
PART 2 Logic synthesis

0pt0.6pt

ALLIANCE TUTORIAL 1

ALLIANCE TUTORIAL
Pierre & Marie Curie University

2001 - 2004

PART 2
Logic synthesis

Ak Frederic Lam Kai-shing
Modified by LJ

PART 2 Logic synthesis

The purpose of this tutorial is to provide a quick turn of some ALLIANCE tools,
developed at the LIP6 laboratory of Pierre and Marie Curie University.

The tutorial is composed of 3 main parts independent from each other:

• VHDL modeling and simulation
• Logic synthesis
• Place and route

Before going further you must ensure that all the environment variables are properly
set (source alcenv.sh or alcenv.csh file) and that the Alliance tools are available when
invoking them at the shell prompt.

All tools used in this tutorial are documented at least with a manual page.

ALLIANCE TUTORIAL 3

PART 2 Logic synthesis

Contents

1 Introduction
2 Finite states machine Synthesis

2.1 Introduction
2.2 MOORE and MEALY automatons
2.3 SYF and VHDL
2.4 Example
2.5 Step to follow

3 Automat for digicode
3.1 Step to follow

4 Logic synthesis and structural optimization
4.1 Introduction

4.1.1 Logic synthesis
4.1.2 Solve fan-out problems
4.1.3 Long path visualization
4.1.4 Netlist Checking
4.1.5 Scan-path insertion

4.2 Step to follow
4.2.1 Mapping on predefined cells
4.2.2 Netlist visualization
4.2.3 Boolean network optimization
4.2.4 Netlist optimization
4.2.5 Netlist checking
4.2.6 Scan-path insertion in the netlist

5 AMD 2901
5.1 exercise
5.2 step to follow
5.3 error found

6 AMD2901 structure
7 Part controls design

7.1 genlib description example
7.2 provided files checking
7.3 Part controls description

8 Data-path design
8.1 Example of description with genlib macro-functions
8.2 Data-path description

9 The Makefile or how to manage tasks dependency
9.1.1 Rules
9.1.2 models Rules
9.1.3 Variables definitions
9.1.4 Predefined variables

10 Appendix: Diagrams as an indication but not-in conformity with the behavioral

ALLIANCE TUTORIAL 4

PART 2 Logic synthesis

PART 2 :
Logic Synthesis

All the files used in this part are located under/usr/share/do/alliane-do-5.0/tutorials/synthesis/sr directory.
This directory contents four subdirectories and one Makefile :

• Makefile
• amdbug

– Makefile
– amdfindbug.pat : tests file
– several files amd.vbe : behavioral description

• counter

– Makefile
– cpt5.fsm : description in fsm
– cpt5.pat : tests file

• digicode

– Makefile
– digicode.fsm : description in fsm
– paramfile.lax : use to modify the fan-out
– digicode.pat : tests file
– scan.path : make it possible to observe registers contents

• amd2901

– Makefile
– amd2901_ctl.vbe : behavioral description of control part
– amd2901_dpt.vbe : behavioral description of data-path
– amd2901_ctl.c : file .c of control part
– amd2901_dpt.c : file .c of data-path
– amd2901_core.c : file .c of heart
– amd2901_chip.c : file .c of the circuit with their pads
– pattern.pat : tests file

ALLIANCE TUTORIAL 5

PART 2 Logic synthesis

1 Introduction

The goal of this section is to present some ALLIANCE tools which are:

• Logic synthesis tools SYF, BOOM, BOOG, LOON, SCAPIN ;
• Data-path generation toolGENLIB ;
• netlist graphical viewer XSCH ;
• formal proof Tools FLATBEH, PROOF;
• The simulator ASIMUT ;

The first two sections will relate to the netlist generation and validation methods
of predefined cells. Indeed, even if it is acquired that the tools for ALLIANCE generation
function correctly, the validation of each generated view is essential . It makes it
possible to limit the cost and the time of the design.
The two other sections will be reserved for the data-path generation and the control
part of AMD2901.

