_mapping state_name="Einit0" feature="CDS"

first_feature="0" last_feature="0"

number_in_transcript="2+"

state_region_start="0" state_region_end="L-1" />

<!-- ... -->

<feature_mapping state_name="Eterm" feature="CDS"

first_feature="N-1" last_feature="N-1"

number_in_transcript="2+"

state_region_start="0" state_region_end="L+2" />

Here we see how we can get an Einit0 from a CDS feature. First we
define which feature of this type it is in the transcript with the attributes
first feature and last feature. These values mean “the first feature in
the transcript that is eligible for conversion to this state is the 0th feature (the
first feature in computer speak), and the last feature eligible for conversion to
this state is the 0th feature”. So in essence, Einit0 must be the first CDS
feature.

For the plus strand terminal exon Eterm, we define it as the last feature in the
transcript, or the N-1th feature. This means given N features in a transcript,
define Eterm as (potentially) being the feature whose ordinal is N-1. Again,
ordinals are 0-based, so they are numbered from 0 to N-1.

Next we define the number of features in the transcript that contains it. By
saying there must be 2+ (two or more) features, we are asserting that an Einit0

or Eterm only occurs in a multi-exon gene.
After iParameterEstimation determines that the feature given matches the

feature mapping qualifications, and the strand and frame match, the coordinates
of the feature must be mapped to state sequence coordinates. Again, we use
ordinals beginning at 0. For the initial exon, Einit0 spans the entire feature,
from 0 to L-1. For the terminal exon, Eterm, an additional 3 bases are taken at
the end of the exon. This is because GTF does not include the stop codon in
the terminal exon, but iscan does.

6.1. HOW IPARAMETERESTIMATION CONVERTS ANNOTATIONS 57

Sidenote: The 0-based index
Computers are quite computer-centric. This is especially the case
with indices. When counting objects, they like to start with the
number 0 rather than 1. There is a good reason for this. Think
of a set of objects, say your fingers. Say you knew where your
thumb was, and you knew each of the following fingers was a set
distance from your thumb, and you wanted to denote everything
as being relative to your thumb. The first item in this set would be
your thumb, and would be at index thumb:0, since your thumb is 0
distance from your thumb. Your index finger would be at thumb:1,
and so on. This is similar to how computers index memory. The
arithmatic behind addressing objects as being some distance from
another one is simpler, and thus the first one starts at 0.

A nice byproduct of this abstract definition is that we can use this to map
unannotated features by the boundaries of annotations. In Figure 6.1, we see
that UTR states are defined, even though no GTF feature corresponds to it.
Here is how it’s done:

<feature_mapping state_name="Utr5" feature="CDS"

number_in_transcript="1+"

first_feature="0" last_feature="0"

state_region_start="-150" state_region_end="-1" />

<!-- ... -->

<feature_mapping state_name="Utr3" feature="CDS"

number_in_transcript="1+" first_feature="N-1" last_feature="N-1"

state_region_start="L+3" state_region_end="L+152" />

The Utr5 feature is mapped to being 150 bases upstream of any transcript (a
transcript with one or more CDS features, off the beginning of teh first feature),
and the Utr3 feature is mapped as the 150 bases off the end of the transcript
(plus three bases for the stop codon, again).

6.1.3 Models and submodels use L, too

The last step in Figure 6.1 is to take the state sequence and subdivide them
by models. These models are used for estimating parameters for the content of
sequences. Different model regions are defined for different sequence types. In
the example shown in Figure 6.1, the common DNA models for Genscan and
Twinscan are shown.

The conversion is guided by the string model (and their meta-model vari-
ants2) elements of the gHMM file. A simple example of this the Start model
(taken from gHMM.xml):

2more later

58 CHAPTER 6. GETTING DEEPER: FEATURE MAPS AND GHMMS

<string_model name="Start" source="dna" model="SDT"

states="Einit0 Einit1 Einit2 Einit- Esngl Esngl-"

begin="-6" end="5" null_model="1"

length="3" focus="0" symbols="4" >

<string_submodel name="NNNNNNATGNNN" zoe_name="ATG"

model="WMM" begin="0" end="11" ordinal="0"

length="12" focus="6" symbols="4" />

<fixed_string_submodel name="NNN" model="WMM"

ordinal="1" length="1" focus="0" symbols="4" >

. . . .

</fixed_string_submodel>

</string_model>

That in itself is a lot to take in, but I’ll highlight the important points here.
This string model is defined to apply to the states in the states attribute. It
begins 6 bases upstream of the beginning of the state, and ends 5bases down-
stream of the beginnning of the state (begin and end). This means that every
time any of these states is found, iParameterEstimation will tag these beginning
ranges for counting the Start model.

This particular model has two submodels. Without going into details, iscan
uses these models to insure that only start codons with the ATG consensus get
a score greater than negative infinity. The submodel NNNNNNATGNNN is defined
for coordinates 0 through 11. Unlike the parent model Start, the submodel is
defined as relative to its parent model’s coordinates.

The Stop model is defined relative to the 3’ end of the feature:

<string_model name="Stop" model="SDT" source="dna"

states="Eterm Eterm0- Eterm1- Eterm2- Esngl Esngl-"

begin="L-3" end="L+2" null_model="1"

length="3" focus="0" symbols="4" >

<string_submodel name="TAANNN" zoe_name="TAA"

model="WMM" begin="0" end="5" ordinal="0"

length="6" focus="0" symbols="4" />

<!--- Omitted other submodels here -->

</string_model>

Here it begins 3 bases before the end of terminal and single exons, and ends
3 bases downstream (including L, L+1 and L+2; it takes some getting used to).

Note that we were able to define these models for both plus and minus
strand features, even though, for example, the actual coordinates of a stop codon
in a minus strand terminal exon would be at the lower boundary coordinate.
This is because iParameterEstimation takes care of the reverse-complemented
coordinates for you internally. You can think of models as going from the 5’ to
3’ end, regardless of strand.

6.2. EXPLORING THE GHMM FILE 59

6.1.4 What about the rest of the feature real estate?

Some models don’t have a specific start and end region. These models are often
referred to as the “content” models. iParameterEstimation calls them “default”
models (another meta-model3), or the models for a feature for which nothing
else.

For example:

<default_string_model name="Coding" source="dna" model="ISO"

states="Einit0 Einit1 Einit2 Einit- Esngl Esngl-

Exon0 Exon1 Exon2 Exon0- Exon1- Exon2-

Eterm Eterm0- Eterm1- Eterm2-"

null_model="1" length="1" focus="0" symbols="4"

data="43.0 100.0">

<string_submodel name="Coding43.0" model="CDS"

ordinal="0" length="3" focus="2" symbols="4"

data="5" />

<string_submodel name="Coding100.0" model="CDS"

ordinal="1" length="3" focus="2" symbols="4"

data="5" />

</default_string_model>

The coding model is a default string model, rather than an ordinary one.
Notice that there are no begin or end attributes; the model is assumed to take
up all the space not covered by other models.

6.2 Exploring the gHMM file

In this section, I’m giving a guided tour of the gHMM file, the core configuration
file for iParameterEstimation. I’ll go over the major sections in the file here,
so as to make it easier to browse and understand what role each component
plays. In the appendix, there are detailed descriptions of the definition of each
attribute and tag in the gHMM file.

The following two sections will go into more detail on the more complecated
elements of the gHMM file: the duration and sequence model elements. I’ll
touch on them briefly here.

A look at the top line of the gHMM DTD file (usually located in /usr/share/sgml)
gives us an outline of what a gHMM xml file should contain:

<!ELEMENT gHMM (author, date, states, zoe_gtf_conversion,

init_model?, trans_model, pseudo_transitions?, state_durations,

null_region_definitions?, sequence_models?)>

6.2.1 author and date

These elements identify the user who wrote these files and the date of creation.

3again, more later.

60 CHAPTER 6. GETTING DEEPER: FEATURE MAPS AND GHMMS

6.2.2 states

The subelements of this element define the states of the gHMM and their out-
going transitions, e.g.:

<state name="Intron0" strand="+" frame_name="0"

type="Internal" init_model="Intron" seq_model="Intron"

cons_model="INTRONCONS" dur_model="Intron"

transitions="Exon0 Exon1 Exon2 Eterm" />

This is a subelement of the states element in gHMM.xml, which comes with
your installation of iPE. There are several different attributes here:

• name - The name of the state, Intron0.

• strand - The strand it is on, in this case the forward + strand. The reverse
strand is denoted -.

• type - This is a special indicator for the zoe codebase to tell it what kind of
duration model will be used. Internal indicates that this has a geometric
length distribution. The rest are detailed inthe appendix.

• init model - This points to which initial model the state belongs to (de-
tailed later in the file).

• seq model, cons model and dur model - These point to which models
(detailed later in the file) are associated with this state. seq model is the
DNA sequence model, cons model is the conservation sequence model,
and dur model is the duration model.

• transitions - This is a list of all the outgoing transitions (arrows in our
diagrams in the HMM chapter), to the current state.

Pseudostates are also defined in this section. These states are “shadow”
states which don’t really act as distinct states from their parent states in the
HMM, but are placeholders for states which carry special characteristics. iscan
uses these states to track in-frame stop codons. Here is an example:

<pseudostate name="Einit2TA" frame_name="2TA"

actual_state="Einit2"/>

This state “shadows” the Einit2 state and takes on the exact same initial
and transition probabilities that the Einit2 state has.4 They indicate that part
of a potential split stop codon was seen at the end of the feature, as indicated
by the frame name attribute.

4This will mean that the total initial and transition probability will add up to more than
one, but since these states simply indicate that a T, TA or TG was seen at the end of the
feature, they do not represent anything different in terms of the gene prediction.

6.2. EXPLORING THE GHMM FILE 61

Sidenote: Reading frame
Reading frame is a frustratingly tedious concept. The idea of read-
ing frame is introduced to help guide tools dealing with coding
sequence as to where the codon positions are with respect to the
beginnings and ends of exons. Internal exons will sometimes have
one or two bases at the beginning and/or end which are a part of
a codon that has been split at the splice sites.
iParameterEstimation handles this by considering each feature,
regardless of strand, by the bases on the left and right sides of the
feature which are not a part of any whole codon. This is pertinent
when defining exon states, for example:

<state name="Exon0" strand="+"

start_frame="N" end_frame="0"

frame_name="0" type="External"

seq_model="Exon" cons_model="CDSCONS"

dur_model="Exon"

transitions="Intron0" />

The start frame and end frame attributes define the expected
right and left overhang of a feature. Valid values are “0”, “1”, “2”
and “N”. “N” indicates that any overhang is valid.
In iscan, the convention is to define a state’s frame by its right
overhang. Since it scans from the beginning to end of the sequence,
this makes it easier to track frame. You’ll notice that there are 3
Einit states, one for each right overhang, and three Eterm- states,
and the Eterm and Einit- states are singular. This is because
every predicted terminal exon on the forward strand and initial
exon on the reverse strand are required to round the transcript
length off to a multiple of three, and thus there may be no right
overhang on either of these features.
Notice, also, that every coding exon which transitions to an intron
state only transitions to one intron frame type. When iscan is
checking for a candidate exon, it makes sure that the left overhang
of the current exon is compatible with the right overhang of the
previous exon (they add up to 3).

62 CHAPTER 6. GETTING DEEPER: FEATURE MAPS AND GHMMS

6.2.3 zoe gtf conversion

This is an iscan-specific feature which helps iscan decide how to output the
features it predicts. This is a code-level feature, and changing it or adding to it
will not do anything without changes to the iscan code. There are two general
types of conversion: ones for 5’ UTR-predicting iscan and ones without UTR
features. The following is for non-UTR predicting iscan:

Einit => start_codon

Exon => CDS

Eterm => stop_codon

Esngl => zEsngl

The UTR-predicting version adds the following lines:

Epa => 5UTR

Ep => 5UTR

Ea => 5UTR

Enc => 5UTR

6.2.4 init model

iParameterEstimation refuses to estimate this, since no annotation can be reli-
able enough to truly represent the prior probability of each state in the system.
(This is especially a the case with intergenic regions.)

