
DECtalk Software®

Programmer’s Guide 4.6.2

1

DECtalk® Software Programmers Guide

December 2003

This guide introduces application programmers to DECtalk® Software and
the DECtalk Software API. It also explains the basics of DECtalk applets
and DECtalk multi-language programming.

Revision / Update Information:
This document supersedes the DECtalk Software Programmers Guide,
Version 4.6.

Operating System:
Microsoft Windows 95/98/ME/NT/2000/XP
Microsoft Windows CE/Pocket PC
Red Hat Linux Version 5.0 or higher

Software Version:
DECtalk Software Version 4.6.2

December 2003

The information in this publication is subject to change without notice.
Fonix Corporation reserves the right to make changes without notice
to this, or any of its products, to improve reliability, performance, or
design.

FONIX CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL
OR EDITORIAL ERRORS OR OMISSIONS CONTAINED HERIN, NOR
FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM THE FURNISHING, PERFORMANCE,
OR USE OF THIS MATERIAL. THIS INFORMATION IS PROVIDED
“AS IS” AND FONIX CORPORATION EXPRESSLY DISCLAIM ANY
AND ALL WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY EXPRESS,
STATUTORY, OR IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

This publication contains information protected by copyright. This
publication shall not be reproduced, transmitted, or stored in a
retrieval system, nor its contents used for any purpose, without the
prior written consent of Fonix Corporation. Fonix Corporation
assumes no responsibility for the use of any circuitry other than the
circuitry that is part of a product of Fonix Corporation. Fonix Corpo-

2 DECtalk® Software Programmers Guide
ration does not convey to the purchaser of the product described
herein any license under the patent rights of Fonix Corporation nor
the rights of others.

The software described in this guide is furnished under a license
agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement.

Copyright © 2000, 2001, 2002,2003 by Fonix Corporation. Certain
portions © 1997, 1998, 1999 Compaq Computer Corporation. All
rights reserved.

The Fonix logo and DECtalk are trademarks of Fonix Corporation.

Compaq is a registered trademark of Compaq Computer Corporation.
Tru64 is a trademark of Compaq Information Technologies Group, L.P.

Intel is a trademark of Intel Corporation.

Linux is a registered trademark of Linus Torvalds.

Microsoft, Windows, Windows 95, Windows 98, Windows ME,
Windows NT, Windows 2000, Windows XP and Windows CE are
registered trademarks of Microsoft Corporation.

Motif is a registered trademark of the Open Software Foundation, Inc.

Red Hat is a registered trademark of Red Hat Software, Inc.

SoundBlaster is a registered trademark of Creative Labs, Inc.

Other product names mentioned herein may be trademarks and/or
registered trademarks of their respective companies.

Contents 1
Contents

DECtalk® Software Programmers Guide 1

Preface 5
Purpose and Audience 5
Structure 5
Conventions 5

Introduction 7

Features and Functions 9
High-Quality Speech and Word Pronunciation Accuracy 9
Letter Mode, Word Mode, and Clause Mode 9
Short Command Strings 10
Pronunciation Heuristics 10

Components 10
Dtsample Applet (Windows Only) 10
Speak Applet 11
Say Command-Line Applet 13

Programming Aids 13
Application Programming Interfaces (APIs) 13
In-Line Voice Control Commands 14
Dictionary Facilities 15

Text-to-Speech Server (Windows 95/98/ME/NT/2000/XP Only) 16

Using the Components 16
Application Programmer 17
General User 17

How It Works 18

Using the Applets 21

Speaking a Text File 23

Inserting In-Line Voice Control Commands 25

Changing the Speaking Voice 27

Changing the Speaking Rate 29

2 Contents
Using the User Dictionary Build Tool 31
Menus and Commands 31
Building a User Dictionary 34

Using the Speak Applet 38

Using the Text-to-Speech Server from Windows Applications 41
Step 1 - Creating a Word Macro 41
Step 2 - Associating the Word Macro with a Toolbar Button 44
Step 3 - Launching and Configuring the DECtalk TTS Server 45
Step 4 - Speaking Microsoft Word Text With the TTS Server 47

Using the Say Command-Line Applet 48

Introduction to the DECtalk Software API 51

The Core API Functions 55
TextToSpeechSpeak 55
Important Text-Queuing Information 56
Clause-Based Synthesis 57
Callback Routines and Window Procedures 57
Phoneme Notifications 57
Error Messages 59
Index Mark Messages 60
Buffer Messages 61
Callback Routine Example 61
Window Procedure Example 61

Audio Output Control Functions 62

Blocking Synchronization Function 63

Control and Status Functions 64

Special Text-To-Speech Modes 65
Wave-File Mode 65
Log-File Mode 66
Speech-To-Memory Mode 66
Initialization of Memory Buffers 66
TTS_BUFFER_T Structure (ttsapi.h) 67
TTS_PHONEME_T Structure (ttsapi.h) 67
TTS_INDEX_T Structure (ttsapi.h) 68
TTS_CAPS_T Structure (ttsapi.h) 68
Return of Memory Buffers 69

Dictionary Functions (Linux) 70
Creating a User Dictionary 70

Contents 3
Loading the Main Dictionary 70
Loading the User Dictionary 71

Dictionary Functions (Windows) 72
Creating a User Dictionary 72
Loading the Main Dictionary (Dynamic or Static Engine) 73
Loading the Main Dictionary (Static Engine) 74
Loading the User Dictionary 74

Registry Entry Information 75
Registry Entry Formats and Locations 76
Registry Entry Key 77

Sample Programs (Windows) 78

Multi-Language Programming 79

Starting a Language 81

Selecting a Language 82

Closing a Language 82

Example 83

Glossary 85

Index 93

4 Contents

5

Preface

Purpose and Audience

This guide, DECtalk Software Programmer’s Guide, is for the appli-
cation programmer who wants to design and build text-to-speech
applications with DECtalk® Software. Use this guide in conjunction
with the DECtalk Software Reference Guide and the DECtalk
Software Installation Guide.

Structure

The design of this guide gives you quick and easy access to infor-
mation. Its organization can help you easily learn about new topics
and perform specific tasks related to the use of the applets or devel-
opment of a DECtalk Software application.

The guide is organized as follows:
Chapter 1 Introduction to DECtalk Software
Chapter 2 Using the Applets to Learn DECtalk Software Basics
Chapter 3 Introduction to the DECtalk Software API
Chapter 4 Basics of Multi-Language Programming

Glossary Definitions of Terms Used in DECtalk Documentation

Conventions

The following conventions are used in this guide:

Convention Meaning

enter Enter means type the required information and press the Enter
key.

mouse Mouse refers to any pointing device, such as a mouse, a puck, or
a stylus.

MB1 MB1 indicates the left mouse button.

click Click means to press and release MB1.

Double click Double click means to press and release MB1 twice in rapid suc-
cession without moving the mouse.

6 Preface
Conventions used in API functions

Unless you are otherwise instructed, press Enter after typing
responses to command prompts.

drag The phrase drag means to press and hold MB1, move the mouse,
and then release MB1 when the pointer is in the desired position.

Ctrl/ x Press the Ctrl key while you press another key.

Menu > Com-
mand

The right arrow key indicates an abbreviated instruction for choos-
ing a command from a menu. For example, File > Exit means pull
down the File menu, move the pointer to the Exit command, and
release MB1.

Courier type Courier type indicates text that is typed or displayed on the
screen. This is most often used for program code examples.

User Input Boldface type in interactive examples indicates information you
enter from the keyboard. For example:
A:>SETUP

XX YY and
XXn YYn

In DECtalk Software in-line command syntax, XX and YY indicate
options and parameters. When more than one choice of options
or parameters is allowed, the symbol XXn or YYn with n replaced
by a numeral indicates each option or parameter in the symbolic
representations, such as [:phoneme XX1 XX2 YY].

NOTE: Note that the number of characters in the symbolic repre-
sentation does NOT represent the number of
characters allowed in the actual option or
parameter name.

DD and DDn In DECtalk Software in-line command syntax, DD indicates a
decimal (base 10) value. When more than one decimal values are
allowed, the symbol DDn with n replaced by a numeral represents
each allowed value, such as [:volume XX DD1 DD2].

NOTE: Note that the number of characters in the symbolic repre-
sentation does NOT represent the number of characters
allowed in the actual decimal value.

Italics Italic text emphasizes important information.

1

Introduction

Introduction 9
DECtalk Software provides programming resources to support appli-
cations that require text-to-speech output. This chapter provides a
general overview of DECtalk Software. Topics include:

• Features and functions

• Components

• Programming aids

• Text-to-Speech server (Windows 95/98/ME/NT/2000/XP only)

• Using the components

• How it works

Features and Functions

DECtalk Software enables applications to extend the capabilities of
your computer by turning text files into spoken words.

High-Quality Speech and Word Pronunciation Accuracy

DECtalk Software provides the latest version of DECtalk speech
synthesis technology. With only a standard sound card for audio
output, the programming resources provided by DECtalk Software
allow applications to accurately read ASCII text from a variety of
sources, such as electronic mail and word processors. Nine different
voices are provided, and users can control voice pitch, rate of
speech, and word or phrase emphasis. DECtalk Software has a large
built-in dictionary that enables accurate pronunciation of individual
words and enhances their rhythmic naturalness.

Letter Mode, Word Mode, and Clause Mode

DECtalk Software can speak single characters immediately, without
waiting for an entire clause to be buffered. DECtalk Software also
provides normal clause buffering for natural speech. DECtalk
Software can speak letters, words, phrases, clauses, paragraphs, and

10 Components
whole documents. DECtalk Software allows the application to
terminate speech immediately instead of waiting for the buffered text
to complete processing.

Short Command Strings

Many of the DECtalk Software in-line command strings can be abbre-
viated for greater ease of use in applications.

Pronunciation Heuristics

DECtalk Software includes pronunciation heuristics that recognize
and parse unpronounceable sequences, such as sequences of
uppercase initials (FBI, AAA, and so forth) and sequences with no
vowels (CBS and NBC, for example).

Components

DECtalk Software components include:

• Sample graphical applets Dtsample (Windows only) and Speak

• Sample command-line applet Say

• Programming aids, including the DECtalk Software API (DAPI), the
Microsoft Speech API (SAPI) for Windows, in-line voice control
commands, and dictionary facilities

• Text-to-speech (TTS) server for Windows

• Source code for selected sample programs

Dtsample Applet (Windows Only)

The Dtsample applet and components are provided to give you some
ideas on how to get started with your application. Both the graphic
user interface and source components used to develop that user

Introduction 11
interface are included as part of the Dtsample program. See
Figure 1-1 on page 11 for a visual overview of the Dtsample applet
dialog.

See Chapter 2 “Using the Applets” on page 21 for additional
description of the Dtsample program. Note that supported languages
not installed with DECtalk Software are grayed out on the Languages
menu. Languages shown in dark lettering are installed and ready to
be used.

Figure 1-1: Visual Overview of the Dtsample Applet

Legend

1 Dialog

2 Menu bar: File, Edit, Speak, Voice, Rate, Languages, and Help menus

3 Start, pause, and stop push buttons

4 Speech speed-control slider

5 Edit window for text input

Speak Applet

The Speak applet is included as a practical example of how the
DECtalk Software API can be used to produce an innovative Text-To-
Speech application that maximizes user interaction through a highly
graphical interface. Figure 1-2 provides a visual overview of the
Speak applet.

12 Components
Figure 1-2: Visual Overview of the Speak Applet

Legend

1 Menu bar: File, Edit, and Help menus

2 Voice-activation buttons

3 Edit window for text input

4 Speech speed-control slider

5 Start, pause, and stop push buttons

NOTE: The Speak applet is not provided and not supported for Windows CE systems.

English, Spanish, German, or French speaker names are displayed,
depending on the current default language. See the Name [:name] command
description for lists of names.

The faces display as cartoon characters when using VGA 16-color mode.

Introduction 13
Say Command-Line Applet

The DECtalk Say command-line applet lets you run DECtalk Software
from the operating system command prompt window. Say provides
many of the standard DECtalk input and output options available in
the Speak and Dtsample applets and in the DECtalk Software API.
The general command syntax is as follows:

say [options] [text]

For a detailed description of the available command-line options, see
“Using the Say Command-Line Applet” on page 48.

NOTE: The Say applet is not provided and not supported for Windows CE systems.

Programming Aids

The DECtalk Software programming aids include application
programming interfaces (APIs), in-line voice control commands, and
dictionary facilities. Each component is introduced in this section and
explained in detail in Chapter 3.

Application Programming Interfaces (APIs)

DECtalk Software supports two text-to-speech APIs:

• The DECtalk Software API (DAPI)

• The Microsoft Speech API (SAPI) [Windows 95/98/ME/NT/2000/XP
only]

DAPI is a custom extension to the Multimedia PC (MPC) API
specified by the Windows operating system. The DAPI function set
gives you a flexible method of using and controlling DECtalk Software
functionality from within your application. These functions perform a
wide range of tasks associated with Text-To-Speech systems. See
Chapter 1 in the DECtalk Software Reference Guide for the complete
list of DAPI functions.

14 Programming Aids
In addition to the DAPI, DECtalk Software supports the Microsoft
Speech API (SAPI) for Windows 95/98/ME/NT/2000 systems and
SAPI Version 5.0 for Windows 98/ME/NT/2000 systems. This allows
DECtalk Software to work as an OLE server in any OLE application
environment. Information about SAPI is available in the Microsoft
Developer Network (MSDN) CD-ROM under the Microsoft Software
Development Kit (SDK). See Chapter 4 in the DECtalk Software
Reference Guide for a list of the SAPI functions supported by DECtalk
Software. For more information about SAPI, refer to Microsoft
documentation and the Microsoft web site.

