Function Reference: cdf

statistics: retval = cdf (name, x, …)

Return the CDF of name distribution function for value x.

This is a wrapper for the namecdf and name_cdf functions available in the statistics package. See the corresponding functions’ help to learn the signification of the arguments after x.

name must be a char string of the name or the abbreviation of the desired cumulative distribution function as listed in the followng table. The last column shows the maximum number of extra arguments that can be passed to the desired CDF.

Distribution NameAbbreviationMax Arguments
"Birnbaum-Saunders""bbs"3
"Beta""beta"3 ("upper")
"Binomial""bino"3 ("upper")
"Burr""burr"3
"Bivariate Normal""bvn"2
"Cauchy""cauchy"2
"Chi-square""chi2"2 ("upper")
"Copula Family""copula"3
"Extreme Value""ev"5 ("upper")
"Exponential""exp"4 ("upper")
"F-Distribution""f"3 ("upper")
"Gamma""gam"5 ("upper")
"Geometric""geo"2 ("upper")
"Generalized Extreme Value""gev"4 ("upper")
"Generalized Pareto""gp"4 ("upper")
"Hypergeometric""hyge"4 ("upper")
"Johnson SU""jsu"2
"Laplace""laplace"2
"Logistic""logistic"2
"Lognormal""logn"5 ("upper")
"Multivariate Normal""mvn"4
"Multivariate Student T""mvt"3
"Quasi-Monte-Carlo Multivariate Student T""mvtqmc"6
"Nakagami""naka"2
"Negative Binomial""nbin"3 ("upper")
"Noncentral F-Distribution""ncf"4 ("upper")
"Noncentral Student T""nct"3 ("upper")
"Noncentral Chi-Square""ncx2"3 ("upper")
"Normal""norm"5 ("upper")
"Poisson""poiss"2 ("upper")
"Rayleigh""rayl"2 ("upper")
"Standard Normal""stdnormal"0
"Student T""t"2 ("upper")
"Triangular""tri"3
"Discrete Uniform""unid"2 ("upper")
"Uniform""unif"3 ("upper")
"Von Mises""vm"2
"Weibull""wbl"5 ("upper")

See also: icdf, pdf, random, bbscdf, betacdf, binocdf, burrcdf, bvncdf, cauchy_cdf, chi2cdf, copulacdf, evcdf, expcdf, fcdf, gamcdf, geocdf, gevcdf, gpcdf, hygecdf, jsucdf, laplace_cdf, logistic_cdf, logncdf, mvncdf, mvtcdf, mvtcdfqmc, nakacdf, nbincdf, ncfcdf, nctcdf, ncx2cdf, normcdf, poisscdf, raylcdf, stdnormal_cdf, tcdf, tricdf, unidcdf, unifcdf, vmcdf, wblcdf

Source Code: cdf