Instead, iParameterEstimation provides you with a framework to easily take
known statistics about the overall composition of different features in a genome,
and apply them to your states. An example of this is the following:

<init_model isochores="43.0 51.0 57.0 100.0">

<init_prob name="Intron" probs="0.0944 0.1128 0.3378 0.3900" />

<init_prob name="Inter" />

</init_model>

In the init model tag, the attribute isochores defines the isochore sub-
divisions of the initial model. Since noncoding regions are estimated to have
different biases at different levels of G+C% content, we define the priors differ-
ently at each level. The total mass of introns at each G+C% level is defined
in the probs attribute of the init prob element. Note that nothing is defined
for the intergenic region probabilities. This is because the intergenic region is
bound, and that the remaining probability mass will be assigned to the Inter

model after all others are added up.

iParameterEstimation will evenly distribute the probability mass for the
Intron model to each of the states defined above that claim to be a part of
the Intron probability model, with the exception of the pseudostates, which,
as described above, simply shadow their parent states.

6.2. EXPLORING THE GHMM FILE 63

6.2.5 trans model

The transition model serves two purposes: to define the isochores for transitions
and to mark some of the transitions to have a set probability which might be
different from the actual observed probability. This is done to “tweak” some
of the predictions, if a transition is overrepresented with respect to the true
biological frequency. Here is an example:

<trans_model isochores="43.0 51.0 57.0 100.0" pseudocounts="1" >

<fixed_transition from="Utr5" to="Esngl"

values="0.001 0.001 0.001 0.001" />

We see that 4 different isochores are used for transition probabilities, the
transition probabilities are given 1 pseudocount.5 Here we are fixing the tran-
sition to the single exon state to be low to prevent the common over prediction
of single exon genes in our gene finder.

6.2.6 pseudo transitions

This section defines all transitions which are not explicitly modeled in our pa-
rameter estimation. This is used to assign probabilities to transitions between
in-frame stop codon tracking states. All transitions here are assigned the same
probability as the “parent” transitions defined. For example:

<pseudo_transition source="Einit1" dest="Intron1"

pseudo_source="Einit1T" pseudo_dest="Intron1T" />

Here the “parent” transition is Einit1→Intron1, and the pseudo-transition
is Einit1T→Intron1T. Einit1T→Intron1T will receive the same transition
probabilities as Einit1→Intron1.

There are a lot of these, but fortunately you probably will never have to
understand or use this feature.

6.2.7 state durations

This will be covered in the next major section.
This gets into some of the meat of the gHMM file. Duration models are

very important to the way a gene predictor runs. In general, the coding exons
are modeled with explicit durations, i.e. a histogram model constructed from
the examples fed into the training software, and the other states are modeled
with geometric length distributions. It is sometimes beneficial to use an explicit
duration model for introns of a certain length. A lot of tuning can go into this.
Details of duration models covered in the next section.

5The pseudocount here is not used for underrepresentation, but instead for the fact that
some transitions are never observed in the annotations, and thus some count needs to be
assigned to them.

64 CHAPTER 6. GETTING DEEPER: FEATURE MAPS AND GHMMS

6.2.8 null region definitions

This deceptively short section is very important to the estimation process. This
defines what sections of the annotation examples will be used for sampling the
null models of each of the positive models. Somewhat confusingly, they are
defined only for the plus strand, even though they are used with states on both
strands.

<null_region_definitions>

<null_region_definition seqtype="dna"

states="Intron0 Intron1 Intron2"

start="0" end="999"

first_feature="0" last_feature="0"/>

<null_region_definition seqtype="dna"

states="Intron0- Intron1- Intron2-"

start="L-1000" end="L-1"

first_feature="N-1" last_feature="N-1"/>

<null_region_definition seqtype="cons"

states="Intron0 Intron1 Intron2 Intron0- Intron1- Intron2-"

start="0" end="L-41"

first_feature="0" last_feature="N-1"/>

</null_region_definitions>

Since the null model often differs between different sequence types, one
or more null region is defined for each of the sequence type. iParameterEs-
timation applies these region definitions to the annotations and earmarks them
for counting in the null models. The states attribute defines which states
these definitions will be applied to in the annotations. The first feature and
last feature attributes define which features, relative to the transcript, to
consider for the The start and end attributes define where in the annotation
of this state to define a null region. For example, if it found an Intron0 at the
coordinates 5,000 to 7,000 after an initial coding exon, the coordinates 5,000
through 5,999 would be earmarked for null-model counting.

6.2.9 sequence models, etc.

The final section of the file includes all models that apply to the actual content
of the input sequences, including the DNA, conservation sequence, alignment,
and/or EST sequence, depending on which flavor of iscan you intend on train-
ing. All of these models comprise the emission probabilities in our gHMM. They
are independently tied to different states, depending on the model. For exam-
ple, the acceptor model is tied to all internal and terminal exon states, and the
coding model is tied to all coding exon states.

6.3. DURATION MODELS 65

6.3 Duration Models

Duration models are tied to the states which claim them in the states section
with the dur model attribute. No states are explicitly mentioned in this section.
Here is an example of an explicit duration model for initial coding exons:

<duration_model region="Einit" isochores="100">

<duration_submodel isochore="100" distributions="2">

<duration_distribution model="DEFINED" min="1" max="6000"

length_unit="3" pseudocounts="0." smoothing="gaussian"/>

<fixed_duration_distribution model="CONSTANT" min="6001">

-300

</fixed_duration_distribution>

</duration_submodel>

<duration_model>

Notice there are several layers here. First there is the duration model which
defines the name and the different isochores used for this model. In this case,
only one is used, so the generic all-isochores “100” is used.

Next is the duration submodel which defines the entire distribution for a
particular isochore level. In this case there is only one.

All duration submodels must define some probability for every value from 1
to infinity. This is accomplished with multiple duration distributions and/or
fixed duration distributions.

A duration distribution whose model attribute is DEFINED has an explicit
duration model. The min and max attributes define the range for an explicit
duration model. (No max means that the distribution goes to infinity.)

A fixed duration distribution is one which is defined by the user before
the estimation is run and remains the same in the output parameter files. These
are commonly placeholders to define an upper bound for a duration distribution,
as in this case, or to define a distribution which cannot be estimated from the
examples, such as intergenic region.

Here is an example of a GEOMETRIC intron distribution with four isochores:

<duration_model region="Intron" isochores="43.0 51.0 57.0 100.0">

<duration_submodel isochore="43.0" distributions="1">

<duration_distribution model="GEOMETRIC" min="1" />

</duration_submodel>

<duration_submodel isochore="51.0" distributions="1">

<duration_distribution model="GEOMETRIC" min="1" />

</duration_submodel>

<duration_submodel isochore="57.0" distributions="1">

<duration_distribution model="GEOMETRIC" min="1" />

</duration_submodel>

<duration_submodel isochore="100.0" distributions="1">

<duration_distribution model="GEOMETRIC" min="1" />

</duration_submodel>

66 CHAPTER 6. GETTING DEEPER: FEATURE MAPS AND GHMMS

</duration_model>

6.3.1 Smoothing

Often, an explicit length distribution will be smoothed in order to prevent large
differentials between two close lengths, and to give an approximation of the
“real” length distribution. (For a visual example of this, see the dotted line in
Figure 5.5.)

Two methods are available for this: kernel-Gaussian smoothing and plain
Gaussian neighbor smoothing. There are different benefits to each, but the gen-
eral effect is the same. For a more detailed treatment of this, see the appendix.

6.4 Sequence models

Sequence models are the core models for a gene predicting gHMM. The other
models do have an influence on the way things are predicted, however DNA
content and conservation levels truly guide the predictions.

I introduced you to sequence models in Section 6.1. There you saw how they
play a role in subdividing the annotation beyond the state sequences. This is
a characteristic common to all sequence models. In this section we will discuss
the parameter aspect of sequence models, their structure and use.

All gHMM sequence models, regardless of what type of sequence they model,
are placed between the sequence models tags.

iParameterEstimation was built to implement any type of model which could
be estimated from a sequence. That is to say, in the future, more models may
exist, or you may find it possible to implement your own model with the source
code.

Here is an example of a model:

<default_string_model name="UTR" source="dna" model="LUT"

null_model="1" null_params="1"

states="Utr5 Utr5- Utr3 Utr3-"

length="6" focus="5" symbols="4" data="order=5"/>

In section 6.1, we discussed the roles of the begin and end attributes, as
well as the role of the default string model tag. In this section we will be
focusing in on the model and data attributes.

The model attribute defines what class of models this belongs to. A class
might be something like a Markov chain, a weight array matrix or a sequence
decision tree. In our above example, the class is LUT, or a Markov chain. The
data attribute is a special attribute that changes in meaning depending on
the model class. Internally, iParameterEstimation passes the value of the data

attribute onto the model class, and the model class attempts to parse it.
Data attribute takes the format of setting=value, where setting indicates

what the parameter is describing (in the above example, the order of the Markov
chain) and value is the value of that parameter. There are no spaces in any

6.4. SEQUENCE MODELS 67

values, and as of now all values are numbers. A model can have any number of
settings that are meaningful to it.

What follows is a description of each model class. If you haven’t already,
refer to Section 5.4 for a (slightly) more detailed treatment of these models.

6.4.1 A note on length, focus, and so on

A long time ago, it was my ulterior mission to obliterate the cryptic .zhmm

format. The polymorphic fields of “length”, “focus” and friends (listed in
more detail in the appendix, I hope), really will never be documented, because
they are just too stupid and confusing. Had we transitioned the zoe code base
to interpret xml files, indeed, we would not have this problem, and specifying
an HMM would be a feasible user task. As it stands, it is really only an lab-
internal task. Had I had time, had someone else wanted to, had gene prediction
not petered off, whatever, this might be different.

6.4.2 The model classes

LUT

This model is simply a Markov chain model. It has no fancy bells or whistles, it
simply estimates the conditional probability of a sequence character given the
context, depending on the order of the chain. The only data setting is order,
which defines the order of the Markov chain.

CDS

This model is the 3-periodic Markov chain model. This is almost identical to
the LUT class, except that it estimates 3 Markov chains, one for each codon
position.

The output is somewhat peculiar as compared to other models. In zoe

format, iParameterEstimation automatically outputs 3 LUT submodels, one for
each codon position. In xml format, iParameterEstimation simply outputs 3
markov chains in order.

The only data setting is order, which defines the order of each Markov chain.

WMM

This model is a weight matrix model. It is simply a position-specific weight
matrix. It assigns a probability to each character at each position for the entire
length of the model. It has no data settings.

WAM, or WWAM

A WAM model is a weight array matrix. It is like a WMM, except that at each
position, a Markov chain is defined. In essence, the WMM is actually a 0th order
WAM (0th order meaning no context).

68 CHAPTER 6. GETTING DEEPER: FEATURE MAPS AND GHMMS

The WWAM is a special kind of WAM designed for Genscan. In order to fit the
parameters for some models, such as the acceptor, the count data needed to be
augmented. To do this, Chris Burge added in the counts in the neighboring 2
positions on either side of the target position. This bulked up the counts. This
was ideal for the situation where the information was not consistently positioned
at a particular place, but may be in the neighborhood of 5 positions, and when
the model was overfit.6

A strange fallout of the zoe implementation is that only the keyword WWAM

is recognized. It means the same thing as WWAM for scoring purposes. So in all
cases of WAMs, a zoe model attribute should be set to WWAM.