In-Line Voice Control Commands

DECtalk Software includes in-line commands that control voice
characteristics. You can use these commands to perform simple
voice-control operations, such as changing the speaking rate or
speaking voice while DECtalk Software is speaking.

In-line commands can be inserted into the text entered into the edit
window available in most applications supplied with DECtalk
Software. In-line commands also can be included in data buffers
passed to the DECtalk Software

Dynamic Link Libraries (DLLs) by way of various TextToSpeech...()
API function calls. For more information, see the DECtalk Software
Reference Guide.

DECtalk Software also has voice-control commands to modify the
characteristics of each voice, control intonation and stress within
written text, or create special effects, such as singing.

In-line commands have special syntax rules and components that you
need to use when you insert them into files. A few simple commands
and command components are illustrated in Figure 1-3. Refer to the
DECtalk Software Reference Guide and online help for more infor-
mation on in-line commands.

Introduction 15
Figure 1-3: In-L ine Command Components

Legend

1 In-line commands are inserted into ASCII text files, begin with a colon,
and are always inserted between brackets. (The command here tells
DECtalk Software to speak this line at 150 words per minute.) Most
commands have parameters. (For example, : rate 150 = rate of 150
words per minute.)

2 Two or more commands can be inserted after each other by enclosing
each command within a set of square brackets. (For example, the rate
and voice selections are shown here.)

3 Phonetic spellings of words can be included also. Phonetic spellings
are enclosed within a set of square brackets. (For example, [r ’ iyl iy]
for really) Note: if you want to use phonetic spellings, you must use
the [:phoneme arpabet speak on] command to turn on recognition of
phonetic spellings.

Dictionary Facilities

DECtalk Software has two pronunciation dictionaries — a large
internal (builtin) dictionary and a user-defined dictionary. With the
large built-in dictionary, you can easily use many proper names and
normally unpronounceable sequences, such as uppercase initials, in
applications. With the user dictionary build tool, you can load appli-
cation-specific words or cultural or language-specific terms into the
user dictionary. A sample user-dictionary file is installed with the
software.

The location of pronunciation dictionaries is determined by the
following:

• On Windows systems, if your text-to-speech engine is a dynamic
engine, which uses DLLs, or a static engine, which uses only LIBs, the
default locations of the main and user dictionaries are defined in
registry entries, as presented in Chapter 3.

16 Text-to-Speech Server (Windows 95/98/ME/NT/
• On Linux systems, the location of the dictionaries is the DICTIO-
NARIES directory, as defined in locations.sh in your installation
directory.

Text-to-Speech Server (Windows 95/98/
ME/NT/2000/XP Only)

The Text-to-Speech (TTS) server for Windows makes it possible for
any Windows application that can call Dynamic Data Exchange (DDE)
and that contains ASCII text to speak that text through DECtalk
Software.

Under Windows, the TTS server is launched automatically whenever
you start Microsoft Mail or manually whenever you click on the Text-
to-Speech server icon in the DECtalk Software program group.

Using the Components

DECtalk Software applications and application-building components
are intended for two specific audiences: the application programmer
and the general user of text-to-speech applications developed with
the DECtalk Software API.

Introduction 17
Application Programmer

As a DECtalk Software application programmer, you can use the
DECtalk Software programming aids and API components to create
applications that use DECtalk Software. These applications can incor-
porate text files and use DECtalk Software in-line commands as
permanent parts of the application.

General User

The general user converts ASCII text files to speech by using an
application that incorporates DECtalk Software. By using an abbre-
viated set of DECtalk Software in-line commands and the user-
defined dictionary, the general user can fine-tune the basic pronunci-
ation and voice characteristics defined in the application.

18 How It Works
How It Works

DECtalk Software converts ASCII text into speech output through a
speech synthesizer. Two ways to feed text into the speech synthe-
sizer are:

• Programming DECtalk Software API function calls in your own appli-
cation program

• Using the DECtalk Dtsample applet user interface (Windows only)

The flow of the text-to-speech process is shown in Figure 1-4.

Figure 1-4: F low of the DECtalk Software Text-To-Speech
Conversion Process

Legend

1 Text is selected for processing by DECtalk Software.

2 A sentence parser breaks the input stream into separate words and
locates some clause boundaries (indicated by commas and other
punctuation marks as well as by special words loaded in the DECtalk
Software internal dictionary). The sentence parser also recognizes and
deals with phonemic symbols and commands that you might have
added to the input text.

A word parser breaks words into their component parts, dividing words
into their final pronounceable forms. Strings of text that do not form
pronounceable words are spelled out letter by letter. A number
formatter is used if the text contains numerals. The number formatter
applies the rules for many common number formats and converts the
numbers into words.

3 A dictionary lookup routine searches the pronunciation dictionaries.
DECtalk Software has a built-in dictionary of many commonly used
words. DECtalk Software also has a user dictionary for programmers
and general users that can be filled with words specific to an appli-
cation. This dictionary and how to load it are described in Chapter 3.

Introduction 19
A letter-to-sound module uses a set of pronunciation rules to assign
phonemic form and lexical stress patterns to words not found in the
dictionary. See Chapter 3 “Introduction to the DECtalk Software API”
on page 51 for more information on modifying the phonemic form of
words, and the DECtalk Software Reference Guide for enhancing
special voice qualities, such as emphasis and singing.

4 A phrase structure module recombines all phonemic output from the
dictionary search and other modules. Duration of phonemes and pitch
commands is computed for the clause, and appropriate sound variants
are selected for those phonemes that can be pronounced in more than
one way.

The phoneme-to-voice module processes clauses passed from the
phrase structure module and converts them to control signals for the
speech synthesizer. This module modifies the clauses by changing the
phonemes/allophones into parameters that determine the natural
resonant frequencies of the vocal tract (formants), and sound source
amplitudes. The control parameters are sent to the speech synthesizer
for output.

5 The DECtalk speech synthesizer computes a speech waveform with
acoustic characteristics that are determined by the synthesizer control
commands.

20 How It Works

2

Using the
Applets

Using the Applets 23
This chapter introduces the basic operations involved in DECtalk
Software voice and program control. If you are a general user, this
chapter gives you the information you need to use the Dtsample,
Speak, Say, and User Dictionary Build Tool applets. If you are an
application programmer and not familiar with DECtalk Software, this
chapter introduces you to the basic voice and program control
functions used to control DECtalk Software from within an application
program. Topics include:

• Speaking a text file

• Inserting in-line commands

• Changing the speaking voice

• Changing the speaking rate

• Using the User Dictionary Build Tool

• Using the Speak applet

• Using the Text-to-Speech server from Windows applications

• Using the Say command-line applet

Speaking a Text File

The fastest way to start learning about DECtalk Software is by using
a DECtalk sample application, such as the Dtsample applet (Windows
only) or the Speak applet, to convert an ASCII text file to speech.
After you start the applet and speak a text file, you can then learn
more about controlling voice characteristics through in-line
commands and the user dictionary, which are covered later in this
chapter.

In this section, Dtsample is used to illustrate speaking a text file. For
equivalent examples that use Speak, see “Using the Speak Applet” on
page 38.

NOTE: The drag and drop technique described in Table 2-1 applies equally to
Dtsample and Speak.

24 Speaking a Text File
Figure 2-1: Speaking a Text File Using the Dtsample Applet

Table 2-1: Speaking a Text File

Task/Location Action Result

Using the Dtsample applet File menu

DECtalk Soft-
ware program
group (1)

Step 1. Double click the
Dtsample applet
icon. (2)

The Sample applet dialog is dis-
played. (3)

Step 2. Pull down the
Language menu
and select the
language of your
choice.

Step 3. Pull down the
File menu and
select Open. (4)

The Open a File dialog box is dis-
played. (5)

Using the Applets 25
Inserting In-Line Voice Control
Commands

Before you can use DECtalk Software in-line commands to modify
speech output, you need to know the proper syntax with which to
include those commands into a text file. Figure 2-2 illustrates the
rules of DECtalk Software in-line command syntax. For complete
details about DECtalk Software in-line commands, see the DECtalk
Software Reference Guide.

Open File dia-
log box (5)

Step 4. Select the file
you want DEC-
talk Software to
speak. (6)

The file is displayed in the Dtsam-
ple applet dialog.(7)

Start button (8) Step 5. Click the start
button.

DECtalk Software speaks the file.

Pause and stop
buttons (9) (10)

Step 6. Click the Pause
or Stop button as
needed.

DECtalk Software pauses or stops
the speaking session.

Using drag and drop

Windows
Explorer with
text file name
visible (not
shown)

Step 1. Click the file
name and drag
to one of the fol-
lowing:

• Dialog box for
the Dtsample
applet or the
Speak applet

• Dtsample or
Speak icon

The file is spoken.
If you drag the file name to a DEC-
talk icon, the application it repre-
sents is opened.

26 Inserting In-Line Voice Control Commands
Figure 2-2: Rules for DECtalk Software In-Line Command Syntax

Legend

1 Enclose every command within brackets.

2 Some commands provide an alternate form to simplify input. Here the
:name command and its argument Betty can be replaced by the
alternate command :nb.

3 Begin every command with a colon.

4 Separate each command name and its option or parameter from the
command name text by a valid word boundary marker. The valid word
boundary markers are a space and a tab. A space is used here.

5 Include several options and parameters within the same brackets if the
command allows more than one option and parameter. In this
example, the option and parameter grouping modifies the [:dv]
command.

6 If you give two conflicting commands, DECtalk Software uses the last
command in the sequence. In this example, DECtalk Software uses
Paul’s voice.

7 If you enable phoneme interpretation by using the [:phoneme arpabet
speak on] command, you can include phonetic spelling for text-to-
speech synthesis. The phonetic spelling replaces the actual spelling
and is enclosed within brackets. In this example, the phonetic spelling
of the word really (r ’ iyl iy) is included.

Using the Applets 27
Additional rules for in-line command syntax include the following:

• If the value in a [:dv] command is too low, DECtalk Software uses the
minimum valid value. If the value is too high, it uses the maximum valid
value.

• After you enter a command, that command applies to the remaining
text until it is overridden by another command. For example, the
command [:nk] invokes Kit’s voice on all entered text until you enter
another voice selection command.

• Invalid commands are ignored. By setting the [:error speak]
command, you can receive an audible warning that an invalid
command has been entered.

• Do not put arpabet parameters within the brackets for another
command.

• DECtalk Software interprets text between brackets as phonemes only
after the [:phoneme arpabet speak on] command is sent to the appli-
cation. If [:phoneme arpabet speak on] has not been sent, DECtalk
Software interprets the brackets and characters between them literally.
The [:phoneme arpabet speak off] command must be sent with literal
characters if you want to insert brackets in normal text.

• If the command [:phoneme arpabet speak on] is set and you forget
the right bracket (]), DECtalk Software attempts to interpret all text
following the ASCII text as phonemes, skipping over illegal letter
combinations. The resulting text sounds garbled. Enter a right bracket
to fix this problem.

Changing the Speaking Voice

You can change a speaking voice by inserting DECtalk Software
commands into the edit window of a DECtalk application, such as the
Dtsample applet (Windows only) or the Speak applet. Within the
Dtsample applet, you can also select text and then select a different
name from the Voice menu in the Dtsample applet dialog. Voice
changes made with commands are permanent for the session and
remain intact as long as the command remains in the file. Voice
changes made from the menu remain in effect only as long as the

28 Changing the Speaking Voice
current DECtalk Software session is running. Each voice selection is
inserted into the command [:nX], where X is a value representing a
DECtalk speaking voice. Table 2-2 lists the names and their corre-
sponding values. Figure 2-3 and Table 2-3 show steps you can make
to change voices.

You can change voices with a command as shown in the following
example:

[:nb] Hello. I’m Betty.

You can also change voices in the middle of a sentence.

[:np] This is a demo [:nb] of a sudden change in voice.

If a voice-change request occurs in the middle of a sentence, DECtalk
Software automatically pauses. The pause is the equivalent of
inserting a comma, or about half a second.

[:np] This is a demo, [:nb] of a sudden change in voice.

Table 2-2: DECtalk Voices and Their Associated Values

Figure 2-3: Changing the Speaking Voice

Name Value Name Value

Paul P Betty B

Harry H Ursula U

Frank F Wendy W

Dennis D Rita R

Kit K

Using the Applets 29
Table 2-3: Changing the Speaking Voice

Changing the Speaking Rate

DECtalk Software lets you edit text that is displayed in the edit
window of a DECtalk application, such as the Dtsample applet
(Windows only) or the Speak applet, and then play part or all of the
edited text. Editing can include selecting, cutting, pasting, and
appending other text files. Figure 2-4 and Table 2-4 show cutting and
pasting, playing selected text, and changing the speaking rate.

You can also increase and decrease the rate at which DECtalk
Software speaks a file or a section of a file.

Task/Location Action Result

Using the Dtsample applet Voice menu

Dtsample applet
dialog (1)

Step 1. Select the desired
speaking voice from
the Voice menu. (2)

Step 2. Press the start button
(3)

The entire file or selected
section is spoken

Using in-line commands

Dtsample applet
dialog (4)

Step 1 Insert commands in
the text at the points
where you want a new
voice to take effect.(4)

DECtalk Software changes
the speaking voice at the
point where you insert com-
mands.