The only data setting for a WAM is the order which is the order of each
Markov chain. WWAM has an additional windowRadius parameter which indicates
the number of neighboring positions to count for each position.

MARG WAM

This model is a hack. In reality, it is simply a WAM. It allows you to output a
lower-order WAM in a higher-order format. You will see how this is useful in the
SPLIT section.

The data settings are inherited from the WAM model class, and has the ad-
ditional (required) printedOrder setting. This indicates the (higher) order to
print the WAM out in.

SPLIT

This model is also a hack. It allows you to combine two different models into a
single model and output it as though it were a single model.

This is useful in particular for the Acceptor model proposed by Burge. In
his model, the first 20 bases are modeled with a 2nd order WWAM and the final
23 bases are modeled with a 1st order WAM. For zoe the Acceptor model is
hardcoded and expected to arrive in the parameter file as a single model. The
SPLIT mechanism provides a way to do this, putting the two different models
under a single guise. Since the models have different context levels, using a
MARG WAM will fix this.

Typically, the zoe model attribute is used to set the name of the model as
it appears to zoe, which is typically different (in the Acceptor model, WWAM).

The zoeHeaderEnd data setting is used to put an additional ending on the
zoe header of the model. Additionally, a printSubmodelsToZhmm value of true
or false will indicate whether to actually divide the output .zhmm text into
submodels or to mimic a single model as the concatenation of two or more
submodels (default behavior).

6This isn’t often necessary anymore, since we have sufficient sequence data to fit most
models.

6.4. SEQUENCE MODELS 69

ISO

This model allows you to subdivide the parameters for a particular model in
isochore-dependent buckets. For example, biases in coding content are found in
human between all regions with 43% or less G+C content, and more than 43%
G+C content. The CDS model is thus subdivided as such.

The required ISOs data setting is a comma-separated list of isochore levels
to subdivide the models into.

SDT

An SDT is a sequence decision tree. See section 5.4 for more information on
the model itself. The model generally contains submodels which are defined
by some consensus sequence. All submodels with this consensus sequence get
counts in each particular bucket.

Sometimes this model is used to simply filter out models which do not have
an expected consensus, for example the start codon model. All sequences which
have the ATG consensus at the expected position are given counts, and the ones
which do not are thrown away.

Currently, no data settings are used.

6.4.3 The five meta-models

You may have noticed in the previous section that the example elements de-
scribing the models had differing tags. These tags denote what meta-model this
is. The elements to describe the actual models are all defined in the same way,
with different classes of string models.

There are five different meta-models. They serve to describe how the model
is to be converted from the annotation they originate from.

• default string model - This is the vanilla string meta-model which ap-
plies to all parts of the states it is tied to. For example, coding exons have
a 3-periodic Markov chain model in all sections not covered by the accep-
tor, donor or start or stop codon models. Thus, the CDS model generally
falls under the default strong model meta-model category.

• string model - This is a fixed-length meta-model (i.e. has a defined
beginning and end relative to the feature coordinates). This is commonly
used for position specific models.

• fixed string model - This is a model which has no estimated parame-
ters. The parameters are contained within the text betweent the start and
end tags, and are assumed to have some meaning to the program (usually
iscan) parsing the parameter file. A common example is the signal pep-
tide model (SIG PEP) which is not commonly annotated, so a fixed model
is passed through iParameterEstimation to the paramter file.

70 CHAPTER 6. GETTING DEEPER: FEATURE MAPS AND GHMMS

• string submodel - This is a model which is a submodel to some par-
ent model, contained within a default string model or string model.
Note that only certain models, in particular ISO and SDT in the current
implementation, will accept submodels.

• fixed string submodel - This is a submodel for which no parameters
need be estimated. This is commonly used for the sake of discarding
sequences which do not fit a consensus. In the start codon model, for
example, all sequences without the ATG consensus get a negative infinity
score.

Hopefully now you have a basic vocabulary with which to parse a gHMM file
for your own purposes. To edit the file, you need to understand the particular
attributes and their meanings. You can use the appendix to do this.

Chapter 7

Common Tasks with
gHMM Files

7.1 Removing/Changing Isochores

It is often the case that some of the isochores (aka G+C%) simply aren’t found
in the DNA sequence of the species you are estimating parameters from. In
this case, you will want to eliminate or change the isochores that you estimate
parameters from.

A few “isochore hotspots” that I’ll list below will help you find where the
isochores of interest are in gHMM files. Currently, these are the only places
where parameters have been divided by isochore.

• The initial probability model

• The transition probability model

• The intronic duration model

• The intergenic duration model

• The coding model

Generally speaking, human parameters use the isochores 43%, 51%, 57% and
100% for the initial model, transition model, intron length model and intergenic
length model. The coding models are divided into the isochore levels of 43%
and 100%. However in D.melanogaster, only 43% and 100% are used across the
board. In plants, no isochores are used. In C.elegans, 32%, 35%, 39% and 100%
are used for all hotspots except the coding model, which uses 32% and 100%.1

The problem of dealing with isochores usually arises when too few or no
examples are found in one or ore isochore bucket. You might receive a warnings
such as

1The provided C.elegans gHMM file was used for a competition where too few exaples
were given to cover the isochores, so no isochores are present.

71

72 CHAPTER 7. COMMON TASKS WITH GHMM FILES

0 samples in duration distribution Intron

for isochore 100.0. There is probably no

sequence in the 100.0 isochore group

0 samples in duration distribution Intron

for isochore 43.0. There is probably no

sequence in the 43.0 isochore group

0 samples in duration distribution Intron

for isochore 57.0. There is probably no

sequence in the 57.0 isochore group

WARNING: scoring GEOMETRIC duration Intron with mean 0 because no samples were found.

WARNING: scoring GEOMETRIC duration Intron with mean 0 because no samples were found.

WARNING: scoring GEOMETRIC duration Intron with mean 0 because no samples were found.

If you receive warnings that 2 or 3 isochores have no examples, then you
should probably change all isochores to only 100% in all these places. Otherwise
you might try consolidating two of the isochore buckets. You can do this by
changing, for example, this:

<init_model isochores="43.0 51.0 57.0 100.0">

to this:

<init_model isochores="100.0">

7.2 Changing the Intron Duration Model

It is often desirable, especially for species with shorter introns on average, to
make the intron duration model into an explicit model, (i.e. change the model
to DEFINED). This is accomplished fairly easily: simply add something like the
example shown in figure 7.1. (See section 7.4 for details on the geometric tail.)
The caveat is that you must change the state type attribute to “Explicit”
for all intron states, or iscan will reject the parameter file.

7.3 Smoothing Methods on Durations

As mentioned in section 6.3, it is possible to smooth a length distribution by 3
methods: the kernel-gaussian smoother and the plain gaussian smoother. The
kernel-gaussian smoother is slightly better in that it applies a global function to
the distribution instead of the local function applied by the gaussian smoother.
You can find information in the book [3], and it is used in Augustus.

In order to apply any of these smoothing methods to simply set the smoothing
attribute to either kernel or gaussian.

7.4. FITTING A GEOMETRIC TAIL TO AN EXPLICIT LENGTH DURATION73

<duration_model region="Intron" isochores="43.0 100.0">

<duration_submodel isochore="43.0" distributions="2">

<duration_distribution model="DEFINED" min="1" max="500"

smoothing="kernel"/>

<duration_distribution model="GEOMETRIC" min="501"

normalizing="match_with_density"/>

</duration_submodel>

<duration_submodel isochore="100.0" distributions="2">

<duration_distribution model="DEFINED" min="1" max="500"

smoothing="kernel"/>

<duration_distribution model="GEOMETRIC" min="501"

normalizing="match_with_density"/>

</duration_submodel>

</duration_model>

Figure 7.1: Code to use explicit introns with a geometric tail.

7.4 Fitting a geometric tail to an explicit length

duration

It is common practice to use a piecewise model for introns, modeling the first
500 or 1000 lengths explicitly with a histogram, and the rest with a geometric
function. The resulting function is tricky to properly estimate, because the
probability at the end of the explicit length section must match the probability
at the beginning of the geometric length distribution. iParameterEstimation
provides an automated way of doing this. Here is an example:

In this example, the first 500 lengths of an intron are modeled with a his-
togram, and all lengths from 501 to infinity are modeled with a geometric dis-
tribution. The attribute-value pair normalizing="match with density" tells
iParameterEstimation to match the previous model at its beginning with the
appropriate overall density of each respective model. This means that, if half
the samples are of length 1 to 500, then both the histogram and the geometric
tail will have equal density. The details of the math behind this are covered in
the appendix.

In theory, other methods could be used, but this is the only method currently
implemented.

7.5 (Un)tweaking Transition Probabilities

Genscan (and likewise, Twinscan and N-SCAN), with properly estimated pa-
rameters had a tendency to predict genes that were shorter than the average
on the human genome. For this reason, all these packages adjust the transition
probabilities for transcript-ending states to particularly low values. In iPE, this
is done in the trans model section:

74 CHAPTER 7. COMMON TASKS WITH GHMM FILES

<trans_model isochores="43.0 51.0 57.0 100.0" pseudocounts="1" >

<fixed_transition from="Utr5" to="Esngl"

values="0.001 0.001 0.001 0.001" />

<fixed_transition from="Intron0" to="Eterm"

values="0.0005 0.0005 0.0005 0.0005" />

<fixed_transition from="Intron1" to="Eterm"

values="0.0005 0.0005 0.0005 0.0005" />

<fixed_transition from="Intron2" to="Eterm"

values="0.0005 0.0005 0.0005 0.0005" />

<fixed_transition from="Intron0-" to="Einit-"

values="0.0005 0.0005 0.0005 0.0005" />

<fixed_transition from="Intron1-" to="Einit-"

values="0.0005 0.0005 0.0005 0.0005" />

<fixed_transition from="Intron2-" to="Einit-"

values="0.0005 0.0005 0.0005 0.0005" />

<fixed_transition from="Utr3-" to="Esngl-"

values="0.001 0.001 0.001 0.001" />

</trans_model>

Those states which are final states (reading from left to right) in transcripts
get low incoming transition probability. Most species besides humans do not
need this tweak, and some actually are handicapped by this tweak. If this
appears to be a problem with your gene predictions, consider commenting out
all the fixed transition elements.

7.6 Notes on Changing Content Models

Unfortunately, making a major change to a content model is not as simple as
changing the iPE parameters. Many of the models are hardcoded into iscan,
which requires certain models to be implemented in order to function prop-
erly. The good news is if you want to implement your own gene predictor, this
program can estimate the parameters for you however you want them.

Appendix A

Instance Reference Guide

The instance file, as mentioned earlier, is the main entry point for iPE. It
describes every file that will be used for the estimation process as well as some
global options to apply to iPE. In this chapter we’ll go through all the options
and elements present at time of writing.

A.1 Identification section

A.1.1 author element

The text should be the name of the author of the instance file.

A.1.2 date element

The text should be the date of creation of the file.

A.2 The input files section

All of these elements, except the gHMM file element, have a basedir attribute.
This refers to the directory in which to search for the files. In essence, it is
used to shorten the file names given between the element tags to its base name
without the absolute path. Since they all have the same meaning, no definition
is given below for the basedir element.

In general, it is advisable to use absolute paths (either with the basedir

attribute or without) to refer to files, since many files have the same name.

A.2.1 gHMM file element

Indicate the gHMM description XML file to estimate parameters on here.