30 Changing the Speaking Rate
Figure 2-4: Changing the Speaking Rate

Table 2-4: Changing the Speaking Rate

Task/Location Action Result

Editing the text

Dtsample applet
dialog (1)

Step 1. Select the range of text
you want to edit. (2)

Step 2. Use cut, copy, paste, and
delete selections from
the Edit pull-down menu
(3) to manipulate the
selected text. You can
also insert text and DEC-
talk Software com-
mands by placing the
cursor anywhere in the
text and typing.

Step 3 Click on the Start button. DECtalk Software speaks
the edited file in the new,
edited format.

Playing selected text

Dtsample applet
dialog (1)

Step 1 Select the range of text
you want to play. (2)

Step 2 Click on the right mouse
(MB2 or 3) button

DECtalk speaks the
selected text

Changing the rate

Using the Applets 31
Using the User Dictionary Build Tool

The User Dictionary Build Tool creates a loadable dictionary (.dic) file
from a list of words and their corresponding pronunciations.

The dictionary can then be loaded with a call to the TextToSpeech-
LoadUserDictionary() API function or from the File menu in the
Speak applet.

NOTE: You can use the User Dictionary Build Tool’s Translate menu to create
phonemic translations of words or phrases.

Menus and Commands

Figure 2-5 and the accompanying legend illustrate and explain the
User Dictionary Build Tool’s menus and commands.

Dtsample applet
dialog as DEC-
talk Software is
speaking a file
(1)

Step 1 Use the mouse to posi-
tion the pointer on the
rate slider bar. Press the
left mouse (MB1) and
drag the slider to the left
and wait for the speaking
voice change to occur.
Then drag the slider to
the right (5)

The speed at which DEC-
talk Software speaks the
file changes. It increases if
you drag to the right and
decreases if you drag to
the left. The rate in words
per minute is displayed to
the right of the slider bar.
Changes in the speaking
rate occur only on a clause
boundary after all the previ-
ously queued audio has
played.

DECtalk Sam-
ple applet dia-
log. (1)

Step 2 You can also insert DEC-
talk Software rate com-
mands in the text. (6)

When the text is played,
DECtalk changes the rate
according to the com-
mands.

32 Using the User Dictionary Build Tool
Figure 2-5: User Dictionary Build Tool

Legend

1 Edit Window

In the edit window, enter word-pronunciation pairs that are not
predefined or not pronounced as desired in the DECtalk Software user
dictionary. A word-pronunciation pair is a word, followed by its
phonemic spelling enclosed in square brackets.

2 File menu

Open... A pop-up dialog box that opens up a dictionary definition file
(*.tab).

Using the Applets 33
Close Closes the dictionary definition file. If the entries in the edit
window have been modified, a dialog box asks if you wish to save
changes.

Compile Dictionary Compiles the current file to a .dic file with the same
name.

Save... A pop-up dialog box that saves the file and calls the compiler
to create a dictionary file (*.dic).

Save as... A pop-up dialog box that lets the user rename the file. This
also calls the compiler to create a dictionary file (*.dic).

Exit Exits the program. If the entries in the edit window have been
modified, a dialog box asks if you wish to save changes.

3 Edit menu

Undo Undo the previous command.

Cut Cut the selected region.

Copy Copy the selected region.

Paste Paste the selected region.

Delete Delete the selected region.

Select All Select all of the word-pronunciation pairs from the edit
window.

Find... A pop-up dialog box that prompts you to search for selected
text.

4 Translate menu

Translates selected text into phonemic spelling.

5 Language menu

Lists the DECtalk languages. Uninstalled languages are grayed out.

6 Help menu

Selects the online help.

7 Pronounce Word button

When clicked, the selected text in the edit window is spoken. If a word-
pronunciation pair is selected, the phonemic pronunciation is used. If
only the word is selected, the currently stored pronunciation is used.

8 Previous button

34 Using the User Dictionary Build Tool
When clicked, the previous word-pronunciation pair in the list is
spoken.

9 Next button

When clicked, the next word-pronunciation pair in the list is spoken.

Building a User Dictionary

Building a user dictionary is a two-step process. First, you create a
.tab source file with the User Dictionary Build Tool to define the
pronunciation of special words you want to place in the dictionary, as
shown in Figure 2-6 and Table 2-5.

Figure 2-6: Creating or Modifying a User Dictionary

Using the Applets 35
Table 2-5: Creating or Modifying a User Dict ionary

Task/Location Action Result

DECtalk Soft-
ware (1) pro-
gram group

Step 1. Double click on the User
Dictionary icon.

The DECtalk Software Dic-
tionary Builder dialog is dis-
played. (2)

File menu (3) Step 2 Select Open to open an
existing dictionary defini-
tion (.tab) file.
You can also create a
new dictionary definition
file by entering words
directly.

The Open a File dialog box
is displayed (not shown).
The file you select is dis-
played in the edit window.

Edit window Step 3 Enter words that are not predefined or pronounced as
desired in the DECtalk user dictionary. DECtalk needs
to know both the word and the phonemic spelling you
want to associate with it.
If you know the phonemic spelling, enter it using the
following format:

word[phonemic spelling]
If you do not know the phonemic spelling, enter the
word as it sounds, rather than as it is spelled.

Step 4 Select the word and click
Translate. (4)
For example, the Yugo-
slavian name Jovicic
sounds like “Yoev-
eecheech.”

The User Dictionary Build
Tool converts what you
entered into a phonemic
spelling.
The User Dictionary Build
Tool converts the name to:
[yx’ owv iychiych]

Step 5 To hear how DECtalk
interprets the phonemic
spelling, select it, and
click Pronounce Word.
(5).

DECtalk speaks the word.

36 Using the User Dictionary Build Tool
After you create the .tab source file, you compile the .tab file to
produce a .dic file as shown in Figure 2-7 and Table 2-6. The .dic file
can be loaded into a DECtalk Software session through the Speak
applet or an API function call.

Figure 2-7: Saving and Compi l ing the Dict ionary

Step 6 Besides pronunciation, you can also define word
usage.
For example, to define the word soda to be equivalent
to pop; define water to be pronounced with a New
England accent; and to take into account the dialectic
regional preferences so that the word sub is called a
hero, you would use the following pronunciation pairs:
Soda [p ' aap]
water [w ‘ aot rr]
sub [hx' iyr ow]
Refer to the Reference Tables and to Using In-Line
Commands (available in the Reference Guide and in
online help) for more information on modifying and
enhancing pronunciation, including a complete list of
phonemic, stress, and syntactic symbols

Using the Applets 37
Table 2-6: Saving and Compi l ing the Dict ionary

Task/Location Action Result

Saving and compiling a new dictionary

File menu (1) Step 1 Display the file menu
If you have not yet given
your file a name, choose
one of the following:
Compile Dictionary (2)
Save (3)
Save As... (4)

The Save dialog box is dis-
played in all three cases.
(5)

Save as dialog
box

Step 2. Navigate to the location
where you want to save
the dictionary session
and enter a file name. (6)

A success message (7) is
displayed, indicating that
both the text file (in .tab for-
mat) and a dictionary file
(in .dic format) have been
saved.

Saving and compiling an existing dictionary

File menu (1) Step 1. Choose Open from the
File menu to open an
existing file.

The Open a File dialog box
is displayed (not shown).
The dictionary file (.tab file
type) you choose is dis-
played in the edit window.

Step 2. Edit the file as described
in Table 2-5 on page 35

File menu (1) Step 3. To save the changes you
have made to the .tab file
without compiling the
dictionary, pull down the
File menu (1) and click
Save (3).

The changes you have
made are saved.

File menu (1) Step 4. To save your
changes and com-
pile the dictionary,
pull down the File
menu (1) and click
Compile Dictionary.
(2)

A success message (7) is
displayed and indicates
that both the text file (in
.tab format) and a dictio-
nary file (in .dic format)
have been saved.

38 Using the Speak Applet
Using the Speak Applet

The Speak applet demonstrates the DECtalk Software voice set, as
shown in Figure 2-8 and Table 2-7. Each picture displayed in the
Speak dialog represents one of the nine built-in voices. You can
select a specific voice by clicking the picture. DECtalk Software then
uses the selected voice to speak the contents of a text file displayed
in the edit window or from a file you drag and drop into the edit
window of the Speak dialog.

NOTE: The Speak applet is not provided and not supported for Windows CE systems.

The Speak applet faces display as cartoon characters when using VGA 16-
color mode.

Figure 2-8: Using the Speak Applet

Using the Applets 39
Table 2-7: Using the Speak Applet

Task/Location Action Result

Editing a text file and playing selected segments

DECtalk pro-
gram group (1)

Step 1 Double-click the Speak
icon.

The Speak applet dialog (2)
displays.

File menu (3) Step 2 Choose open (4) to
choose a text file, or
enter text in the edit win-
dow.

The Open A File dialog box
displays (not shown). The
file you choose is displayed
in the edit window

Speak applet
dialog (2)

Step 3 Select the range of text
you want to edit or play.
(5)

Step 4 Use the Cut, Paste, and
Insert keys or corre-
sponding commands
from the Edit menu to
manipulate the selected
text. For example, cut
and paste a single sen-
tence for DECtalk Soft-
ware to speak.

Step 5 Click the face of the
voice you want to speak.
(6)

Edit menu Step 6 Use the (MB2 or 3) right
mouse button to speak a
selected region or press
the Play, Pause, and
Stop buttons (7) to play
the whole file.

The edited file is spoken.

Changing the speaking rate

Speak applet
dialog while
DECtalk Soft-
ware is speak-
ing a file

Step 1 Use the mouse to posi-
tion the pointer on the
rate slider button. (8)
Press MB1 and drag the
slider to the left and wait
for the speaking rate to
slow. Then move the
slider to the right to
increase the rate.

The rate in words per
minute displays to the right
of the slider bar. Rate
changes occur only at a
clause boundary and only
after all previously queued
audio has played.

Loading a User Dictionary

40 Using the Speak Applet
Figure 2-9 shows how to highlight a selection of text for speaking.

Figure 2-9: Highlighting Spoken Text from the Speak Applet

File menu (3) Step 1 Select Load User Dictio-
nary. (9) Note that the
current User Dictionary
is defined in the dec-
talk.ini file and is loaded
if available.

The Load Dictionary dialog
box (not shown here) is
displayed.

Step 2 Select the User Dictio-
nary you want to load,
and press Enter or click
on OK.

That dictionary is loaded
and remains in effect until
you change the dictionary
or end the session.

Saving as a .WAV file

File pull-
down menu
(3)

Step 1 Pull down the File menu,
select Convert to Wave
File. (10) Select the
desired format. (11)
Select a file name for the
audio file.

The Convert to Wave File
dialog box is displayed (not
shown here). The text file is
saved to the selected file
as a standard window .wav
file.

Using the Applets 41
Table 2-8: Highlighting Spoken Text in the Speak Applet

Using the Text-to-Speech Server from
Windows Applications

On Windows 95, 98, ME, NT, 2000, and XP systems, you can run
DECtalk Software by way of the Text-To-Speech (TTS) server from
any application that supports Dynamic Data Exchange (DDE). When
run from such applications, you can have DECtalk speak any selected
text associated with the application. For example, DECtalk can be
“plugged into” Microsoft Word and then used as a proofing tool to
read entire files or selected sections from those files.

The following section is an example of how to set up and run DECtalk
Software from within a Microsoft Word document. The steps include:

1 Creating a Word macro and associating it with a template

2 Associating the macro with a button, menu selection, or hot key

3 Launching the DECtalk TTS Server and speaking the text

4 Speaking the text from within the document

Step 1 - Creating a Word Macro

The first step in running DECtalk Software from a Microsoft Word
document is creating the Word macro that links Word and DECtalk
through DDE, as shown in Figure 2-10 and Table 2-8. You only have
to create this macro once and associate it with a button, hot key, or

Task/Location Action Result

Speak applet
Edit (1)

Step 1. Click Highlighting. (2) The Highlighting option is
checked.

Speak applet
controls.

Step 2. Click the Start button. (3) As DECtalk speaks the
text, each word is
highlighted. (4)

42 Using the Text-to-Speech Server from Windows
menu command. If you make the macro part of a permanent .dot
(template) file, DECtalk Software is always available when you edit a
document associated with that template.

NOTE: This example uses Word Version 7.0. Using other versions of Word, the
displays and the specific steps will differ somewhat, but the overall procedure
will apply. Refer to the Help for your version of Word for the specific steps
required to create Word macros.

Figure 2-10: Creating a Word Macro

Using the Applets 43
Table 2-9: Creating a Word Macro

Task/Location Action Result

Word dialog Step 1. Select Macro from the
Tools Menu. (1)

The Macro dialog box is
displayed. (2)

Macro dialog
box (2)

Step 2. Enter the name of the
macro you are going to
create. (3)

Step 3. Click the Create button
(4)

The macro creation win-
dow is displayed. (5)

Macro creation
window (5)

Step 4. Insert the macro code. The word.txt file located in
your DECtalk installation directory offers two versions
of the appropriate macro code. For Word Version 7,
insert the following code from word.txt:
Sub DECtalkTTSmacro()
Dim Response, rightNow, diffTime, chan
If Tasks.Exists("TTSsrv") = 0 Then

StatusBar = "Starting DECtalk Server"
System.Cursor = wdCursorWait
Response = Shell("TTSSRV.EXE", 0)
rightNow = Now()
diffTime = 0
While diffTime < 0.00003
diffTime = Now() - rightNow

Wend
StatusBar = " "
System.Cursor = wdCursorNormal
If Response = 0 Then

Response = MsgBox("Cannot find TTSSRV.EXE in
the path",

vbYesNo, "Speak")
GoTo FINIS

End If
End If

chan = DDEInitiate(App:="TTSserver",
Topic:="Speak")
If chan = 0 Then

Response = MsgBox("Unable to connect to
TTSSRV.EXE", vbYesNo, "Speak")
GoTo FINIS

Else
DDEPoke channel:=chan, Item:="Speak",
Data:=Selection.Text
DDETerminate channel:=chan

End If

FINIS:
End Sub

File menu Step 5. On the File menu, click
Close (6). Click Yes (7)
when you are asked if
you want to keep
changes to the macro.

The macro is created.

44 Using the Text-to-Speech Server from Windows
Step 2 - Associating the Word Macro with a Toolbar Button

After you create a macro to run DECtalk from within a Microsoft Word
document (step 1), you can associate the macro with a button on a
toolbar as shown in Figure 2-11 and Table 2-9. You can also
associate the macro with a menu selection from one of the pull-down
menus or with a power-key combination from the keyboard. This
section illustrates how to link the macro with a button on a toolbar.

Figure 2-11: Associat ing the Word Macro with a Toolbar Button

Table 2-10: Associating the Word Macro with a Toolbar Button

Task/Location Action Result

Word dialog
Tools menu

Step 1. Select Customize. The Customize dialog box
is displayed. (1)

Customize dia-
log box

Step 2. Select the Toolbars tab
and click on Macros (2).

Using the Applets 45
Step 3 - Launching and Configuring the DECtalk TTS Server

After you associate the DECtalk macro with a button (Step 2), you
must have the Text-to-Speech (TTS) server running before DECtalk
can speak selected sections of text from an application, as shown in
Figure 2-12 and Table 2-10. This section outlines how to start the
TTS server and configure the TTS server for speaker selection, User
Dictionary selection, and speaking rate.

The TTS server is launched by the Word macro and is displayed as a
small window. You can control the speaking voice and speaking rate
from the Window menu.

Applications can access the TTS server using the service name
“TTSserver.” The service topic names are “Speak,” “LoadDictionary,”
and “UnloadDictionary.” Each of these topics requires a string that is
either text to be spoken (for “Speak”) or a dictionary file string.

Step 3. Locate the macro
you created and
click the name. (3)

Step 4. Place the cursor (arrow)
on the macro name,
press and hold MB1 and
drag the cursor to the
toolbar in which you
want the DECtalk macro
placed.(4)

Word toolbar
you select

Step 5. An outlined box appears
where Word will place
the new button. (4)

The Custom Button box is
displayed. (5)

Step 6. Click the button you want
to associate with the
DECtalk macro. (6)

The button is outlined.

Step 7. Click Assign. (7) The new button now
appears in the gray out-
lined box in the toolbar.

46 Using the Text-to-Speech Server from Windows
Figure 2-12: Launching and Configur ing the DECtalk Server

Table 2-11: Launching and Configur ing the DECtalk TTS Server

Task/Location Action Result

Microsoft Word
editing session

Step 1. Click the TTS Server
icon (1) you created
when you associated
your Word macro with a
toolbar button. (See
Table 2-9 on page 43.)

The TTS Server dialog is
displayed. (2)

TTS Server dia-
log (2)

Step 2. Pull down the Window
menu (3) and select
Configure... (4)

The Change Settings dia-
log box is displayed. (5)

ChangeSettings
dialog box (5)

Step 3. Click the desired speak-
ing voice and speaking
rate. (6)

Step 4. Click on the Test button
(7) to preview your
selections.

Step 5. Adjust the settings until
you produce the desired
result.

Using the Applets 47
Step 4 - Speaking Microsoft Word Text With the TTS Server

Once the TTS server is launched by the Word macro and you
configure it for the desired speaking voice, speaking rate, and with a
User Dictionary file (step 3), you can have DECtalk speak selected
sections of text from an opened file, as shown in Figure 2-13 and
Table 2-11.

Figure 2-13: Speaking Text in a Word Fi le With the TTS Server

Step 6. Click OK.(8) The selected settings
remain in effect as the
default settings until they
are changed.
(Note: In-line commands in
selected text played
through the TTS server will
override the defaults.)

48 Using the Say Command-Line Applet
Table 2-12: Speaking Microsoft Word Text With the TTS Server

Using the Say Command-Line Applet

The DECtalk Say command-line applet lets you run DECtalk Software
from the operating system command prompt window. Say provides
many of the standard DECtalk input and output options available in
the Speak and Dtsample applets and the DECtalk API. The command
syntax is as follows:

say [options] [text]

NOTE: The Say applet is not provided and not supported for Windows CE systems.

Task/Location Action Result

Microsoft Word
dialog with file
opened (1) and
the TTS Server
macro button
visible (2)

Step 1. Select a range of text for
DECtalk to speak. (3)

Step 2. Click the TTS Server
button (2)

DECtalk speaks the
selected text and displays
the TTS Server dialog. (4)

TTS Server dia-
log (4)

Step 3. Click the Pause or Stop
button if you want to
pause or stop DECtalk
as it is speaking the text.
Note: When you pause
the server, all queued
text remains queued up
even though you dese-
lect it in the Word docu-
ment. When you stop the
server, all queued text is
flushed from the DECtalk
system.

If the server is not accessi-
ble, an error is returned. (5)

Using the Applets 49
Help Options

-h or -? Write this file to the console. This option cancels any oth-
ers on the command line.

Output Options

-w outFile Convert the text to the specified .wav file instead of speak-
ing to the sound device.

-l[t] outFile Turn on text logging, which logs all input text to a file. This
text includes any pre- and post- commands as well as
commands sent to DECtalk by the Say program itself.
Because this is the default logging mode, the ’t’ immedi-
ately following the ’-l’ is optional.

-ls outFile Turn on syllable logging, which logs each syllable to a file.

-lp outFile Turn on phoneme logging, which converts the input text to
phonemes. This is useful if you want to get DECtalk Soft-
ware to sing. You convert the text to phonemes and then
insert the tone commands into the phoneme file.
If no output options are specified, Say sends its output to
the installed sound device, usually a sound card. Only one
output option can be specified; if you specify more than
one, the last one on the command line is used.

Input Options

-pre preText Text to be passed to DECtalk Software before the normal
input.
The prefix text is forced out before the input text is read.

-post postText Text to be passed to DECtalk Software after the normal
input.
This is useful for passing terminating commands to DEC-
talk Software that normally are not part of the input. If the
postfix text has spaces, it must be enclosed in quotes. An
example is "[:phoneme off]" or "The End".
The normal input is forced out before the postfix text is
read.

50 Using the Say Command-Line Applet
text Text appearing on the command line is spoken. The text to
be spoken can come either from standard input or from the
command line.
Anything on the command line that is not an option is inter-
preted as text, as is anything following it on the command
line. In other words, text to be spoken must appear on the
command line after all options.
If the first word in the text has a dash (-) or slash (/) as its
first character, you must precede it with another dash or
slash. For example, to tell DECtalk to say the number -
123, you would type the command:

say --123

This is necessary to avoid having Say interpret the number
as a command line option. If you embed DECtalk com-
mands into your text, you must enclose them in quotes if
they contain spaces.
This is necessary because Say treats each space-delim-
ited command-line argument as a separate word, while
DECtalk commands must be processed as single words
by the Say program.
If no text is specified, Say takes its input from the standard
input. For example, you could have Say speak a directory
listing in Betty’s voice by typing the following:

dir | say -pre "[:nb]"

Alternatively, you could just type the following command

say

Then enter text at the console. In this case, Say speaks
each line after you press Enter, and exits after you press
Ctrl/x. If you want Say to take its input from a file, use file
redirection as in the following example, which reads the
file foo.txt in Harry’s voice:

say -pre "[:nh]" < foo.txt

Dictionary Options

-d userDict Loads the specified User Dictionary before speaking. This
dictionary is loaded in place of any default User Dictionary
determined by DECtalk.

3

Introduction
to the DECtalk
Software API

Introduction to the DECtalk Software API 53
This chapter introduces the DECtalk Software API (DAPI) and
explains how to use the API to write application programs. This API is
designed to be extensible for future text-to-speech growth while still
being easy to use. The current DECtalk Software implementation
supports multiple instances of DECtalk Software per processor.

The DECtalk Software API functions give you a flexible method for
manipulating the various parameters of DECtalk Software function-
ality from within your application. These functions perform a wide
range of tasks associated with the text-to-speech system and are
listed by function in Table 3-1 on page 53.

NOTE: (Windows Only) In addition to the DAPI, DECtalk Software supports the
Microsoft Speech API (SAPI) for Windows 95/98/ME/NT/2000/XP systems and
SAPI Version 5.0 for Windows 98/ME/NT/2000/XP systems. This allows
DECtalk Software to work as an OLE server in any OLE application
environment. Information about SAPI is available in the Microsoft Developer
Network (MSDN) CD-ROM under the Microsoft Software Development Kit
(SDK). See Chapter 4 in the DECtalk Software Reference Guide for a list of
SAPI functions supported by DECtalk Software. For more information or
documentation on SAPI, contact Microsoft.

Table 3-1: Text-To-Speech Functions by Category

Functions Purpose

Core API

TextToSpeechStartup() Initializes and starts up text-to-speech
system.
• In Windows, the user defines the win-
dow handle to which post messages
can be sent.
• In Linux, the user defines the call-
back routine.
The calling application can then
receive index marks, memory buffers,
or status information through the
above operating system dependent
mechanism.

TextToSpeechStartupEx() Initializes and starts the text-to-speech
system. The user defines the callback
routine that can be called when index
marks, memory buffers, or status infor-
mation needs to be sent to the calling
application.

TextToSpeechSpeak() Speaks text from a buffer.

54
TextToSpeechShutdown() Shuts down the text-to-speech system.

Audio Output Control

TextToSpeechPause() Pauses output.

TextToSpeechResume() Resumes output.

TextToSpeechReset() Purges the TTS syatem and stops out-
put.

Blocking Synchronization

TextToSpeechSync() Synchronizes to the text stream.

Control and Status

TextToSpeechSetSpeaker() Selects one of nine speaking voices.

TextToSpeechGetSpeaker() Returns the last speaking voice to
have spoken.

TextToSpeechSetRate() Sets the speaking rate of the text-to-
speech system.

TextToSpeechGetRate() Returns the speaking rate of the text-
to-speech system.

TextToSpeechSetLanguage() Sets the language to be used. (not
supported)

TextToSpeechGetLanguage() Returns the language in use. (not sup-
ported)

TextToSpeechGetStatus() Gets the status of the text-to-speech
system.

TextToSpeechGetCaps() Retrieves the capabilities of the text-to-
speech system.

Special Text-To-Speech Mode

TextToSpeechOpenWaveOutFile() Opens a file for output.
TextToSpeechSpeak() writes audio
data in wave format to this file.

TextToSpeechCloseWaveOutFile() Closes the specified wave file and
returns the text-to-speech system to its
startup state.

TextToSpeechOpenLogFile() Opens a log file. TextToSpeechS-
peak() writes text, phonemes, or sylla-
bles to this file.

TextToSpeechCloseLogFile() Closes the specified log file and
returns the text-to-speech system to its
startup state.

TextToSpeechOpenInMemory() Produces buffered speech samples in
wave format whenever
TextToSpeechSpeak() function is
called. The calling application is noti-
fied when memory buffer is filled.

Introduction to the DECtalk Software API 55
The Core API Functions

The core DECtalk Software API functions are:

• TextToSpeechStartup() and TextToSpeechStartupEx(), known as
the startup functions, allocate system resources.

• TextToSpeechStartup(), which is operating-system dependent, has
different calling parameters. On Linux, a callback routine may be
defined; on Windows, a window handle can be passed to the
TextToSpeechStartup() call.

• TextToSpeechStartupEx(), which works the same way on all
platforms, allows a callback routine to be passed.

• TextToSpeechSpeak() queues text to the system.

• TextToSpeechShutdown() returns all system resources allocated by
the startup functions.

The simplest application might use only these functions.

TextToSpeechSpeak

The TextToSpeechSpeak() function is used to pass a null terminated
string of characters to the text-to-speech system. The system queues
all characters up to the null character. If the TTS_FORCE argument is
not used in the call to this function, then the queued characters are

TextToSpeechCloseInMemory() Returns the text-to-speech system to
its startup state.

TextToSpeechAddBuffer() Adds a shared-memory buffer allo-
cated by the calling application to the
memory buffer list.

TextToSpeechReturnBuffer() Returns the current shared-memory
buffer.

Loading and Unloading a User Dictionary

TextToSpeechLoadUserDictionary() Loads a user dictionary.

TextToSpeechUnloadUserDictionary() Unloads a user dictionary.

56 The Core API Functions
seamlessly concatenated with previously queued characters. The
TTS_FORCE argument is used to force a string of characters to be
spoken even though the string might not complete a clause. For
example:

TextToSpeechSpeak(phTTS, "This will be spoken. ", TTS_NORMAL);

This text is spoken immediately by the system because it is termi-
nated by a period and a space. These last two characters are one
way to create a clause boundary.

TextToSpeechSpeak(phTTS, "This will be spok", TTS_NORMAL);

This produces output only after the following line of code executes to
complete the phrase.

TextToSpeechSpeak(phTTS, "en. ", TTS_NORMAL);

Finally, a nonphrase string can be forced to be spoken by using the
TTS_FORCE argument.

TextToSpeechSpeak(phTTS, "This will be spok", TTS_FORCE);

Note that the word spoken is not pronounced correctly in this case
even if the final characters, en are queued immediately afterward.

The TTS_FORCE argument causes the previous line to be spoken
before taking any subsequently queued characters into account.