75

76 APPENDIX A. INSTANCE REFERENCE GUIDE

A.2.2 feature map files element

Indicate the feature map that should be used to translate features from the
annotation to features from the states of the gHMM. Note this is dependent
both on the gHMM and the annotation format. For example, the included
feature map gtf map utr.xml converts 5’ UTR features into 5’ UTR states in
the gHMM. For gHMMs that have no 5’ UTR states, this feature map will not
work and an error will be emitted.

A.2.3 annotation files element

Indicate the annotation files to be used for estimation. Any format, in theory,
can be used here, provided it has the right extension. (E.g. all GTF files must
end in .gtf.) At time of writing, however, there is only one annotation format
supported: GTF.

A.2.4 seq files element

NB: In previous versions of iPE, there were several different elements that
were used in place of this new, umbrella seq files element. They included
dna files, conseq files and estseq files, among others. These elements
are equivalent to indicating the sequence type with the type attribute. I mention
this because there are probably a number of instance files that use this old format
floating around.

Indicate the files that correspond to the annotation files above in se-
quence form. This means that the first annotation file will correspond to the
first sequence file here, the second to the second and so on. To belabor the
point, there should be the same number of sequence files in each seq files

element as there are in the annotation files element.

Any number of types of seq files can be present. The gHMM will indicate
which ones are modeled and which are not.

The more sequence files that are used, the more memory iPE will need.
Memory becomes a problem in cases where whole-chromosome sequence files
are present. If you are running out of memory because of the length of the
sequences, you may choose to set the loadSequences option to false, described
below. (You may also split the files up into smaller files, but that is not that
fun to do.)

Attributes

• basedir - same as always

• type - one of the sequence types in iPE

A.3. OPTIONS IN THE INSTANCE FILE 77

A.3 Options in the instance file

After all the files are listed in the top section of the instance, an options

element indicates the beginning of the options section. Each option appears
as a subelement to the options element. The text between the elements’ tags
indicate the setting of that particular option.

Below is a list of options available at time of writing. The name is listed
first, then the type of input expected, and finally the default value of the option
(all options are optional). All options with boolean type of input should have
either true or false as the option’s value.

A.3.1 Runtime options

• verbose - boolean default false

Whether to emit progress messages. This does not include warnings or
debug messages, but clean, clear progress messages. When set to true,
output to the message stream (see messageOutputFile below.

• suppressWarnings - boolean default false

Whether not to print warnings about the parameter estimation process.
It is not advisable to set this to true unless you are sure everything is
working. If you would rather not have the warnings clutter stderr, then
you can set warningOutputFile, described below.

• debugOutput - boolean default false

Print a massive amount of messages that only make sense to me, the
developer, Bob. This should invariably be set to false unless you are
making a run that crashes iPE and want to send me a debug file. If this
is on, it is best to also set debugOutputFile shown below.

• randomSeed - number default return value of time()

Setting a random seed to a particular value guarantees the same path of
execution every time iPE is run. Random numbers are used when sampling
models that are given the sampling rate parameter. Setting the random
seed is useful for testing purposes, or if you want to see the differences in
two runs of iPE, but don’t want the differences from sampling to clutter
up your diff output.

• performCount - boolean default true

Have iPE count the examples.

• performNormalize - boolean default true

Have iPE normalize the counts to probabilities.

• performScore - boolean default true

78 APPENDIX A. INSTANCE REFERENCE GUIDE

Sidenote: about the perform settings

These features were added at a time when we thought that there
would be more uses for iPE. If you really only want to see the
counts of a set of examples, then you can disable the other two
(Normalize and Score). You might potentially want to see multi-
fasta files of the features themselves. This can be accomplished by
disabling all three perform settings and setting the feature and
model base directories.
Note that if any of the downstream settings are set to true, the up-
stream settings are ignored. For example, if you set performCount
and performNormalize to false, but set performScore to true,
counting and normalizing will still be performed, since these are
necessary to obtain scores.

Have iPE convert the probabilities to log scores and scale them according
to the scaleFactor setting, below. All sequence model parameters which
receive no counts will be set to the value of the sequenceNegInf setting
and all duration model parameters which receive no counts will be set to
the value of durationNegInf.

A.3.2 Output options

• outputBaseDir - path default “”

The base directory to output all files, except feature and model files, de-
scribed below.

• featureBaseDir - path default “”

The base directory to output multifasta files of the features. A “feature” is
a sequence under which an annotation of one of the states of the gHMMs
is present. After converting the annotations to state sequences, iPE will
output the sequences underlying the state sequences, including all types
of sequences input. If left blank, no features are output.

• modelBaseDir - path default “”

The base directory to output multifasta files of the models. A “model” is a
sequence under which an annotation of one of the models (e.g. Acceptor,
Start, Coding) of the gHMMs is present. If left blank, no models are
output.

• countOutputFile - filename default “”

The name of the file to output the xml-formatted counts. This file will
look very similar to your input gHMM file, except that the elements will

A.3. OPTIONS IN THE INSTANCE FILE 79

contain text indicating the counts of each parameter. If left blank, no file
is output. See the sidebar on intermediate files.

• smoothedCountOutputFile - filename default “”

The name of the file to output the xml-formatted smoothed counts. After
counting the examples, iPE smooths all the models according to their
smoothing setting. If left blank, no file is output. See the sidebar on
intermediate files.

• probOutputFile - filename default “”

The name of the file to output the xml-formated probabilities. This will
contain normalized counts in every model which represent probabilities of
each event modeled. If left blank, no file is output. See the sidebar on
intermediate files.

• xmlOutputFile - filename default “”

The name of the file to output the xml-formatted parameters. This will
contained the scaled log-probability and log-odds scores. If left blank, no
file is output.

• zoeOutputFile - filename default “”

The name of the file to output the zoe-formatted parameters. This file,
unlike any of the above files, can be used with iscan, and is probably
the only file you are interested in having output. If left blank, no file is
output.

• blacklistOutputFile - filename default “”

The name of the file to output the list of unused genes. If a gene is
discarded because of an error, a warning is emitted, and it is added to the
blacklist. This blacklist can be viewed using this feature. If left blank, no
file is output.

• messageOutputFile - filename default “/dev/stderr”

Where to output the progress messages. If left blank, the messages are
displayed to standard error.

• warningOutputFile - filename default “/dev/stderr”

Where to output the warning messages. If left blank, the warning messages
are displayed to standard error.

• debugOutputFile - filename default “/dev/stderr”

Where to output the debug messages. If left blank, the debug messages
are displayed to standard error (not advised).

80 APPENDIX A. INSTANCE REFERENCE GUIDE

• zoeCommentsAtEnd - boolean default false

By default, iPE adds a large amount of comments to the beginning of the
zoe output file indicating all the files used to generate that parameter file.
This can get unwieldy, and so it might be desirable to leave these at the
bottom so the zoe file can be viewed more readily.

A.3.3 Annotation options

All of these features pertain to how the Annotation object and the FeatureMap
object filter input annotations. If the annotation is not deemed worthy, it is
sent to the blacklist. Here you can do a little tweaking on what stays and what
gets the boot.

• allowPartialTranscripts - boolean default false

If a transcript has no start or stop codon, it is considered partial. If
this value is set to true, then these transcripts are allowed to be used for
parameter estimation.

• allowGappedTranscripts - boolean default true

Often the conversion of a transcript from an annotation to a state sequence
will leave a gap in the state sequence. This is not usually a bad thing, it
just means that the annotation cannot complete the picture of the state
sequence. If this is set to false, these transcripts are not allowed.

• allowBadTransitions - boolean default false

Sometimes two state features from an annotation will butt up against each
other, but the two states have no valid transition in the gHMM graph. If
this setting is set to true, these transcripts are used.

• annotationSanityCheck - boolean default false

This setting tells the AnnotationPlugin (usually GTF) to check for ob-
viously bogus transcripts. In general, you should do this before running
parameter estimation, and if you are confident of your transcripts, then
you may leave this false. If you are doing a rush job, this may be a good
idea to set to true.

A.3.4 Model options

• isochoreWindow - number default 1000000

During initialization and loading of a sequences, the sequence is divided
up into isochores according to G+C% content. This is done in a non-
overlapping window fashion, where each window is assigned a value, and

A.3. OPTIONS IN THE INSTANCE FILE 81

Sidenote: intermediate files and the null model
Null model counts, smoothed counts and probabilities can be
viewed with the intermeidate files. (Parameter files contain no
null model scores because they are incorporated into the log-odds
ratio.) The way this is displayed is for each parameter that has
a corresponding null parameter, the positive model parameter is
displayed to the left of a pipe symbol (“—”) and the null model
parameter is displayed to the right. Here is an example in the start
codon model:

<string_model name="Start" source="dna" model="SDT"

null_model="1" states="Einit0 Einit1 Einit2 Einit-

Esngl Esngl-" begin="-6" end="5" length="3"

focus="0" symbols="4">

<string_submodel name="NNNNNNATGNNN"

zoe_name="ATG" model="WMM" begin="0" end="11"

ordinal="0" length="12" focus="6" symbols="4">

17.0|169.5 22.0|141.3 42.7|198.3 11.2|176.9

16.2|188.1 31.0|147.9 25.9|175.6 19.8|176.8

22.3|189.0 40.8|124.9 18.5|213.1 11.2|162.8

38.3|165.3 10.0|136.4 37.9|225.9 6.6|163.2

21.8|228.6 38.0|116.4 21.3|204.8 11.7|141.9

10.0|226.9 49.6|172.0 26.2|197.3 7.0| 96.5

92.9|692.8 0.0| 0.0 0.0| 0.0 0.0| 0.0

0.0|0.0 0.0| 0.0 0.0| 0.0 92.9|692.8

0.0|0.0 0.0| 0.0 92.9|692.8 0.0| 0.0

23.8|167.8 14.0|139.7 49.0|221.1 6.0|163.8

24.0|162.9 32.5|151.7 26.0|205.1 10.3|172.7

16.6|163.5 20.5|137.2 40.0|186.1 15.7|199.1

</string_submodel>

<fixed_string_submodel name="NNN" model="WMM"

ordinal="1" length="1" focus="0" symbols="4">

. . . .

</fixed_string_submodel>

</string_model>

In this example (which is sparse, by the way, because it is taken
from the example packaged with iPE which only uses chromosome
20), the first event, A in the first position of the model, has 17
positive counts and 169.5 null counts.

82 APPENDIX A. INSTANCE REFERENCE GUIDE

all models falling inside that window use that window’s isochore level.
This setting is fairly arbitrary, but we have found that a window size of 1
megabase (default) works well.

• weightCounts - boolean default true

When converting the input annotations, iPE takes overlapping transcripts
into account and segments the annotation at points where the state se-
quences change. This allows iPE to act as though these overlapping fea-
tures are partially one type of feature and partially another. This means
that if you have an intron overlapping a coding exon, this overlapping
region is given half counts as an exon and half as being an intron.

This feature was envisioned as a way of making the parameter estimation
more consistent, and not to give single bases count values of more than one
because of annotation bias. In practice, it failed to show any improvement.
Leaving this to true, however, is an advisable “better safe than sorry”
practice.

• sequenceNegInf - number default -100

The score to assign events for which no examples were found in sequence
models. For example, in the coding models, all in-frame stop codons re-
ceive a score of -100, because there should be none in the annotation.1 We
have always used -100 for this setting, however this is arbitrary. Leaving
this feature “outside” the code avoided difficult-to-find hard-coding in the
software.

• durationNegInf - number default -300

The score to assign events for which no examples were found in duration
models. Note that this only really applies (at time of writing) to DEFINED

models, since all other models have fewer parameters.

• scaleFactor - number default 10

The factor to multiply all log-scores by. This is arbitrary, and has always
been 10. Other values might work.