Important Text-Queuing Information

It is important that all sentences are separated with a space, new line,
or line feed character. To make sure of this, it is recommended that a
space character is routinely included after the final punctuation in a
sentence. An example of what happens without this is shown below:

TextToSpeechSpeak(phTTS, "They are tired.", TTS_NORMAL);

TextToSpeechSpeak(phTTS, "I am Cold.", TTS_NORMAL);

Because there is no space, the text-to-speech system processes the
following string:

"They are tired.I am Cold."

The string, tired.I, will be pronounced incorrectly because the system
treats it as one item instead of two words.

Introduction to the DECtalk Software API 57
Clause-Based Synthesis

DECtalk Software processes all text on a clause basis. A clause is
defined as a group of words terminated by a period, question mark,
exclamation point, question mark, semicolon, or a colon and followed
by white space. If you send DECtalk Software a string of text with NO
terminator, it goes into an infinite loop waiting for a clause terminator.
The Sync in-line command can be used to complete a clause without
using a terminator.

Callback Routines and Window Procedures

After TextToSpeechSpeak() is called, the text-to-speech system can
notify the calling application in one of two ways. On Windows, the
information is passed back through window messages or callback
routines, depending on which startup function was called. See the
DECtalk Software Reference Guide for more information on startup
functions.

Callback routines should not call TextToSpeech…() functions. If a
callback routine does call TextToSpeech…() functions, a crash may
occur in the application calling DECtalk Software.

Both the window procedures and the callback routines have a
message type and the WPARAM and the LPARM parameters. There
are three message types defined: one for error and status messages,
one for index marks, and one to return memory buffers when using
the TextToSpeechOpenInMemory() function. The WPARAM and the
LPARAM parameters contain specific information, based on the
message type.

Phoneme Notifications

Phoneme notifications are sent using the standard notification method
(callback or message). The message identifier is the
DECtalk_Visual_Message registered window message. The data
portions of the message contain a structure that indicates the current
phoneme, the next phoneme (not yet implemented), and the duration
of the current phoneme.

The callback (and message) parameters are as follows:

58 The Core API Functions
• uiMsg DECtalk_Visual_Message

• lParam1 A DWORD that maps the dwData part of the
PHONEME_TAG structure

• lParam2 The time, in system milliseconds (timeGetTime()), when
the phoneme started

The union PHONEME_TAG (from ttsapi.h) defines the data format for
the phoneme part of the message. The following is included for
reference, but the definitions always should be taken from the ttsapi.h
file.

typedef struct {
UCHAR cThisPhoneme; // current phoneme
UCHAR cNextPhoneme; // next phoneme, if known
WORD wDuration; // duration in milliseconds

} PHONEME_MARK;
typedef union {\

PHONEME_MARK pmData;
DWORD dwData

} PHONEME_TAG

The cThisPhoneme and cNextPhoneme fields are ASCII printable
singlecharacter phoneme identifiers. The phoneme identifiers are
specific to each language. See the DECtalk Software Reference
Guide for the phoneme identifiers for cThisPhoneme and cNext-
Phoneme.

An example callback routine to show phoneme notification is as
follows:

VOID TTSCallbackRoutine (LONG lParam1,
LONG lParam2,
DWORD dwInstanceParam,
UINT uiMsg)

{
PHONEME_TAG ptPhoneme; // place to put the phoneme data..
ptPhoneme.dwData = lParam2;
fprintf(fpLogfil,”{%ld} “,timeGetTime());
if (uiMsg == uiID_Index_Msg)
{

fprintf(fpLogfil,

“ [Index] p1=%081x p2=%081x i=%081x“,
lParam1, lParam2, dwInstanceParam);
// watch for index marks..
if (lParam2 == 1)
uiSystemState = TEXT_STARTED;
if (lParam2 == 2)
uiSystemState = TEXT_DONE;

}
else if (uiMsg == uiID_Error_Msg)
{

fprintf(fpLogfil,

“ [Error] p1=%081x p2=%081x i=%081x“,
lParam1, lParam2, dwInstanceParam);

}
else if (uiMsg == uiID_Buffer_Msg)
{

fprintf(fpLogfil,

“ [Buffer] p1=%081x p2=%081x i=%081x“,

Introduction to the DECtalk Software API 59
lParam1, lParam2, dwInstanceParam);
}
else if (uiMsg == uiID_Visual_Msg)

char szThisPhoneme[10]=““;
char szNextPhoneme[10]=““;
fprintf(fpLogfil,

“ [Visual] p1=%081x p2=%081x i=%081x“,
lParam1, lParam2, dwInstanceParam);

// decode it..
if (ptPhoneme.pmData.cThisPhoneme ==’\0’)
{

// null

strcpy (szThisPhoneme,“<null>“);
}
else
{

szThisPhoneme[0]=ptPhoneme.pmData.cThisPhoneme;
szThisPhoneme[1]=’\0’;

}
if (ptPhoneme.pmData.cNextPhoneme ==’\0’)
{

// null

strcpy (szNextPhoneme,“<null>“);
}
else
{

szNextPhoneme[0]=ptPhoneme.pmData.cThisPhoneme;
szNextPhoneme[1]=’\0’;

}
fprintf(fpLogfil,

“ time: %ld this:%s next:%s expected at %ld“,
lParam1,
szThisPhoneme,
szNextPhoneme,
timeGetTime()+ptPhoneme.pmData.wDuration);

}
else
{

fprintf(fpLogfil,

“ [??] msg=%081x, p1=%081x, p2=%081x, i=%081x“,
(DWORD)uiMsg, lParam1, lParam2,
dwInstanceParam);

}

fprintf(fpLogfil, “\n“);
}

Error Messages

The message type for error and status messages is defined as
follows:

• For Callback Routines:

uiID_Error_Message = TTS_MSG_STATUS;

• For Window Messages:

uiID_Error_Message =
RegisterWindowMessage("DECtalkErrorMessage");

60 The Core API Functions
One of the error codes listed below, defined in the ttsapi.h file, is
contained in the WPARAM parameter. The LPARAM parameter
contains a value of type MMRESULT. The values can be found in the
ttsapi.h file.

Error Code Values

#define ERROR_IN_AUDIO_WRITE

#define ERROR_OPENING_WAVE_OUTPUT_FILE

#define ERROR_GETTING_DEVICE_CAPABILITIES

#define ERROR_READING_DICTIONARY

#define ERROR_WRITING_FILE

#define ERROR_ALLOCATING_INDEX_MARK_MEMORY

#define ERROR_OPENING_WAVE_FILE

#define ERROR_BAD_WAVE_FILE_FORMAT

#define ERROR_UNSUPPORTED_WAVE_FILE_FORMAT

#define ERROR_UNSUPPORTED_WAVE_AUDIO_FORMAT

#define ERROR_READING_WAVE_FILE

#define TTS_AUDIO_START

#define TTS_AUDIO_STOP

Index Mark Messages

The message type for index marks is defined as follows:

• For Callback Routines:

uiID_Index_Message = TTS_MSG_INDEX_MARK;

• For Window Messages:

uiID_Index_Message =
RegisterWindowMessage("DECtalkIndexMessage");

The LPARAM parameter contains the index mark value. Note that the
index mark information can also be returned in the buffer message.
This happens when the text-to-speech system is in the speech-to-
memory mode as a result of the TextToSpeechOpenInMemory() call.
See “Special Text-To-Speech Modes” on page 65 Modes for more
information on this topic.

Introduction to the DECtalk Software API 61
Buffer Messages

The message type for buffered speech samples is defined as follows:

• For Callback Routines:

uiID_Buffer_Message = TTS_MSG_BUFFER;

• For Window Messages:

uiID_Buffer_Message =
RegisterWindowMessage("DECtalkBufferMessage");

A pointer to the returned memory buffer is contained in the LPARAM
parameter. Additional information about index marks and phonemes
may also be returned here. See “Return of Memory Buffers” on
page 69 for additional details on what information gets returned.

Callback Routine Example
VOID main()
{

LPTTS_HANDLE_TAG phTTS;
TextToSpeechStartupEx(&phTTS, WAVE_MAPPER,REPORT_OPEN_ERROR,Call-
back, 0);

}
VOID Callback(LONG lParam1, LONG lParam2, DWORD dwCallbackParame-

ter,UINT uiMsg)
{

if (uiMsg == TTS_MSG_STATUS)
{

// lParam1 contains error code
// lParam2 contains value of MMRESULT

}
else if (uiMsg == TTS_MSG_INDEX_MARK)
{

// lParam2 contains index mark
}
else if (uiMsg == TTS_MSG_BUFFER)
{

// lParam2 contains Pointer to buffer
}

}

Window Procedure Example
static UINT uiID_Error_Message = 0;
static UNIT uiID_Buffer_Message = 0;
static UNIT uiID_Index_Message = 0;

// Window Procedure
VOID MyWndProc(LONG lParam1, LONG lParam2, DWORD dwCallbackParame-

ter,UINT uiMsg)
{

if (uiMsg == uiID_Error_Message)
{

// lParam1 contains error code
// lParam2 contains value of MMRESULT

}
else if (uiMsg == uiID_Index_Message)

62 Audio Output Control Functions
{
// lParam2 contains index mark

}
else if (uiMsg == uiID_Buffer_Message)
{

// lParam2 contains Pointer to buffer
}

}
VOID main()
{

LPTTS_HANDLE_TAG phTTS;
TextToSpeechStartupEx(&phTTS, WAVE_MAPPER, REPORT_OPEN_ERROR,

MyWndProc, 0);
// Registering messages to report DECtalk asynchronous events
uiID_Error_Message = RegisterWindowMessage("DECtalkErrorMessage");
// Callback message is registered indicating index marks
uiID_Index_Message = RegisterWindowMessage("DECtalkIndexMessage");
// Callback message is registered indicating DECtalk has filled up

an audio buffer
uiID_Buffer_Message = RegisterWindowMessage("DECtalkBufferMes-

sage");
}

Audio Output Control Functions

The audio output control functions are used to:

• Pause the audio output

• Resume output after pausing

• Reset the text-to-speech system

An application can control speech output using TextToSpeech-
Pause(), TextToSpeechResume(), and TextToSpeechReset(). A
reset discards all queued text and stops and discards all queued
audio. If the application calls TextToSpeechOpenInMemory() to
store speech samples in memory, a reset causes all buffers to be
returned to the application.

Introduction to the DECtalk Software API 63
Blocking Synchronization Function

The TextToSpeechSync() function blocks execution of the appli-
cation until all text previously queued by the TextToSpeechSpeak()
function is spoken. After the blocking synchronization function is
called, there is no way to abort until all text is processed. This could
take hours if there is a great deal of text queued. Non-blocking
synchronization can be provided using the Index Mark in-line
command.

64 Control and Status Functions
Control and Status Functions

The control and status functions described in Table 3-2 provide
additional information for the text-to-speech system.

Table 3-2: API Control and Status Functions

Functions Purpose

TextToSpeechSetSpeaker() Sets the speaker’s voice, which becomes
active at the
next clause boundary.

TextToSpeechGetSpeaker() Returns the value of the last speaker to have
spoken.

TextToSpeechSetRate() Sets the speaking rate, which becomes active
at the next clause boundary.

TextToSpeechGetRate() Gets the speaking rate.

TextToSpeechSetLanguage() Sets the text-to-speech system language.
Refer to the ttsapi.h file for a list of valid lan-
guages, e.g. TTS_AMERICAN_ENGLISH.
(not supported)

TextToSpeechGetLanguage() Returns the current text-to-speech system
language. (not supported)

TextToSpeechGetStatus() Returns various text-to-speech system
parameters, such as the number of charac-
ters in the text pipe, the ID of the wave output
device, and a Boolean value that indicates
whether the text-to-speech system is cur-
rently speaking or silent.

TextToSpeechGetCaps() Returns the capabilities of the text-to-speech
system, which includes the version number of
the system, the number of speakers, the max-
imum and minimum speaking rate, and the
supported languages

Introduction to the DECtalk Software API 65
Special Text-To-Speech Modes

After the startup function is called by an application, the application
then can call TextToSpeechSpeak() to speak text. This converts text-
to-speech and sends the speech sample to an audio device,
depending on the setting of the dwFlags field in the startup routine.

The DECtalk Software API also provides alternatives for the speech
samples by allowing the user to select one of the special text-to-
speech modes. The special text-to-speech mode functions allow the
speech samples to be written to a Wave file; converted to text,
phonemes, or syllables and stored in a log file; or saved in memory
buffers to be passed back to the calling application. Each modeswitch
function has a corresponding function to return the text-to-speech
system to the startup state. These functions are listed in Table 3-3.

Table 3-3: Special Text-To-Speech Modes

The text-to-speech system must be in the startup state before calling
any of the open functions listed in Table 3-3. The corresponding close
functions return the system to the startup state.

Wave-File Mode

After calling the startup function, an application can call
TextToSpeechOpenWaveOutFile(). This call blocks until all previ-
ously queued text is processed. After the call returns, all text subse-
quently queued by the TextToSpeechSpeak() function is converted to
speech samples and written into a wave file. The TextToSpeech-
CloseWaveOutFile() call blocks until the speech from all previously
queued text is written to the file.

Open Function Mode Close Funcion

TextToSpeechOpenWaveOutFile() wave-file TextToSpeechCloseWaveOutFile()

TextToSpeechOpenLogFile() log-file TextToSpeechCloseLogFile()

TextToSpeechOpenInMemory() speech-to-
memory

TextToSpeechCloseInMemory()

66 Special Text-To-Speech Modes
Log-File Mode

After calling the startup function, an application can call the
TextToSpeechOpenLogFile() function. This call blocks until all previ-
ously queued text is processed. After the call returns, all text subse-
quently queued by the startup function is written to a log file as text,
phonemes, or syllables. The phonemes and syllables are written
using the arpabet phoneme alphabet. The TextToSpeechCloseL-
ogFile() function terminates phoneme logging and blocks until the
speech from all previously queued text is processed.

Speech-To-Memory Mode

After calling the startup function, an application can call the
TextToSpeechOpenInMemory() function. This call blocks until all
previously queued text is processed. After the call returns, all text
subsequently queued by the TextToSpeechSpeak() function is
converted to speech and stored in the memory buffers supplied by the
TextToSpeechAddBuffer() call. The TextToSpeechCloseInMemory()
function blocks until the speech from all previously queued text is
processed. When a memory buffer is completed, the buffer is returned
to the calling application. See “Callback Routines and Window Proce-
dures” on page 57 for more information about passing data back to
the calling application.

Initialization of Memory Buffers

A memory buffer is a TTS_BUFFER_T structure. This structure and
the elements of its lpData, lpPhonemeArray, and lpIndexArray
members must be allocated. (Note that these last two pointers can be
set to NULL optionally if they are not used by the application.)

• The lpData element points to a byte array. The dwMaximumBuffer-
Length element must be set to the length of this array.

• If the lpPhonemeArray element is set to NULL, no phonemes are
returned. Otherwise, the lpPhonemeArray element must point to an
application-allocated array of structures of type TTS_PHONEME_T.
The length of this array must be copied into the dwMaximumNumber-
OfPhonemeChanges element.

Introduction to the DECtalk Software API 67
• If the lpIndexArray element is set to NULL, no index marks are
returned. Otherwise, the lpIndexArray element must point to an appli-
cation-allocated array of structures of type TTS_INDEX_T. The length
of this array must be copied into the dwMaximumNumberOfIndex-
Changes element.

TTS_BUFFER_T Structure (ttsapi.h)

This structure is allocated by the calling application and passed to the
text-to-speech system through the TextToSpeechAddBuffer()
function.

typedef struct TTS_BUFFER_TAG
{

LPSTR lpData;
LPTTS_PHONEME_T lpPhonemeArray;
LPTTS_INDEX_T lpIndexArray;
DWORD dwMaximumBufferLength;
DWORD dwMaximumNumberOfPhonemeChanges;
DWORD dwMaximumNumberOfIndexMarks;
DWORD dwBufferLength;
DWORD dwNumberOfPhonemeChanges;
DWORD dwNumberOfIndexMarks;
DWORD dwReserved;

} TTS_BUFFER_T;

typedef TTS_BUFFER_T * LPTTS_BUFFER_T;

TTS_PHONEME_T Structure (ttsapi.h)

This structure is used to store phoneme, stress, and syntactic codes
of the speech sample. Refer to Phonemic Symbols and to Stress and
Syntactic Symbols in the DECtalk Software Reference Guide for a
detailed list of these symbols.

typedef struct TTS_PHONEME_TAG

{
// Phoneme, Stress or Syntactic symbols
DWORD dwPhoneme;

// Indicates which sample in the memory buffer
// corresponds to the phoneme symbol
DWORD dwPhonemeSampleNumber;

// Duration of phoneme symbol in milliseconds
DWORD dwPhonemeDuration

DWORD dwReserved;
} TTS_PHONEME_T;
typedef TTS_PHONEME_T * LPTTS_PHONEME_T;

68 Special Text-To-Speech Modes
TTS_INDEX_T Structure (ttsapi.h)

This structure is used to store index marks defined by the Index Mark
in-line command. Refer to the Index Mark in-line command in the
DECtalk Software Reference Guide for information on the syntax and
uses of index marks.

typedef struct TTS_INDEX_TAG
{

// Index Mark value
DWORD dwIndexValue;

// Indicates which sample in the memory buffer
// corresponds to the index mark value
DWORD dwIndexSampleNumber;

DWORD dwReserved;
} TTS_INDEX_T;
typedef TTS_INDEX_T * LPTTS_INDEX_T;

TTS_CAPS_T Structure (ttsapi.h)

This structure is used by the TextToSpeechGetCaps() function to
store language and proper name support, the sample rate, the
minimum and maximum speaking rates, the number of predefined
speaking voices, the character-set supported, and the version
number.

typedef struct TTS_CAPS_TAG
{

DWORD dwNumberOfLanguages;
LPLANGUAGE_PARAMS_T lpLanguageParamsArray;
DWORD dwSampleRate;
DWORD dwMinimumSpeakingRate;
DWORD dwMaximumSpeakingRate;
DWORD dwNumberOfPredefinedSpeakers;
DWORD dwCharacterSet;
DWORD Version;

} TTS_CAPS_T;

typedef TTS_CAPS_T * LPTTS_CAPS_T;

The lpLanguageParamsArray element is a pointer to an array of
structures of type LANGUAGE_PARAMS_T. The dwNumberOfLan-
guages element contains the number of elements in this array. The
dwLanguage element of each structure in this array equals one of
the supported languages. The dwLanguageAttributes element of
each structure can contain the following constant, defined in include
file ttsapi.h:

PROPER_NAME_PRONUNCIATION

Introduction to the DECtalk Software API 69
Return of Memory Buffers

When the memory buffer is completed, it is returned to the calling
application. A memory buffer is considered to be completed when any
one of the following occurs:

• The memory buffer, which is pointed to by the lpData field, is filled.

• The phoneme array is filled. Refer to the DECtalk Software Reference
Guide for more information on the phoneme codes.

• The index mark array is filled. Refer to DECtalk Software Reference
Guide for more information on the index marks.

• The TTS_FORCE argument is used in the call to TextToSpeech-
Speak().

The application must not modify any buffer passed to the text-to-
speech system by the TextToSpeechAddBuffer() function until the
buffer is returned from the text-to-speech system to the calling appli-
cation. The application then owns the buffer. If no buffers are
available, the system blocks. If the application is processing relatively
long passages of text, the application should queue several buffers
and then requeue each buffer after finishing with that buffer, so that
the system is not idle.

A call to TextToSpeechReset() returns all buffers to the application.
The TextToSpeechReturnBuffer() function forces the return of the
current memory buffer, whether it is fil led or not. This function might
not be required by most applications. It is included so an application
can obtain the last buffer without forcing that buffer to be sent with
the TTS_FORCE argument in the TextToSpeechSpeak() function.

When the memory buffer, a TTS_BUFFER_T structure, is returned to
the calling application, it contains the following return values:

Parameter Value

dwBufferLength Number of bytes of audio samples.

lpData Pointer to the audio sample data.

dwNumberOfPhonemeChanges Number of phoneme changes.

lpPhonemeArray Pointer to the phoneme information.

dwNumberOfIndexMarks Number of index marks.

lpIndexArray Pointer to the index mark information.

70 Dictionary Functions (Linux)
The index and phoneme arrays each contain a time stamp in the form
of a sample number. This sample number is initialized at zero at
startup and after each call to TextToSpeechReset(). The phoneme
array also contains the current phoneme duration in frames. Each
frame is approximately 6.4 milliseconds.

Dictionary Functions (Linux)

DECtalk Software comes with a main dictionary, which is a compiled
list of words and their associated phonemic interpretation. This main
dictionary is loaded during the startup function. In addition to a main
dictionary, users can create their own user dictionaries and access
them using the TextToSpeechLoadUserDictionary() and
TextToSpeechUnloadUserDictionary() functions.

Creating a User Dictionary

DECtalk Software includes two dictionary applets. Both applets help
users to create their own user dictionaries, which can be loaded at
startup time or while the text-to-speech system is active.

Loading the Main Dictionary

The startup function loads the DECtalk Software main pronunciation
dictionary:

Applet Location Comments

userdict /sr/local/bin/userdict Compiles a user dictionary from a file
containing both the word and its phone-
mic pronunciation.

windict /usr/local/X11/bin/windict Provides a graphical user interface for:
• Pronouncing words
• Translating words into their phonemic
symbols
• Compiling a user dictionary from a list of
words and their phonemic symbols

Introduction to the DECtalk Software API 71
/usr/local/lib/DECtalk/dtalk_ langcode.dic

Replace langcode with the designation for the appropriate language,
such as us for United States English, uk for United Kingdom English,
sp for Castilian Spanish, la for Latin American Spanish, gr for German,
or fr for French; for example, dtalk_us.dic.

On Linux systems, the main dictionary pathnames are defined in the
file /etc/DECtalk.conf at label LANGCODE_dict: (for example, at label
US_dict: for US English).

If the dictionary file cannot be found or is loaded improperly, then the
startup function returns an error.

NOTE: DECtalk Software also provides variants and supplements to the default
mainpronunciation dictionaries, as follows:
• dtalk_fl_gr.dic is a supplemental German foreign-language dictionary, which
allows you to include foreign phrases in German speech
• dtalk_grs.dic is a smaller variant of the German main dictionary, which
provides a subset of the content of dtalk_gr.dic
• dtalk_uks.dic is a smaller variant of the U.K. English main dictionary, which
provides a subset of the content of dtalk_gr.dic
• dtalk_usm.dic is a medium-sized variant of the U.S. English main dictionary,
which provides a medium-sized subset of the content of dtalk_us.dic
• dtalk_uss.dic is a smaller variant of the U.S. English main dictionary, which
provides a small subset of the content of dtalk_us.dic

Loading the User Dictionary

The startup function attempts to load the DECtalk Software user
pronunciation dictionary from the user’s home directory:

$HOME/udict_ langcode.dic (Linux)

On Linux systems, replace langcode with the designation for the
appropriate language, such as us for United States English, uk for
United Kingdom English, sp for Castilian Spanish, la for Latin
American Spanish, gr for German, or fr for French; for example,
udict_us.dic.

On Linux systems, the user dictionary names are defined in the file /

etc/DECtalk.conf at label LANGCODE_udict: (for example, at label

US_udict: for US English).

72 Dictionary Functions (Windows)
If the dictionary file is found but cannot be loaded, the startup
function returns an error.

After the startup function has completed successfully, the user can
load and unload user dictionaries by using the TextToSpeechLoa-
dUserDictionary() and TextToSpeechUnloadUserDictionary()
functions.

Dictionary Functions (Windows)

DECtalk Software comes with a main dictionary, which is a compiled
list of words and their associated phonemic interpretation. This main
dictionary is loaded during the startup function call. In addition to a
main dictionary, users can create their own user dictionaries and
access them using the TextToSpeechLoadUserDictionary() and
TextToSpeechUnloadUserDictionary() functions.

Creating a User Dictionary

DECtalk Software includes the following files, which help users to
create their own user dictionaries. A user dictionary can be loaded at
startup time or while the text-to-speech system is active.

Introduction to the DECtalk Software API 73
Loading the Main Dictionary (Dynamic or Static Engine)

The TextToSpeechStartup() function attempts to find the entry for
the

DECtalk Software main pronunciation dictionary in the registry at:
REGISTRY KEY:
HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk Software\DECtalk\ version\langcode
Value: MainDict

The dictionary is then set to:
[user selected dir]\system\dtalk_ langcode.dic

Replace version in the path designation with the current version
number for the DECtalk Software, using the format x.xx; for example,
4.62.

Replace langcode with the designation for the appropriate language,
such as US for United States English, UK for United Kingdom English,
SP for Castilian Spanish, LA for Latin American Spanish, GR for
German, or FR for French; for example, dtalk_us.dic.

If the MainDict entry, as specified in the registry entry, cannot be
found, the TextToSpeechStartup() call returns a value of
MMSYSERR_ERROR. If the registry entry is missing, then the
TextToSpeechStartup() function defaults to looking in the appli-
cation’s default directory for DTALK_ langcode.dic to be loaded as the
main pronunciation dictionary.

If the main pronunciation dictionary fails to be loaded, the
TextToSpeechStartup() function returns a value of
MMSYSERR_ERROR.

File Name Location Comments

windic.exe \Program Files\DECtalk windic.exe Application that has a graphi-
cal user interface and can:
• Pronounce words
• Translate words into their phonemic
symbols
• Compile a user dictionary from a list of
words and their phonemic symbols

user.tab \Program Files\DECtalk Source file used by windic.exe to create
the user dictionary.

74 Dictionary Functions (Windows)
NOTE: DECtalk Software also provides variants and supplements to the default main
pronunciation dictionaries, as follows:
• dtalk_fl_gr.dic is a supplemental German foreign-language dictionary, which
allows you to include foreign phrases in German speech
• dtalk_grs.dic is a smaller variant of the German main dictionary, which
provides a subset of the content of dtalk_gr.dic
• dtalk_uks.dic is a smaller variant of the U.K. English main dictionary, which
provides a subset of the content of dtalk_gr.dic
• dtalk_usm.dic is a medium-sized variant of the U.S. English main dictionary,
which provides a medium-sized subset of the content of dtalk_us.dic
• dtalk_uss.dic is a smaller variant of the U.S. English main dictionary, which
provides a small subset of the content of dtalk_us.dic

Loading the Main Dictionary (Static Engine)

The TextToSpeechStartup() function attempts to find the dictionary in
the home directory of the statically linked application. If that fails, the
TextToSpeechStartup() function then looks in the defined PATH of the
Windows operating system. The file name in either case is DTALK_
langcode.dic. If the PATH look up fails, the value from the registry
entry for the static engine is used. The registry entry for the static
engine is:

REGISTRY KEY:
HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk Software\DECtalk\ langcode
Value: MainDict

If the main pronunciation dictionary fails to be loaded, the
TextToSpeechStartup() function returns a value of
MMSYSERR_ERROR.