A.3.5 N-SCAN options

• nscanTopology - string default “”

The binary tree that N-SCAN uses to model its multiple informants. By
“binary” tree, we mean that for every node in the tree, there are two chil-
dren. Every internal node is represented as [species:number,species:number].
Each of these will imply 3 nodes: an ancestor node, and the two children
described between the brackets. These can be built upon each other, for
example, [[galGal2:4,[mm5:2,rn3:3]],none]. The innermost nodes, mouse
and rat are at the bottom of the tree, an ancestor joins mouse’s and rat’s

1If some are found, a warning is emitted. The count is used nonetheless.

A.3. OPTIONS IN THE INSTANCE FILE 83

Figure A.1: An example of an N-SCAN multiple-informant tree.

ancestor to chicken, and then one more ancestor joins chicken with a null
node.

Figure A.1 shows this example, except that the excess ancestor, A1, is not
present in the tree.2 Note, also, that the root node is not described in this
format. The root ancestor has the target species (in the example, human)
as an ancestor node. For more information see [8].

The null node, described earlier, is in theory just a place holder for when
there are an odd number of species. However, due to a possible bug in the
N-SCAN code, there are reports of crashing when no null (“none”) node
is present. So it is advisable to use a null node even if it is not needed.

• nscanModel - string default “R1”

This model is one of R (reversible), G (generalized) and TT (transition-
transversion) followed by the order of the model which is one of 0, 1 or 2.
The details of these models are discussed briefly in [8], however the only
one that has ever been used in production is R1, and so it is not advised
to change this without a deep understanding of how N-SCAN works.

• keepSSFiles - boolean default false

In order to generate N-SCAN parameters, intermediate files called SS
(significant statistics) files are output first, and Sam’s N-SCAN code takes
over from there to maximize the parameters.3 These intermediate files are
the only place counts are emitted, and it might be desirable to keep them

2The reason for this is apparent in the paper: the original tree has an ancestor joining
human and mouse and rat’s ancestor, but this is no longer needed when human becomes root.

3This is a very ugly hack, but messing with Sam’s code would probably have been worse
than rewriting it.

84 APPENDIX A. INSTANCE REFERENCE GUIDE

to see how many counts each event received (useful for debugging). The
files will be left in the outputBaseDir.

A.3.6 Sequence options

• loadSequences - boolean default true

Whether or not to load the sequences into memory, if possible. Generally
speaking, it is much faster to load the sequences into memory because
using the disk substantially slows down any operation. However it is
at times not desirable to load the sequences when too much memory is
required for an instance. Set this to false to read the sequences directly
off the disk during estimation.4

• expandAmbigSequences - boolean default false

If set to true, all IUPAC ambiguity codes are expanded into all their
possible encodings and each possible one recieves the appropriate fraction
of the count. For example, if an R is seen, that base is given half a count
for an A and another half a count for a G.

4Admittedly, a better medium could have been achieved, but there’s only so much time on
this planet.

Appendix B

gHMM Reference Guide

This chapter is a fairly dry definition of all the things that can potentially be
put in the gHMM file. Hopefully it will clarify most of the details I left out in
the main section. If any of these definitions are not clear, feel free to email me
and I might respond :)

For an exact definition of the formatting requirements of the gHMM file, you
may refer to the gHMM.dtd file in the sgml path.

B.1 Terms, types and symbols

B.1.1 Terms

• feature - In this chapter, “feature” refers to the state features that have
been converted from an annotation. A feature is defined by a type (for
example, Einit) and region (for example, beginning at 1053 and ending
at 1225).

• 0-based - Used to describe any number that begins at 0, instead of 1.

B.1.2 Types

All of the attributes have a type of data that they will be expecting. I will use
these shorthand terms to simplify the definitions of the attributes.

• relative coordinate - A coordinate defined relative to the beginning or
ending boundary of some other parent region.

• ordinal - a number which corresponds to some place in the order of el-
ements in which this falls. For example, you might have a group of sub-
models which have to be in a particular order for them to make sense.1

1XML does not specify that elements will be parsed in any particular order, so the order
sometimes needs to be explicitly laid out in the XML element.

85

86 APPENDIX B. GHMM REFERENCE GUIDE

• number - a positive number or 0.

• text - some meaningful text string.

B.1.3 Symbols

Some of the attributes described within will be used by iParameterEstimation
only, will be passed directly onto the zoe parameter file, or will be used both
by iParameterEstimation and the zoe code. The ones passed directly on to the
parameter file have no meaning to iParameterEstimation, but do have significant
meaning to the zoe code. I’m attempting to define some of these here, but zoe
being largely undocumented, it is a little tricky and I might miss a thing or two.

In order to denote this for each attribute, I’m putting a symbol before the
definition of each attribute to indicate which category the attribute falls under:

• ⊙ - Used by iParameterEstimation only

• ⊖ - Used by zoe only

• ⊕ - Used by both iParameterEstimation and zoe.

“⋆ ” denotes a required attribute.

B.2 The author section

The author section contains the author element.

B.2.1 author element

Attributes

None.

Text

Should include the name of the author of the gHMM.

Submelements

None.

B.3 The date section

The date section contains the date element.

B.4. THE STATES SECTION 87

B.3.1 date element

Attributes

None.

Text

Should include the date of creation of the file.

Subelements

None.

B.4 The states section

This section defines all the states in the gHMM, as well as many characteristics
of the states.

B.4.1 states element

Attributes

None.

Text

None.

Subelements

state

altsplice state

pseudostate

B.4.2 state element

Attributes

• name - ⊕ text ⋆

The name of the state. May be any text string, but not the same name
as another state.

• strand - ⊕ text ⋆

The strand of the state. Must be either ‘+’ or ‘-’, even if the state doesn’t
imply a strand. By convention, intergenic states and other non-coding
states are given the ‘+’ strand.

88 APPENDIX B. GHMM REFERENCE GUIDE

• start frame - ⊙ number or “N” default “N”

The number of bases before the first full codon for this state relative to
the lowest coordinate. “N” indicates that this number is not defined for
this state.

This, along with end frame is used to determine if the frame of the can-
didate feature in the feature mapping phase is qualified to be converted
to this state type.

• end frame - ⊙ number or “N” default “N”

The number of bases before the first full codon for this state relative to
the lowest coordinate. “N” indicates that this number is not defined for
this state.

• frame name - ⊖ text default “0”

This is the name passed on to the zoe parameter file which indicates the
frame of the state. The zoe convention is to use the right overhang as the
frame. If no frame is necessary for the feature, “0” is used.

• type - ⊖ text ⋆

This is one of the following special keywords which clue the zoe codebase
into what kind of state this is:

– Internal - A state with a geometric length distribution.

– GInternal - This is a bit of a hack. The state is required to have a du-
ration model no matter what, but when a state is of type GInternal,
it uses the length distribution of the intergenic state.

– Explicit - A state with an explicit length distribution.

– External - A state which has some special meaning to the zoe code-
base. All coding exons, promoters and poly-A states are External.

• init model - ⊕ text default “”

This is the name of some initial probability model which this state be-
longs to. This must correspond to the name some model defined in the
init model section.

• seq model - ⊖ text ⋆

This is either the name of one of the models in the sequence models

section, or, if the state is an External state, one of the special names for
the state types. This includes Einit (initial coding exon), Exon (internal
coding exon), Eterm (terminal coding exon), Esngl (single coding exon
gene), Prom (promoter region) or PolyA (poly-adenylation site). Note
that in order for these models to function, the following sequence models
must be defined: Start, Stop, Donor, Acceptor, PolyA and Prom. These
names are hardcoded into the zoe codebase.

B.4. THE STATES SECTION 89

• cons model - ⊙ text default “”

The conservation sequence model associated with this state. This is not
really used anywhere, but it helps clarify things a bit.

• phylo model - ⊙ text default “”

This is the phylogenetic model associated with this state. This is not
really used anywhere, but it helps clarify things a bit.

• dur model - ⊕ text ⋆

This is the duration model associated with this state. The zoe codebase
uses this to determine which duration model to look to when scoring the
state duration, and iParameterEstimation uses this to associate states
with duration models. Note this must correspond to a region attribute
in one of the duration model elements, defined later in the file.

• transitions - ⊕ text ⋆

This is a space-separated list of state names which this state can legally
transition into. Note that the names must correspond to name attributes
of another state in the model. No self-transitions are allowed.

Text

None.

Subelements

None.

B.4.3 pseudostate element

Pseudostates are “shadow” states, meaning they take on the properties of some
other “parent” state. These states are generally used to track pontential inframe
stop codons in the zoe code. The key characteristic is that they take on the
same initial probability, transition probability, duration and content parameters
as their “parent” state, without contributing any mass to the distribution. The
initial probability and transition probability distributions will add up to more
than one, but since these states don’t really exist in the system (i.e. they only
indicate whether there was part of a potential inframe stop codon was detected),
they aren’t counted toward the overall probability mass.

The line in the zoe parameter file will be identical to the one for the pseu-
dostate’s “parent” state, excepting the name and frame name fields.

This could have some other use besides inframe stop codon tracking, how-
ever, at present, there is none.

90 APPENDIX B. GHMM REFERENCE GUIDE

Attributes

• name ⊖ text ⋆

The name of the pseudostate. Must be unique.

• frame name ⊖ text ⋆

The name of the frame. This usually corresponds to the right overhang of
the parent state, plus the overhanging bases, i.e. 1T, 2TA or 2TG.

• actual state ⊙ text ⋆

The name of the parent state. Must correspond to a name attribute in on
of the state elements.

Text

None.

Subelements

None.

B.5 The Zoe GTF conversion section

This section is a part of the .zhmm file which describes how to convert state-
features into GTF featres. This is completely inextensible, and if you wanted
to make any meaningful change to this, you would have to actually change the
zoe code.

B.5.1 zoe gtf conversion element

Attributes

None.

Text

As mentioned before, this is really not something you need to change. For
reference, there are basically two different values for the text here:

Non-UTR:

Einit => start_codon

Exon => CDS

Eterm => stop_codon

Esngl => zEsngl

This is used in any gHMM without any of the 5’ UTR “Ea”, “Ep”, “Epa”
and “Inc” states. This includes Twinscan and Twinscan EST gHMMs.

UTR:

B.6. THE INITIAL MODEL SECTION 91

Einit => start_codon

Exon => CDS

Eterm => stop_codon

Esngl => zEsngl

Epa => 5UTR

Ep => 5UTR

Ea => 5UTR

Enc => 5UTR

Surprise, surprise, this contains the 5UTR states and features. While there
is no use in changing this section, it is necessary for the proper functioning of
the zoe code base to include the proper text here.

B.6 The initial model section

Here the model for the initial probabilities are defined. In general, different
classes of states, such as Intron, UTR and Intergenic states, are considered
together for initial probability. As mentioned earlier, there is no estimation of
initial probabilities. iPE simply does some of the bookkeeping for you. I’ll stick
an example at the end here.

B.6.1 init model element

This encapsulates the entire model. We consider the isochores as the global
parameter, since we define a separate distribution for each isochore.

Attributes

• isochores - ⊕ space-separated number list ⋆

Defines the isochore levels that are present in the initial probabilities
model.

Text

None.

Subelements

init prob

B.6.2 init prob element

This is the main player. It defines a state class, and the actual probability of
landing in this state class, given any base in genomic sequence.

92 APPENDIX B. GHMM REFERENCE GUIDE

Attributes

• name - ⊙ text ⋆

The name of the class. This should correspond to some of the states’
init model attributes in the states section.

• probs - ⊕ space-separated number list

The actual probability of landing in this state class. There must be as
many numbers in this attribute as there are global isochores for the initial
model. Note that only one of the state classes can have no probs attribute.
The one without the probs attribute is considered the “bound” parameter,
and is computed by iPE.

Text

None.

Subelements

None.