Loading the User Dictionary

The TextToSpeechStartup() function attempts to find the entry for the
DECtalk Software user pronunciation dictionary in the registry at:

REGISTRY KEY:
HKEY_CURRENT_USER\Software\DECtalk Software\DECtalk\ version\langcode
Value: UserDict

The dictionary is then set to:
[user selected dir]\user.dic

Replace version in the path designation with the current version
number for the DECtalk Software, in the format x.xx; for example,
4.62.

Introduction to the DECtalk Software API 75
Replace langcode with the designation for the appropriate language,
such as US for United States English, UK for United Kingdom English,
SP for Castilian Spanish, LA for Latin American Spanish, GR for
German, or FR for French.

If the UserDict entry as specified in the registry entry cannot be
found, the TextToSpeechStartup() function returns a value of
MMSYSERR_ERROR. If the registry entry is missing, the
TextToSpeechStartup() function defaults to looking in the application
default directory for user.dic to be loaded as the user pronunciation
dictionary.

If the user pronunciation dictionary fails to be loaded, then the
TextToSpeechStartup() function returns a value of
MMSYSERR_ERROR.

Registry Entry Information

OEM customers can install the 32-bit code for DECtalk Software,
together with other application software, on an end-user computer
system, without using the DECtalk installation software. In such
cases, you need to make registry entries on the end-user system to
enable DECtalk Software to work correctly with your application.
When the DECtalk engine starts, it checks for licenses, descriptions,
numbers of instances, and so on in the registry entries.

An installation program that you create to install your application and
the necessary components of DECtalk Software on an end-user
system must set up registry entry information on that system.

In addition to installation considerations, you may also need registry
entry information to resolve some kinds of errors. For example,
DECtalk Software may report that the user dictionary is not found in
the expected location. You can look up registry entry information in
the following list to see how to interpret registry entries correctly and
to see what registry entries have changed in the current version of
DECtalk.

76 Registry Entry Information
NOTE: Some earlier versions of DECtalk Software use DigitalEquipmentCorporation
in the registry entries, as follows:
HKEY_LOCAL_MACHINE\SOFTWARE\DigitalEquipmentCorpo-

ration\DECtalk\version\ langcode

Registry Entry Formats and Locations
[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Classes\CLSID\{clsidno}]
"DECtalk_{langcode}"="DECtalk TTS Engine {langcode}"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Classes\CLSID\{clsidno}\InprocServer32]
@="C:\WIN95\Speech\dtlkttse_{langcode}.dll"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Classes\Software\DECtalk\{version}
"Version"="DECtalk MultLang version {version}
"Language"="MULTI LANGUAGE"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Microsoft\Windows\CurrentVersion\App Paths\{appname}.exe]
"Path"="C:\Program Files\DECtalk\;C:\Program Files\DECtalk\Help"
@="C:\Program Files\DECtalk\{appname}.exe"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Microsoft\Windows\CurrentVersion\Uninstall\DECtalkDeinstKey]
"UninstallString"="C:\WIN95\uninst.exe -f\"C:\Program
Files\DECtalk\DeIsL6.isu\""
"DisplayName"="DECtalk V{version}"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Voice\TextToSpeech\Engine]
"DECtalk_{langcode}"="{clsidno}"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk Software\DECtalk\{version}]
"Company"="q"
"Installer"="q"
"LicUpdPwd"="{licpswd}"
"Lock_MGR"="2"
"Licenses"="{liccount}"
"MultiLang"="1"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\DECtalk\{version}\{langcode}]
"Version"="DECtalk {langcode} version {version}"
"Language"="{langname}"
"MainDict"="C:\Program
Files\DECtalk\{langcode}\DTALK_{langcode}.dic"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk Software\DECtalk\Langs]
"US"="ENGLISH,US"
"DefaultLang"="UK"
"SP"="CASTILIAN SPANISH"
"LA"="LATIN AMERICAN SPANISH"
"GR"="GERMAN"
"UK"="ENGLISH,UK"
"FR"="FRENCH"

[HKEY_CURRENT_USER\Software\DECtalk
Software\DECtalk\{version}\{langcode}]
"UserDict"="C:\Program
Files\DECtalk\{langcode}US\USER_{langcode}.dic"

Introduction to the DECtalk Software API 77
Registry Entry Key

• Where langcode is "US", "UK", "SP", "LA", "GR", or "FR". Quotation
marks are not part of the value.

• Where langname is the language name for a specific language:

Quotation marks are not part of the value.

• Where version is "4.62" or current version number.

• Where appname is the name of an application using DECtalk.

• Where licpswd is encrypted password for licenseu.exe program.

• Where liccount is encrypted number of authorized engine licenses.

• Where clsidno is the CLSID numbers for a specific langcode:

You must include the {} around the clsidno specified.

Quotation marks are not part of value.

langcode langname

US “EGLISH,US”

SP “CASTILIAN SPANISH”

LA “LATIN AMERICAN SPANISH”

GR “GERMAN”

UK “ENGLISH,UK”

FR “FRENCH”

langcode clsidno

“US” "{ED737300-8FCB-11ce-AB5D-00AA00590F2B}"

“SP” "{99EE9560-A4A6-11d1-BEB2-0060083E8376}"

“LA” "{99EE9550-A4A6-11d1-BEB2-0060083E8376}"

“GR” "{99EE9570-A4A6-11d1-BEB2-0060083E8376}"

“UK” "{99EE9540-A4A6-11d1-BEB2-0060083E8376}"

“FR” "{99EE9580-A4A6-11d1-BEB2-0060083E8376}"

78 Sample Programs (Windows)
Sample Programs (Windows)

Sample programs include:

The sample programs are furnished as examples of simple Windows
applications you can build, using the DECtalk Software API. The
source code for the sample programs is placed in the root directory,
\DECTALK\SAMPLE\, during the installation. These programs include the
API definition file ttsapi.h and are linked with dectalk.lib.

Using the DECtalk Software Development Kit (the Win32 SDK must
be installed):

1 Bring up a Windows console window.

2 Set your default directory to the \DECTALK\SAMPLE\DTSAMPLE directory.

3 Enter nmake

This procedure produces the dtsample.exe executable file. This file
can be executed at the Windows console window or the File Manager.

The dtsample program demonstrates most of the DECtalk Software
API functions. Any application can call any of the API functions by
including the ttsapi header file (ttsapi.h) and linking with the DECtalk
Software library (dectalk.lib), as long as the associated dll file
(dectalk.dll) is present. The dectalk.dll file must be installed and the
dictionary file dectalk.dic must be in the dictionary path in the registry
or in the local directory.

dtsample This is an example of a basic Window editor with integrated text-
to-speech.

Say This is an example of a command-line program using DECtalk
Software.

dtmemory This is an example of synthesis into memory buffers.

ttstst This is a sample program to demonstrate the Microsoft speech
API interfaces supported by the DECtalk Software speech engine.

4

Multi-Language
Programming

Multi-Language Programming 81
Multi-language programming using DECtalk Software requires loading
a DECtalk language, selecting a loaded language for a program
thread, starting a TTS instance, closing the program thread, and
closing that language. Swapping a language requires shutting down
and closing the thread and the language selector. You can load as
many languages as you want during the execution of your program as
well as select two or more languages concurrently. The following
steps summarize the methodology to start, select, and close a single
language.

NOTE: You must start and select a language before using DECtalk Software to
speak.
Multi-language programming is supported by the dynamic engine only. The
static engine does not support multi-language programming.

The basic elements of multi-language programming are presented as
follows:

• Starting a language

• Selecting a language

• Closing a language

• Multi-language programming example

Starting a Language

To start a DECtalk language, use the TextToSpeechStartLang()
function to pass the two-letter name of the language you want to load.
After the language is loaded, you receive a handle to that language. If
the language is already loaded, you get the previously loaded handle
to that language as the return value. The same handle is used for all
instances of a language per run. On failure, you receive a handle with
the TTS_LANG_ERROR bit set as defined in ttsfeat.h.

Example: TextToSpeechStartLang (”uk”)

82 Selecting a Language
Selecting a Language

Before a call can be made to any of the standard DAPI functions, and
after you have the handle to a language, you must select the
language. This is accomplished through the TextToSpeechSe-
lectLang() function. You must select the language before each call to
any DAPI function that does not take in a valid LPTTS_HANDLE_T
handle. The first parameter to TextToSpeechSelectLang() must be
NULL. The second parameter is the handle retrieved from
TextToSpeechStartLang(). The return value from TextToSpeechSe-
lectLang() is a Boolean value: TRUE signifies success and FALSE
signifies failure.

Example: TextToSpeechSelectLang (NULL,UKhandle)

Closing a Language

After you close your program threads, use the TextToSpeech-
CloseLang() function to close the language. This function accepts the
two-character language name of the language to release and then
attempts to release the language and its associated files. If other
threads are still using the language, the TextToSpeechCloseLang()
function reduces the instance counter by one for that language. The
file is free when all language hooks are freed.

Example: TextToSpeechCloseLang (”uk”)

Multi-Language Programming 83
Example

This example shows DECtalk ML allocating English (us), creating a
thread, destroying the thread, and finally closing the language.

void sample(void) {
unsigned long int UShandle;
MMRESULT result;
LPTTS_HANDLE_T phTTS;

UShandle = TextToSpeechStartLang(”us”);
if (UShandle & TTS_LANG_ERROR) {

printf(”Error loading US English\n”);
exit(1);

}
if (TextToSpeechSelectLang(NULL, UShandle) == FALSE) {

printf(”Error selecting language\n”);
TextToSpeechCloseLang(”us”);
exit(1);

}
result = TextToSpeechStartup(hWnd, &phTTS, WAVE_MAPPER,

REPORT_OPEN_ERROR);
if (result != MMSYSERR_NOERROR) {

printf(”Unable to start DECtalk Speech Engine\n”);
TextToSpeechCloseLang(”us”);
exit(1);

}
TextToSpeechShutdown(phTTS);

TextToSpeechCloseLang(”us”);
printf(”Example completed successfully!\n”);
return;

}

84 Example

85
Glossary

allophone

A positional or free variant of a phoneme.

applet

A small application that normally performs a very specific function and
can be used with other larger applications.

arpabet

A special phonetic alphabet used to write phonemes and syllables.

clause boundary

The natural boundary between two or more clauses in a sentence that
helps the listener easily separate the sentence into its component
parts. Commas, periods, exclamation points, question marks, semi-
colons, and colons are symbols used to indicate clause boundaries.

clause mode

The normal mode in which DECtalk Software speaks text a phrase,
clause, or sentence at a time. In clause mode, speaking starts when
DECtalk Software is sent a clause terminator (period, comma, excla-
mation point, question mark, semi-colon, or colon) followed by a
space.

clause terminator

A symbol used to begin and terminate a clause boundary. Symbols
can be periods, commas, exclamation points, question marks, semi-
colons, or colons. Each of these symbols must be followed by a space.

comma pause

The pause DECtalk Software takes in speaking that is equivalent to
inserting a comma in a sentence. Comma pause can be increased and
decreased with the Comma Pause in-line command.

.dic file

The loadable dictionary file created by the User Dictionary Build Tool

86 Glossary
from a .tab source file.

dynamic engine

A text-to-speech engine that is accessed by applications as .lib files,
using a dynamic link library (DLL). DLLs are software modules in
Microsoft Windows operating environments that contain executable
code and data that can be called and used by Windows applications or
other DLLs. Functions and data in a DLL are loaded and linked at run
time when they are referenced by a Windows application or other
DLLs. DLLs can be unloaded when the code is no longer needed. The
dynamic engine object code is not part of the application’s executable
code, except for runtime link references to the dynamic engine.

emphatic stress

The emphasis placed on a syllable of a word to give it more meaning.

falling intonation

A decrease in voice pitch.

flush

Process by which the Text-To-Speech system discards data in the
system.

heuristic

A method or rule used to decide among several courses of action.
Often called a “rule of thumb.” In the case of DECtalk Software,
pronunciation heuristics govern the manner in which DECtalk Software
pronounces words.

homograph

A pair of words that have the same spelling but which are pronounced
differently, depending on which syllable is accented. For example, the
pronunciation of permit as a noun and the pronunciation of permit as a
verb.

index marker (flag)

A marker placed in the text stream to synchronize an external event.
An index marker is inserted with the Index Mark command.

87
intonation

The manner in which a voice imparts extra meaning to speech by
adjusting sound durations and voice pitch. For example, the emphasis
and meaning of the sentence, Bill, put in the edits. can be changed by
putting stronger emphasis on the name, Bill. Bill! Put in the edits!

letter mode

The state in which DECtalk Software speaks each letter as it is
queued. In word and letter mode, DECtalk Software does not need to
wait for a clause terminator to begin speaking. This command interacts
with the rate selection command so that you can set both rate
selection and letter mode for optimal output.

log file

A file that receives speech output samples that are written as text,
phonemes, or syllables. The phonemes and syllables are written using
the arpabet phoneme alphabet.

log-file mode

Log-file mode indicates that the speech samples are to be written as
text, phonemes, or syllables into a log file rather than sent to an audio
device. The TextToSpeechOpenLogFile() function enters the text-to-
speech system into a log-file mode. The TextToSpeechCloseLogFile()
function returns the text-to-speech system to the startup state.

morpheme

The minimum syntactic unit of a language that has an important role in
determining pronunciations. For example, spell has only one
morpheme, while misspelling is made up of three: mis, spell, and ing.

period pause

The pause DECtalk Software inserts when it finds a period that marks
the end of the sentence. This pause imitates humans taking a breath.
This pause is approximately half a second.

phoneme

The smallest unit of speech that distinguishes one word from another.
Phonemes are divided into vowel and consonant phonemes. DECtalk
Software interprets text brackets as phonemes only after the phoneme

88 Glossary
arpabet command is used.

phoneme arpabet command

A command that causes all text within brackets to be treated as
phonemic text.

phoneme string

Two or more phonemes together used to pronounce a special word or
group of words.

phonemicize

To encode words as strings of phonemes.

phonemic mode

A mode that DECtalk Software uses for speaking phoneme strings.

phonemic transcription

A word written the way it is pronounced is said to be in phonemic
transcription or simply in phonemics. When DECtalk Software says a
word or phrase not as you intended, you might need to use phonemic
transcription to get the desired pronunciation. For example, [r ’ ehd] is
the phonemic transcription of the past tense verb read.

phrase boundary

A clause boundary formed by terminating punctuation (comma, period,
exclamation point, question mark, semi-colon, colon) followed by a
space.

pitch control symbols

Symbols used to override built-in DECtalk Software pitch control.
Symbols include pitch rise [/], pitch fall [\], and pitch rise and fall [/\].

primary stress

Most content words of English (nouns, verbs, adjectives, and adverbs)
contain one primary stressed syllable. The primary stress symbol in
DECtalk Software is the apostrophe [’].

89
proper name

First names, last names, street names, company names, and place
names are all examples of proper names.

secondary stress

A symbol used to indicate a degree of stress that is between primary
and unstressed (no stress). The secondary stress symbol is the grave
accent [‘].

silence phonemes

Silences of specified durations inserted into text files in the same
manner as you would insert a phoneme.

speech-to-memory mode

In speech-to-memory mode, speech samples are written into memory
buffers rather than sent to an audio device. The TextToSpeechAd-
dBuffer() function supplies the text-to-speech system with the memory
buffers that it needs. The TextToSpeechOpenInMemory() function
causes the text-to-speech system to enter speech-to-memory mode.
The TextToSpeechCloseInMemory() function returns the text-to-
speech system to the startup state.

startup function

Startup function refers to either the TextToSpeechStartup() function or
the TextToSpeechStartupEx() function.

startup state

Startup state indicates that TextToSpeechStartup() or TextToSpeech-
StartupEx() has been successfully called and the text-to-speech
system is not in one of the three special modes; wavefile, log-file, or
speech-to-memory mode. While in startup state, speech samples are
sent to an audio device or ignored, depending on whether the
DO_NOT_USE_AUDIO_DEVICE flag is set in the dwDeviceOptions
parameter of the startup function. If the text-to-speech system is in one
of its special modes, the speech samples are handled accordingly.

static engine

A text-to-speech engine that is accessed by applications as .lib files
without using dynamic link libraries (DLLs). The static engine object

90 Glossary
code is part of the application’s executable code. See also dynamic
engine.

syntactic function words

A set of words that are either unstressed or have secondary stress.
They include prepositions, conjunctions, determiners, auxiliary verbs,
pronouns, question mark, and clause introducers. DECtalk Software
uses stress and syntactic symbols to control aspects of rhythm, stress,
and intonation patterns. These symbols include punctuation marks
such as commas, periods, question marks, and exclamation points.

.tab file

The source file used to build a user dictionary.

user dictionary

The dictionary that you define for DECtalk Software to load and use
with an application to control the pronunciation of specific words
processed by the application.

user dictionary builder

An applet included with DECtalk Software to build and compile user
dictionaries.

voice-control command

A DECtalk Software in-line command inserted into text strings and
used to control basic and special Text-To-Speech attributes, such as
speaking voice and speaking rate.

Wave file

A Microsoft standard file format for storing waveform audio data. Wave
files have a .wav file extension.

wave-file mode

Wave-file mode indicates that the speech samples are to be written to
a wave file rather than sent to an audio device. The
TextToSpeechOpenWaveOutFile() function enters the text-to-speech
system into a wave-file mode. The TextToSpeechCloseWaveOutFile()
function returns the text-to-speech system to the startup state.

91
wave form output

The digitized reproduction of a sound wave form. DECtalk Software
produces wave form output from the Speak applet and the API, both of
which allow you to save an ASCII text file to .wav file format.

word boundary

A white space character (space or tab) in the text that indicates a
boundary between words. DECtalk Software uses word boundary
symbols to select the word-beginning or word-ending allophone of a
phoneme.

word mode

A text-processing mode in which DECtalk Software speaks one word
at a time. A blank space or equivalent after a character or string of
characters causes that string to be spoken in word mode.

92 Glossary

Index
Symbols

.dic 31

.tab 36

A

API 13

Application Programmer 17

application programming interfaces 13

ASCII text 9

audio output control functions 62

B

Blocking Synchronization Function 63

Buffer Messages 61

Building a User Dictionary 34

builtin dictionary 15

C

Callback Routine 61

changing speaking rate 14

Changing the Speaking Rate 29

Changing the Speaking Voice 27

clause buffering 9

Clause-Based Synthesis 57

command strings 10

Control and Status Functions 64

Core API Functions 55

Creating a User Dictionary
linux 70
Windows 72

custom dictionary 15

D

DAPI 13, 53

DECtalk features and functions 9

dictionary file 31

Dictionary Functions

linux 70
Windows 72

documentation conventions 5

Dtsample 23

Dynamic Data Exchange 16

E

Error Code Values 60

G

General User 17

I

Index Mark Messages 60

Initialization of Memory Buffers 66

in-line commands 14, 25
syntax 25

internal dictionary 15

L

large dictionary 15

Loading the Main Dictionary
linux 70
Windows 73, 74

Loading the User Dictionary
linux 71
Windows 74

Log-File Mode 66

M

Microsoft Word 41

O

overview 9

P

Phoneme Notifications 57

program applet
Dtsample 10
Say command-line 13
Speak 11

programming aids 13

pronunciation dictionaries 15

R

Registry Entry 75
Formats 76

registry entry
Locations 76

Registry Entry Key 77

Return of Memory Buffers 69

S

sample applets 10

Sample Programs 78

SAPI 13

say command syntax 48

Say Command-Line Applet 48

single characters 9

Speak Applet 38

speech synthesis 9

Speech-To-Memory Mode 66

Sync in-line command 57

syntax 25

T

Text-Queuing 56

Text-to-Speech 16

Text-to-Speech Server 41

TextToSpeechSpeak 55

TTS 16

U

user dictionary 15
building 34

User Dictionary Build Tool 31

user-defined dictionary 15

V

Voice changes 27

voice characteristics 14

voices 9

W

Wave-File Mode 65

Window Procedure 61

Word Macro 41

Fonix Corporation
9350 South 150 East Ste 700
Sandy, UT 84070-2715
801-553-6600
www.fonix.com

	DECtalk® Software Programmers Guide
	Contents
	Preface
	Purpose and Audience
	Structure
	Conventions

	Introduction
	Features and Functions
	High-Quality Speech and Word Pronunciation Accuracy
	Letter Mode, Word Mode, and Clause Mode
	Short Command Strings
	Pronunciation Heuristics

	Components
	Dtsample Applet (Windows Only)
	Figure 1�1:� Visual Overview of the Dtsample Applet
	1 Dialog
	2 Menu bar: File, Edit, Speak, Voice, Rate, Languages, and Help menus
	3 Start, pause, and stop push buttons
	4 Speech speed-control slider
	5 Edit window for text input

	Speak Applet
	Figure 1�2:� Visual Overview of the Speak Applet
	1 Menu bar: File, Edit, and Help menus
	2 Voice-activation buttons
	3 Edit window for text input
	4 Speech speed-control slider
	5 Start, pause, and stop push buttons

	Say Command-Line Applet

	Programming Aids
	Application Programming Interfaces (APIs)
	In-Line Voice Control Commands
	Figure 1�3:� In-Line Command Components
	1 In-line commands are inserted into ASCII text files, begin with a colon, and are always inserte...
	2 Two or more commands can be inserted after each other by enclosing each command within a set of...
	3 Phonetic spellings of words can be included also. Phonetic spellings are enclosed within a set ...

	Dictionary Facilities

	Text-to-Speech Server (Windows 95/98/ ME/NT/2000/XP Only)
	Using the Components
	Application Programmer
	General User

	How It Works
	Figure 1�4:� Flow of the DECtalk Software Text-To-Speech Conversion Process
	1 Text is selected for processing by DECtalk Software.
	2 A sentence parser breaks the input stream into separate words and locates some clause boundarie...
	3 A dictionary lookup routine searches the pronunciation dictionaries. DECtalk Software has a bui...
	4 A phrase structure module recombines all phonemic output from the dictionary search and other m...
	5 The DECtalk speech synthesizer computes a speech waveform with acoustic characteristics that ar...

	Using the Applets
	Speaking a Text File
	Figure 2�1:� Speaking a Text File Using the Dtsample Applet
	Table 2�1:� Speaking a Text File

	Inserting In-Line Voice Control Commands
	Figure 2�2:� Rules for DECtalk Software In-Line Command Syntax
	1 Enclose every command within brackets.
	2 Some commands provide an alternate form to simplify input. Here the :name command and its argum...
	3 Begin every command with a colon.
	4 Separate each command name and its option or parameter from the command name text by a valid wo...
	5 Include several options and parameters within the same brackets if the command allows more than...
	6 If you give two conflicting commands, DECtalk Software uses the last command in the sequence. I...
	7 If you enable phoneme interpretation by using the [:phoneme arpabet speak on] command, you can ...

	Changing the Speaking Voice
	Table 2�2:� DECtalk Voices and Their Associated Values
	Figure 2�3:� Changing the Speaking Voice
	Table 2�3:� Changing the Speaking Voice

	Changing the Speaking Rate
	Figure 2�4:� Changing the Speaking Rate
	Table 2�4:� Changing the Speaking Rate

	Using the User Dictionary Build Tool
	Menus and Commands
	Figure 2�5:� User Dictionary Build Tool
	1 Edit Window
	2 File menu
	3 Edit menu
	4 Translate menu
	5 Language menu
	6 Help menu
	7 Pronounce Word button
	8 Previous button
	9 Next button

	Building a User Dictionary
	Figure 2�6:� Creating or Modifying a User Dictionary
	Table 2�5:� Creating or Modifying a User Dictionary
	Figure 2�7:� Saving and Compiling the Dictionary
	Table 2�6:� Saving and Compiling the Dictionary

	Using the Speak Applet
	Figure 2�8:� Using the Speak Applet
	Table 2�7:� Using the Speak Applet
	Figure 2�9:� Highlighting Spoken Text from the Speak Applet
	Table 2�8:� Highlighting Spoken Text in the Speak Applet

	Using the Text-to-Speech Server from Windows Applications
	1 Creating a Word macro and associating it with a template
	2 Associating the macro with a button, menu selection, or hot key
	3 Launching the DECtalk TTS Server and speaking the text
	4 Speaking the text from within the document
	Step 1 - Creating a Word Macro
	Figure 2�10:� Creating a Word Macro
	Table 2�9:� Creating a Word Macro

	Step 2 - Associating the Word Macro with a Toolbar Button
	Figure 2�11:� Associating the Word Macro with a Toolbar Button
	Table 2�10:� Associating the Word Macro with a Toolbar Button

	Step 3 - Launching and Configuring the DECtalk TTS Server
	Figure 2�12:� Launching and Configuring the DECtalk Server
	Table 2�11:� Launching and Configuring the DECtalk TTS Server

	Step 4 - Speaking Microsoft Word Text With the TTS Server
	Figure 2�13:� Speaking Text in a Word File With the TTS Server
	Table 2�12:� Speaking Microsoft Word Text With the TTS Server

	Using the Say Command-Line Applet

	Introduction to the DECtalk Software API
	Table 3�1:� Text-To-Speech Functions by Category
	The Core API Functions
	TextToSpeechSpeak
	Important Text-Queuing Information
	Clause-Based Synthesis
	Callback Routines and Window Procedures
	Phoneme Notifications
	Error Messages
	Index Mark Messages
	Buffer Messages
	Callback Routine Example
	Window Procedure Example

	Audio Output Control Functions
	Blocking Synchronization Function
	Control and Status Functions
	Table 3�2:� API Control and Status Functions

	Special Text-To-Speech Modes
	Table 3�3:� Special Text-To-Speech Modes
	Wave-File Mode
	Log-File Mode
	Speech-To-Memory Mode
	Initialization of Memory Buffers
	TTS_BUFFER_T Structure (ttsapi.h)
	TTS_PHONEME_T Structure (ttsapi.h)
	TTS_INDEX_T Structure (ttsapi.h)
	TTS_CAPS_T Structure (ttsapi.h)
	Return of Memory Buffers

	Dictionary Functions (Linux)
	Creating a User Dictionary
	Loading the Main Dictionary
	Loading the User Dictionary

	Dictionary Functions (Windows)
	Creating a User Dictionary
	Loading the Main Dictionary (Dynamic or Static Engine)
	Loading the Main Dictionary (Static Engine)
	Loading the User Dictionary

	Registry Entry Information
	Registry Entry Formats and Locations
	Registry Entry Key

	Sample Programs (Windows)
	1 Bring up a Windows console window.
	2 Set your default directory to the \DECTALK\SAMPLE\DTSAMPLE directory.
	3 Enter nmake

	Multi-Language Programming
	Starting a Language
	Selecting a Language
	Closing a Language
	Example
	Glossary
	Index