B.6.3 An example

<init_model isochores="43.0 51.0 57.0 100.0">

<init_prob name="Intron" probs="0.0944 0.1128 0.3378 0.3900" />

<init_prob name="Utr" probs="0.0049 0.0110 0.090 0.072" />

<init_prob name="Inter" />

</init_model>

In this example, used in Human, there are four isochores. The two Intron
and UTR free parameters have four initial probabilities defined for them. The
probability mass for each will be divided evenly between each of the states in
the probability class. The Inter class receives the density remaining after all is
calculated.

The above example implies that we should see, for instance, one or more
states that have init model="Intron" as an attribute. This will result in
something like

Intron0 Internal + 0 Intron Intron 0.0157333333 0.0188000000 0.0563000000

where this the initial probabilities on the right are some even slice of the pie
to the right.

OK, I think I’ve sufficiently beaten that one to death.

B.7. THE TRANSITION MODEL SECTION 93

B.7 The transition model section

Here we define the transition models. Instead of actually listing the transitions
here, rendering a big mess of XML, the actual topology is defined within the
states section, where outgoing transitions are defined for each state. Here
we define the isochores for the model, and we can also tweak2 the transition
probabilities here.

B.7.1 trans model element

This defines the globals of the transition model: isochore levels and pseudo-
counts.

Attributes

• isochores - ⊕ space-separated number list ⋆

Defines the isochore levels for the transition model.

• pseudocounts - ⊕ number ⋆

Defines the number of counts to assign to each of the parameters to ac-
count for uncounted or underrepresented transitions. NB: It is adviseable
that this be non-zero, so that transitions which never happen from gtf-
annotated features (for example Inter to CNC) are assigned a non-zero
probability. In short, put “1”.

Text

None.

Subelements

fixed transition

B.7.2 fixed transition element

This defines a tweaked transition value. This is commonly done in Human to
force longer transcripts by manually lowering the transition probability from an
intron to a terminal exon, and so on.

Attributes

• from - ⊙ state name ⋆ The transition source state name. Must corre-
spond to a name of a state in the states section.

• to - ⊙ state name ⋆ The transition sink state name. Must correspond
to a name of a state in the states section.

2hack

94 APPENDIX B. GHMM REFERENCE GUIDE

• values - ⊖ space-separated number list ⋆ The actual probabilities to
assign to this tweaked transition. The number of probabilities must equal
the number of isochores in the transition model.

Text

None.

Subelements

None.

B.8 The pseudo-transitions section

This very unfortunately long and ugly section is part of the fallout of making
iPE entirely tabula rasa, or perhaps a hacky way of compensating for a feature
that I didn’t feel like completely implementing. You decide.

Early on, I discovered that most of the transition probability distributions
added up to something more than one. The reason for this is that several of the
transitions are assigned the same probability because they are really not distinct
events. This applies exclusively to the inframe stop codon tracking states, such
as Einit1T and friends. Since there’s no good way of estimating parameters for
this, nor any point, the transition for, zum beispiel, Einit1T to Intron1T gets
the same probability as Einit1 to Intron1. Make sense?

Point being, you probably will never touch this,3 especially since the coding
exon state topology is pretty well established and unlikely to change.4

B.8.1 pseudo transitions element

This is simply a container for all the pseudo transition elements.

Attributes

None.

Text

None.

Subelements

pseudo transition

3As a side note, really this should be implemented as a “framed state” class, which handles
all such things, such as defining all separate phase preference states, as well as inframe stop-
codon tracking features. This is far too much of a pain for me to actually do. Meddlers
anywhere?

4At one point we thought we might, adding alternative splicing states for optional coding
regions, however this idea was very bad and did not work at all.

B.9. THE DURATION MODEL SECTION 95

B.8.2 pseudo transition element

The sum of the meaning of each of these elements is:

Pr(dest|source) = Pr(pseudo dest|pseudo source)

Attributes

• source - ⊙ state name ⋆

The source of the original transition.

• dest - ⊙ state name ⋆

The destination of the original transition.

• pseudo source - ⊙ state name ⋆

The source of the pseudo-transition.

• pseudo dest - ⊙ state name ⋆

The destination of the pseudo-transition.

Text

None.

Subelements

None.

B.9 The duration model section

The duration model defines the probability distribution function that is used
to calculate the probability of a length of stay in any given state. In brief,
it is a model of the lengths of introns, exons, etc. Certain compromises are
taken here for the sake of speed. For example, most gHMMs use an exponential
distribution for introns because it would take much longer to compute the best
path in a gHMM with a free, histogram-style distribution.

Each state should have some distribution function defined, and for the ones
that cannot be estimated through training examples (for example, intergenic5),
there should be a distribution with fixed parameters that represent an estimate
of their true values. Each state has a dur model attribute which points to
one of the durations here, with the name given in the region attribute of the
duration model element.

Another description is provided in section 6.3.

5One might contend that you can estimate intergenic length distributions from the annota-
tions, however, I really think this is a bad idea. If all intergenic regions were truly intergenic
regions as annotated, then there would be no need to actually be predicting genes on the
genome, would there? And since all annotation falls down the “annotation bias” slippery
slope, it’s really pointless to try and get anything out of the annotations.

96 APPENDIX B. GHMM REFERENCE GUIDE

B.9.1 duration model element

The top-level element of a duration distribution. It houses one or more duration
submodels which define the models for each isochore.

Attributes

• region - ⊕ duration name ⋆

Defines the name of the duration model. This should correspond to one
or more states’ dur model attributes in the states section.

• isochores - ⊕ space-separated number list ⋆

Defines the isochores used in estimating this model.

Text

None.

Subelements

duration submodel

B.9.2 duration submodel element

This defines the model used for a specific isochore level for a duration model.
This contains a number of submodels which define a distribution on a range of
lengths. All possibile lengths should be covered.

Attributes

• isochore - ⊕ number default “100”

The isochore of this submodel.

• distributions - ⊙ number default “”

This is not required, and not really used. It has the number of distributions
underneath it in many provided gHMM files.6

Text

None.

Subelements

duration distribution

fixed duration distribution

6I would have gotten rid of this altogether had I the time to eliminate them from all
gHMMs and debug the results. Oh, well.

B.9. THE DURATION MODEL SECTION 97

B.9.3 duration distribution element

Defines an actual probability distribution function on a range of lengths for a
duration model.

Attributes

• model - ⊕ duration model name ⋆

This is one of the supplied duration distribution types from iPE. These
are:

– DEFINED

This is a histogram-style distribution of which models features that
have an arbitrary length distribution (for example, coding exons,
which do not have a very nice piece-wise distribution function). States
that use this distribution take the longest to compute in gene pre-
diction, because all lengths must be considered to find the optimum
length of stay in the state. For an example of this, see figure 5.5.

This contains a number of parameters equal to the range of the dis-
tribution. Each parameter defines the probability of getting a length
of stay equal to that length.

– GEOMETRIC

This defines an exponential distribution of the form

Pr(X) = λe−λx

λ corresponds to the inverse of the mean length of the distribution.
These are quicker to compute.

One or two parameters are present in these distributions, the first
being the mean length of the features for this distribution, and the
second (optional) is a scaling factor for distributions which are piece-
wise geometric or have a geometric tail.

– CONSTANT

This is a simple constant probability assigned to features in a range
of lengths, usually a low probability. This is to make certain lengths
unlikely. This is also quick to compute in gene prediction.

• min - ⊕ number default “0”

Defines the minimum length of a feature considered by this specific model.

• max - ⊕ number default “-1”

Defines the maximum length of a feature considered by this specific model.
A value of “-1” (default when attribute is not provided) indicates all
lengths greater than or equal to the minimum.

98 APPENDIX B. GHMM REFERENCE GUIDE

• length unit - ⊙ number default “1”

A length unit of 1 indicates that the all length values are considered,
a length unit of 3 indicates that every feature is rounded down to the
nearest length that is a multiple of three. The latter is typically used for
coding exons, since the assumption (as detailed in [4]) is that evolution
of exons occurs at the codon-level. In zoe format, the each parameter is
repeated 3 times.

• pseudocounts - ⊙ number default “0”

The number of counts to assign each considered length automatically.
After the examples are counted, each length in the range (the maximum
length seen if the max is “-1”) of the model is given this many more counts
before normalizing.

• smothing - ⊙ number default “0”

The type of smoother to be used. These are dynamically discovered, so
any implemented smoother can be used. Current types are kernel and
gaussian. This is described in section 7.3.

• smothing data - ⊙ number default “0”

The data to pass to the selected smoother. This is described in section
7.3.

• normalizing - ⊙ method default “normalize”

The mothod to use for normalization of the distribution. This is described
in section 7.4.

Text

None.

Subelements

None.

B.9.4 fixed duration distribution element

This is a duration distribution whose parameters are not estimated from the
examples. The parameters are provided by the user in the text of the element.
The parameters are assumed to have meaning in the zoe format.

Attributes

• min - ⊕ number default “0”

Defines the minimum length of a feature considered by this specific model.

B.10. THE NULL REGION DEFINITIONS SECTION 99

• max - ⊕ number default “-1”

Defines the maximum length of a feature considered by this specific model.
A value of “-1” (default when attribute is not provided) indicates all
lengths greater than or equal to the minimum.

Text

The parameters of the model, assumed to have some meaning to the program
(iscan) that interprets the parameter file.

Subelements

None.

B.10 The null region definitions section

This defines what regions of input annotations to consider for the “null” model
which is subtracted from the positive model where indicated. More discussion
of this is in section 6.2.

B.10.1 null region definitions element

Contains the null region definition elements.

Attributes

None.

Text

None.

Subelements

null region definition

This is an element which tells iPE where to add null regions to the annota-
tion. This is commonly introns or intergenic regions, but you can specify exact
subregions of each state. (This is provided because the DNA model considers
only the first kilobase of the first coding intron as the null region.) Note that un-
like most things in iPE, strand is not taken into account, and so the coordinates
are absolute. In this example:

<null_region_definition seqtype="dna" states="Intron0 Intron1 Intron2"

start="0" end="999" first_feature="0" last_feature="0"/>

<null_region_definition seqtype="dna" states="Intron0- Intron1- Intron2-"

start="L-1000" end="L-1" first_feature="N-1" last_feature="N-1"/>

the minus strand states are separated because of the absolute coordinates.

100 APPENDIX B. GHMM REFERENCE GUIDE

Attributes

• states - ⊙ space-separated state names ⋆

The states that pass through this null region.

• start - ⊙ relative coordinate ⋆

The start of the null region within the state annotation.

• end - ⊙ relative coordinate ⋆

The end of the null region within the state annotation.

• first feature - ⊙ relative coordinate ⋆

The first feature in the set of all the eligible features (those whose states
are listed in the states attribute) per transcipt that is considered as being
in the null region.

• last feature - ⊙ relative coordinate ⋆

The last feature in the set of all the eligible features (those whose states
are listed in the states attribute) per transcipt that is considered as being
in the null region.

• seqtype - ⊙ sequence name ⋆

The type of sequence that this null region applies to.

• sampling rate - ⊙ number default “1”

The rate at which to sample all the features found eligible for this null
region. This is done in case there is an abundance of sequence for this null
region definition, to avoid slowing down parameter estimation by counting
too many examples.

Text

None.

Subelements

None.

B.11 The sequence models section

This is the core of the parameter estimation. This is where the content is
modeled for each state (usually many states to one model). See section 6.4 for
more discussion.

B.11.1 sequence models element

This is the umbrella element that contains all string models.

B.11. THE SEQUENCE MODELS SECTION 101

Attributes

None.

Text

None.

Subelements

string model default string model fixed string model

B.11.2 string model element

This describes a model that has a specific beginning and end within one or
more feature(s). This allows for both position-specific models and position-
independent models. See the subsection about the Five Meta-models in section
6.4 for more information.

Attributes

• name - ⊕ text ⋆

The name of the model. This should be globally unique among all string
models.

• zoe name - ⊖ text default “”

The name of the model to be printed in the .zhmm output, if different from
the main name.

• source - ⊕ sequence type ⋆

The source is the type of sequence being modeled. Sequence classes are
dynamically discovered. Implemented sequences include (but are not lim-
ited to) dna, cons (Conseq), malign (N-SCAN multiple alignment) and
est (ESTSeq).

• model - ⊕ emission model name ⋆

The type of model. See section 6.4 for more information.

• zoe model ⊕ zoe emission model name “”

The type of model that is visible in the .zhmm file. This is necessary, for
example, with WAM models since zoe only interprets the keyword WWAM,
thus all WAM models must have WWAM as the zoe model.

• states ⊙ space-separated state name list ⋆

The list of states where the parameters for this model will be estimated in.
For every state in the examples that is also listed here, iPE will generate a
region within that state sequence that corresponds to the begin and end

102 APPENDIX B. GHMM REFERENCE GUIDE

attributes of this model.
Note that this does not necessarily coincide with the model given in the
top states section. For example, you may assume that the conservation
patterns in UTRs are the same as they are in conserved non-coding regions,
and thus use UTR exons to estimate parameters for that model. (This is
in fact done in the N-SCAN model.)

• begin ⊙ 0-based boundary coordinate ⋆

This defines the beginning of subregion of a state to use for this particular
model. Use “L” to define coordinates relative to the end of the feature.
For example, the Start SDT model begins at -6 and ends at 5. This means
it starts 6 bases upstream of the beginning of the state sequences listed
and ends 5 bases downstream, for a total of 12 bases. The Donor SDT

begins at L-3, two bases upstream of the end of the feature (the feature
ends at the feature’s length minus one since it is 0-based), and ends at
L+5, six bases downstream of the end of the feature, for a total length of
nine.

• end ⊙ 0-based boundary coordinate ⋆

This defines the end of the model’s subregion. See the discussion on the
begin attribute for details.

• wildcard ⊙ literal, lexical or penalty default “literal”

This defines how wildcard characters (in DNA, they are “N”, in all other
implemented sequences these are not used outside of iPE). If it is LIT-
ERAL, the wildcard is to be scored as another character in the alphabet,
e.g., “N” gets its own counts. If it is LEXICAL, it is to be treated as all
possible letters in the alphabet (besides itself), e.g., “N” indicates that the
letters “A”, “C”, “G” and “T” should get .25 counts. If it is PENALTY,
then the wildcard is to be penalized wherever it is seen. For example, this
might be used with “N”-containing 5-character DNA models, for which
the presence of an “N” indicates that the sequence is repeat-masked, and
is likely not actual coding sequence. The value for this penalty is given
with the wildcardPenalty option in the instance file.
In general, this setting is code-level and not interesting to a pedestrian
user. If you are confused about this, the best thing to do is leave it alone.

• sampling rate ⊙ number default “1”

This defines how often the model is counted out of all the examples seen on
a scale of 0 to 1. This is generally used for overrepresented features, such
as introns, which would considerably slow down parameter estimation if
all examples were counted.

• pseudocounts ⊙ number default “0”

How many prior counts to give each parameter in the model. This is used
for underrepresented parameters in the model which otherwise would re-
ceive a score of negative infinity.

B.11. THE SEQUENCE MODELS SECTION 103

In practice, it is mostly the case that DNA models do not get pseudo-
counts, and all other models get a pseudocount of 1.

• smothing ⊙ smoothing type default “none”

What smothing method to use after counts have been totalled. This has
never yet been used for sequence models.

• smoothing data ⊙ string default “”

String to pass to the smoother specified in smoothing.

• null model ⊙ 0 or 1 ⋆

If 1, include an analagous null model to the positive model for the output
parameters. That is, for each null region defined above discovered, tell
the model to count the null model and incorporate it into the final scores
as a log-odds ratio. For more information, see section 5.5.

• length ⊖ number ⋆

This number is completely ignored by parameter estimation and passed
along to the .zhmm file. It indicates a number of different things to zoe

and the documentation of this is out of the scope of this manual.

• focus ⊖ number ⋆

This number is completely ignored by parameter estimation and passed
along to the .zhmm file. The documentation of this is out of the scope of
this manual.

• symbols ⊕ number ⋆

This number indicates the number of symbols in the alphabet. In general,
this should be equal to the number of characters in the alphabet of the
source indicated above. The exception is the DNA sequence type, which
can have 4 or 5 characters (including the “N” or not). If “5” is chosen,
parameters for all possible sequences containing A,C,G,T or N are output.

• data ⊙ setting ⋆

This uses the setting=value format, which is specific to each model. The
settings at time of writing are enumerated in section 6.4.

Text

None.

Subelements

string submodel

fixed string submodel

104 APPENDIX B. GHMM REFERENCE GUIDE

B.11.3 default string model element

The default string model defines a model with no beginning and end. Its
boundaries are defined by the remaining sequence after all sequence models

have been defined. For example, if you had both a donor and acceptor model
for an exon, that exon’s default string model will cover all the space in be-
tween. See the subsection about the Five Meta-models in section 6.4 for more
information.

Here we list attributes inherited from string model which have identical
function, and their meaning can be referred to in the previous section.

Inherited Attributes

• name from string model

• zoe name from string model

• source from string model

• model from string model

• zoe model from string model

• states from string model

• wildcard from string model

• sampling rate from string model

• smoothing from string model

• smoothing data from string model

• null model from string model

• length from string model

• focus from string model

• symbols from string model

• data from string model

Attributes

• null params ⊕ 0 or 1 default “0”

Instead of outputting actual estimated parameters, the model is assumed
to be part of the null model, and all its log-odds scores become zero. For
a discussion of why this is, see section 5.5.

B.11. THE SEQUENCE MODELS SECTION 105

Text

None.

Subelements

string submodel

fixed string submodel

B.11.4 string submodel element

This model is any model which is subordinate to some top-level model. In
the case of string models, they represent a subunit of the region for which
the string model is defined. For example, one might model the branch of the
Acceptor with a 2nd order WWAM and the signal and pyrimidine rich region with
a 1st order WAM.7 One would enter coordinates for begin and end relative to the
region defined in the top level model, i.e., the first base is “0” of the submodel.

Inherited Attributes

• name from string model

• zoe name from string model

• model from string model

• zoe model from string model

• wildcard from string model

• pseudocounts from string model

• smoothing from string model

• smoothing data from string model

• length from string model

• focus from string model

• symbols from string model

• data from string model

7This is how it is done in Genscan.

106 APPENDIX B. GHMM REFERENCE GUIDE

Attributes

• ordinal ⊙ number default “”

Submodels are often sensitive to order. By placing a number here, you
define which sumbodels this model is before and/or after, indicated by its
numerical value.

• begin ⊙ 0-based boundary-relative coordinate default “”

This is similar in concept to the begin of string models, however it
defines a beginning relative to the parent model’s region. So the boundary
“0” is no longer the beginning of the feature, but the beginning of the
parent model, and “L”, not feature end, but parent end.

• end ⊙ 0-based boundary-relative coordinate default “”

See begin above.

Text

None.

Subelements

string submodel

fixed string submodel

An Example

Here is a rather complex example of submodels:

<string_model name="Acceptor" source="dna" model="SDT"

states="Exon0 Exon0- Exon1 Exon1- Exon2 Exon2-

Eterm Eterm0- Eterm1- Eterm2-" null_model="1"

begin="-40" end="2" length="2" focus="1" symbols="4">

<string_submodel

name="NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAGNNN"

zoe_name="AG" model="SPLIT" zoe_model="WWAM"

begin="0" end="42" length="43" focus="42"

symbols="4" ordinal="0" data="zoeHeaderEnd=3">

<string_submodel name="branch" model="MARG_WAM"

zoe_model="WWAM" begin="0" end="19"

length="20" focus="42" symbols="4"

data="order=2 printedOrder=3"/>

<string_submodel name="pyrimidine-rich/acceptor"

model="MARG_WAM" zoe_model="WWAM"

begin="20" end="42" data="order=1 printedOrder=3"

length="23" focus="42" symbols="4"/>

</string_submodel>

B.11. THE SEQUENCE MODELS SECTION 107

<fixed_string_submodel name="NN" model="WMM" null_model="1"

ordinal="1" length="1" focus="0" symbols="4" >

. . . .

</fixed_string_submodel>

</string_model>

The top-level model is an SDT, sequene decision tree. Dependent on what
the sequence of the current example is, one of the submodels is chosen. The
first string submodel is the node of the tree where the correct AG signal is in
place for the decision tree, with 40 bases upstream of the AG. This submodel is a
SPLIT model, which does piecewise modeling of a region.8 The first submodel,
the branch model uses a 2nd order WAM for the weak signal (in order not to
overfit).9 The next part is modeled as a 1st order WAM.

Note the ordinal values. Since XML provides no guarantee that the parser
will order the subelements in any order, we use ordinals to guarantee the order
of the models. This is especially important with the SDT model: it checks the
first pattern first for a match, and if none is found, goes to the second pattern.
If the final pattern is the wildcard-only pattern (match anything), and it were
interpreted first, then all regions would undesirably go to the first, wildcard-only
pattern.

B.11.5 fixed string model element

It is often the case that we cannot estimate parameters very easily from an-
notation data, and so we have to retrieve parameters from public data10 or
estimate them offline of parameter estimation. In other cases we may not have
data with which to estimate parameters. For example, we might not have UTR
annotations so we need UTR parameters from another species.

In both cases, we use the fixed string model element. This allows us to
“hard-code” parameters into the gHMM file. These parameters will be output
directly to the .zhmm file as well as all intermediate XML files.

Inherited Attributes

• name from string model

• source from string model

• model from string model

• null model from string model

• begin from string model

8Another feature of this model is that it doesn’t show up as 2 models to zoe unless you
tell it to. See section 6.4 for more information.

9The MARG WAM model is there to make the model appear as a 3rd order model to zoe.
10For Twinscan, a lot of the parameters were inherited from Genscan, including the PolyA

and Promoter parameters.

108 APPENDIX B. GHMM REFERENCE GUIDE

• end from string model

• length from string model

• focus from string model

• symbols from string model

• data from string model

Attributes

There are no new attributes unique to this element. All are inherited from
string model.

Text

This is some string meaningful to the program (i.e. iscan, zoe) which is inter-
preting it. In practice, a set of parameters. For example,

<fixed_string_model name="PB_CAP" source="dna" model="WMM"

null_model="1" states="Prom Prom-" begin="L-7" end="L"

focus="3" length="8" symbols="4" >

-6 -7 -1 9

-100 20 -100 -100

19 -100 -100 -23

-15 0 6 0

0 3 -100 8

-2 6 -7 0

-8 2 0 4

-6 3 -4 4

</fixed_string_model>

Describes a WMM for the poly-A binding cap of the promoter. Since we don’t
have promoters annotated in our input files, we need to use the same parameters
all the time. Its length is 8, and thus 8 rows of parameters for each of the 4
DNA characters are shown.

Subelements

None.

B.11.6 fixed string submodel element

This element is the same as a fixed string model except that it is a submodel
element instead of a top-level model element.

B.11. THE SEQUENCE MODELS SECTION 109

Inherited Attributes

• name from string model

• model from string model

• ordinal from string submodel

• null model from string model

• length from string model

• focus from string model

• symbols from string model

• data from string model

Attributes

No new attributes, all are inherited.

Text

This is some string meaningful to the program (i.e. iscan, zoe) which is inter-
preting it. See the fixed string model description above.

Subelements

None.

110 APPENDIX B. GHMM REFERENCE GUIDE

Appendix C

Feature Map Reference
Guide

If you’re reading this first, you might want to look at the terms section in
Appendix B.

In this chapter, we use the word “feature” to refer to a feature in the anno-
tation, rather than a feature in the converted state sequence.

C.1 The author section

The author section contains the author element.

C.1.1 author element

Attributes

None.

Text

Should include the name of the author of the feature map.

Submelements

None.

C.2 The date section

The date section contains the date element.

111

112 APPENDIX C. FEATURE MAP REFERENCE GUIDE

C.2.1 date element

Attributes

None.

Text

Should include the date of creation of the file.

Subelements

None.

C.3 The title section

Should include the title of the feature map file.

C.3.1 title element

Attributes

None.

Text

Should be a title, giving a general description of what the feature map is for, for
example, if it is specifically for a UTR-predicting gene predictor or non-UTR
predicting gene predictor.

C.4 The file type description section

Contains a text description of the file format.

C.4.1 file type description element

Attributes

None.

Text

Should contain the English full description of the file type.

Subelements

None.

C.5. THE FILENAME EXTENSION SECTION 113

C.5 The filename extension section

Contains the filename extension of the format to be converted.

C.5.1 filename extension element

Attributes

None

Text

Should contain the exact filename extension (without the leading dot) of the
filetype that this feature map converts.

Subelements

None.

C.6 The feature mappings section

This contains the meat of the feature map. A feature map is comprised of a
set of feature mappings, each of which map a feature in the annotation format,
along with certain context qualities, to a single state in the gHMM. Note that
the state must be present in the corresponding gHMM in order for the feature
map to be accepted.

C.6.1 feature mappings element

Attributes

None.

Text

None.

Subelements

• feature mapping

C.6.2 feature mapping element

This element defines criteria for a feature in the annotation to be mapped to a
specific state.

114 APPENDIX C. FEATURE MAP REFERENCE GUIDE

Attributes

• state name - The name of the state in the corresponding gHMM that
these criteria map to.

• feature - The name of the feature, meaningful to the annotation format,
which this feature mapping corresponds to.

• number in transcript - The number of features with name given in the
feature attribute.

• first feature - The 0-based ordinal of the first such feature of name
given in the feature element that may be mapped to the state given in
the state name attribute.

• last feature - The 0-based ordinal of the last such feature of name given
in the feature element that may be mapped to the state given in the
state name attribute.

• state region start - The 0-based relative coordinate of the beginning
of the region that will be converted to the state given in the state name

attribute.

• state region end - The 0-based relative coordinate of the ending of the
region that will be converted to the state given in the state name at-
tribute.

Text

None.

Subelements

None.

Appendix D

Sequence Types Included in
iPE

iPE provides a very flexible and easily extensible framework for working with
and creating many different sequence types. Each sequence type is a class
unto itself, inheriting from the iPE::Sequence class. One can get the basic
documentation for any sequence type by typing

man iPE::Sequence::Dna

for instance. Here I provide a brief description of each sequence type included
in iPE.

Each sequence described has several fields. The first is the class name. You
can use that to type in for the man page. The second is the iPE name, meaning
the name used to refer to the sequence in the gHMM file and the instance
file. The third is the zoe name, which is the name output to .zhmm files. The
alphabet is the set of all letters in the sequence type. The ambiguity codes
are all the codes which refer to more than one character in the alphabet. The
wildcard is the character that refers to all letters in the alphabet.

D.1 Dna

Classname: iPE::Sequence::Dna
iPE Name: dna
zoe Name: DNA
Alphabet: A,C,G,T
Wildcard: N
Ambiguity codes:

R = A,G

Y = C,T

W = A,T

115

116 APPENDIX D. SEQUENCE TYPES INCLUDED IN IPE

S = C,G

M = A,C

K = G,T

B = C,G,T

D = A,G,T

H = A,C,T

V = A,C,G

N = A,C,G,T

D.2 Cons

Classname: iPE::Sequence::Cons
iPE Name: cons
zoe Name: CONSEQ
Alphabet: 0,1,2
Wildcard: w
Ambiguity codes:

w = 0,1,2

The conservation sequence alphabet was the invention of Twinscan, to coarsely
indicate the level of onservation of each base by asserting what resulted from a
genome-to-genome alignment of an informant species. The paper and the actual
implementation are different:

Paper iscan Meaning

: 0 mismatch/gap

| 1 match

. 2 unaligned

These are generated with twinscan driver.pl or conseq.pl, included in
the zoe package.

D.3 Est

Classname: iPE::Sequence::Est
iPE Name: est
zoe Name: ESTSEQ
Alphabet: 0,1,2
Wildcard: w
Ambiguity codes:

w = 0,1,2

This is another sequence type which indicates the alignment of ESTs to
model the likelihood of transcription. Their meanings are as follows:

D.4. MALIGN 117

0 unknown (not an exon or intron or conflict between exon and intron)

1 exon in EST alignment

2 intron in an EST alignment

These are generated by running blat on all ESTs to the genome and then
running estseq psl.pl on them. (This should be included in the zoe package.

D.4 Malign

Classname: iPE::Sequence::Malign
iPE Name: malign
zoe Name: (none)
Alphabet: A,C,G,T, ,.
Wildcard: w
Ambiguity codes:

R = A,G

Y = C,T

W = A,T

S = C,G

M = A,C

K = G,T

B = C,G,T

D = A,G,T

H = A,C,T

V = A,C,G

N = A,C,G,T

w = A,C,G,T,_,.

The Malign class is not strictly a sequence, per se, since it actually contains
multiple sequences. It can behave as a sequence if we consider the fact that
all alignments are projected onto the target sequence so that the total length
is always equal to the target sequence. The two non-letter characters, and .,
refer to a gap and an unaligned region, respectively.

D.5 Array

Classname: iPE::Sequence::Array
iPE Name: array
zoe Name: ARRAYSEQ
Alphabet: 0,1,2
Wildcard: w
Ambiguity codes:

w = 0,1,2

118 APPENDIX D. SEQUENCE TYPES INCLUDED IN IPE

This is for the current experimental approach to gene prediction using Affymetrix
tiling array data. The letters mean the following (I think):

0 region not queried by tiling array

1 region queried but not transcribed (not in a transfrag)

2 region queried and transcribed (in a transfrag)

D.6 Other Sequence Types

Several other sequences (i.e. Asest, Cola, Repeat and Tile) are included in the
iPE package. They are not described here because they were the children of
failed experiments that will not be explored any further.

Appendix E

How Exponential Tails Are
Fit

The exponential PDF comes in the form

Pr(x) =
1

λ
e−

x
λ (E.1)

where λ is the expected value of the PDF and s is used in our case to scale
the area under the curve.

To fit a geometric tail from A to B with density Ni (i representing the
current piece of the distribution) and start probability Pri−1(A), we can view
this as a system of equations.

Our constraints are that

Pri−1(A) = Pri(A) (E.2)∫ B

A

Pri(x)dx = Ni (E.3)

Each, respectively, imply

Pri−1(A) =
si

λi

e
− A

λi (E.4)

∫ B

A

si

λi

e
−x
λi dx = Ni (E.5)

The variable si is a constant factor different from Ni which scales the expo-
nential such that the area under the curve between A and B is Ni, and not the
area of the whole curve from 0 to infinity.

We know Pri−1(A) and Ni, and we hope to find solutions for λi and si in
terms of these, so we can each piece one at a time without any fancy global
inference.

119

120 APPENDIX E. HOW EXPONENTIAL TAILS ARE FIT

Integrating (E.5), we get

si(e
− A

λi − e
− B

λi) = Ni (E.6)

From (E.4), we can get si alone.

si = λiPri−1(A)e
A
λi (E.7)

Now we can substitute this back into (E.6).

λiPri−1(A)(1 − e
A−B

λi) = Ni (E.8)

This must be heuristically solved, as it is a transcendental equation. We put
each instance of λi on either side of the equation:

Pri−1(A)(1 − e
A−B

λi) =
Ni

λi

(E.9)

Then set λi for a number of reasonable (say, 1 to 1,000,000) values on each side
of the equation, and pick the one pair that is closest. We can easily find si once
λi is found with equation (E.7).

121

In the simple case, where there is only one tail, the parameters can be found
in closed-form:

Your constraints are as follows:

Nn =

∫ ∞

A

fn(x)dx (E.10)

fn−1(A) = fn(A) (E.11)

Integrating (E.10) gives us

Nn = sne−
A

λn (E.12)

Expanding (E.11) gives us

fn−1(A) =
sn

λn

e−
A

λn (E.13)

Dividing equation (E.13) by equation(E.12) gives us

Nn

fn−1(A)
= λn (E.14)

which we can use to solve for sn in the equation (E.13).

122 APPENDIX E. HOW EXPONENTIAL TAILS ARE FIT

Acknowlegements

Thanks to Randy Brown, Sam Gross, Chauchun Wei, Manimozhian Arumugam,
and Paul Flicek for aid in recreating the many different subtleties of our sordid
parameter estimation past. Thanks to Evan Keibler for many explainations and
discussions of both iscan and GTF. Thanks to Brian Koebbe for help putting
together the RPMs and in general for keeping our computers running. Thanks,
of course, to my advisor, Michael Brent.

123

124 APPENDIX E. HOW EXPONENTIAL TAILS ARE FIT

Bibliography

[1] Matthieu Blanchette, W. James Kent, Cathy Riemer, Laura Elnitski, Arian
Smit, Roskin Krishna, Robert Baertch, Kate Rosenbloom, Hiram Clawson,
Eric Gree, David Haussler, and Webb Miller. Aligning multipe genomic
sequences with the threaded blockset aligner. Genome Research, 14(7):708–
715, 2004.

[2] M. Borodovsky and J. McInich. Genemark: parallel gene recognition for
both dna strands. Computers & Chemistry, 17(19):123–133, 1993.

[3] Adrian Bowman and Adelchi Azzalini. Applied Smoothing Techniques for

Data Analysis. Oxford Science Publications, Oxford, UK, 1997.

[4] Christopher Burge. Identification of genes in human genomic DNA. PhD
thesis, Stanford University, May 1997.

[5] Christopher Burge and Samuel Karlin. Prediction of complete gene struc-
tures in human genomic dna. Journal of Molecular Biology, 268(1), 1997.

[6] Richard Durbin, Sean Eddy, and Graeme Krogh, Anders Mitchinson. Bi-

ological Sequence Analysis: Probabilistic Models of Proteins and Nucleic

Acids. Cambridge University Press, Cambridge, UK, 1998.

[7] Warren Gish. Wu-blast. http://blast.wustl.edu.

[8] Samuel Gross and Michael Brent. Using multiple alignments to improve
gene prediction. Journal of Computational Biology, 13(2), 2006.

[9] Ian Korf, Paul Flicek, Daniel Duan, and Michael Brent. Integrating ge-
nomic homology into gene structure prediction. Bioinformatics, 17(Suppl
1), 2001.

[10] Lawrence R. Rabiner. An tutorial on hidden markov models and selected
applications in speech recognition. volume 77, pages 4–16, 1989.

[11] Lawrence R. Rabiner and B. Juang. An introduction to hidden markov
models. IEEE ASSP Magazine, pages 4–16, January 1986.

125

126 BIBLIOGRAPHY

[12] Scott Schwarts, W. James Kent, Arian Smit, Zheng Zhang, Robert
Baertsch, Ross Hardison, David Haussler, and Webb Miller. Genome Re-

search, 13(1):103–107, 2003.

[13] Chaochun Wei. Using Expressed Sequence Tags to Improve Gene Structure

Prediction. PhD thesis, Washington University in St. Louis, May 2006.