2 Finite states machine Synthesis

2.1 Introduction

A pure combinatorial circuit has no internal registers. So its outputs depend only on
its primary inputs. On the contrary a synchronous sequential circuit having internal
registers sees its outputs changing according to its inputs but also memorized values in
its registers. As consequence, the circuit state at the moment t+1 also depends on its
state at the moment t. This type of circuit can be formally modelized as a finite states
machine.

reset and day

E0

reset
reset

E1

 reset

E2

alarm=0

alarm=0

alarm=1
day and reset

door=0

door=0

reset or day

day and reset

door=1

Figure 1: Automat

2.2 MOORE and MEALY automaton

The MOORE automaton sees the state of its outputs changing only on clock-edges. The
inputs can thus move between two clock-edges without modifying the outputs. But in

ALLIANCE TUTORIAL 6

PART 2 Logic synthesis

the case of MEALY automaton, the variation of the inputs can modify at any time the
value of the outputs. It will be essential to separate the generation function from the
transition function (Moore automaton). Two distinct processes will then modelize the
next state computation and the current state register update.

ck

ck

ckck

generation

o

transition

o o

ii i

states registerstates register

function
transition

function

generation
function

generation
function

Moore Automat Mealy Automat

transition
function

states register

function

Moore Automat optimized
on propagation time of o

Figure 2: Automats

2.3 SYF and VHDL

In order to describe the automatons, we use a particular VHDL style description that
defines architecture "FSM" (Finite-State Machine).

The corresponding file also has the extension fsm . From this file, the tool SYF
makes the automaton synthesis and after state encoding, it transforms this abstracted
automaton into a Boolean network and a state register. SYF then generates a VHDL
file using the vbe subset. Like most of all tools used in alliance, it is necessary to set
some variables before using SYF . You can refer to the man page of syf for more
details.

2.4 Example

In order to take in hand the particular syntax of a fsm file, an example of three
successive "1" counter is presented. Its vocation is to detect for example on a connection
series, a sequence of three successive "1" counter. The state graph is represented on
the figure 3.
The fsm format is detailed in the man page fsm(5) .

ALLIANCE TUTORIAL 7

PART 2 Logic synthesisentity iruit isport (k, i, reset, vdd, vss : in bit;o : out bit);end iruit;arhiteture MOORE of iruit istype ETAT _TYPE is (E0, E1, E2, E3);signal EF, EP : ETAT _TYPE;- - pragma CURRENT _STATE EP- - pragma NEXT _STATE EF- - pragma CLOCK CKbegin proess (EP, i, reset)beginif (reset='1') thenEF<=E0;else ase EP iswhen E0 =if (i='1') thenEF <= E1;else EF <= E0;end if;when E1 =if (i='1') thenEF <= E2;else EF <= E0;end if;when E2 =if (i='1') thenEF <= E3;else EF <= E0;end if;when E3 =if (i='1') thenEF <= E3;else EF <= E0;end if;when others = assert ('1')report "etat illegal";end ase;end if;ase EP iswhen E0 =o <= '0' ;when E1 =o <= '0' ;when E2 =o <= '0' ;when E3 =o <= '1' ;when others = assert ('1')report "etat illegal";end ase;end proess;proess(k)beginif (k='1' and not k'stable) thenEP <= EF;end if;end proess;end MOORE;
ALLIANCE TUTORIAL 8

PART 2 Logic synthesis

E0

E1

E2

E3

o=0

o=1

0

0

0

0 1

11

1

reset

reset

reset

o=0

o=0

Figure 3: states graph of three successive "1" counter

2.5 Step to follow

Now you can use this example to write the description of a five successive "1" counter
in aMoore automaton.

• position the environment variables .
• launch SYF with the coding options -a, -J, -m, -O, -R and by using the options

-CEV .

-a Uses "Asp" as encoding algorithm.

-j Uses "Jedi" as encoding algorithm.

-m Uses "Mustang" as encoding algorithm.

-o Uses the one hot encoding algorithm.

-r Uses distinct random numbers for state encoding.> syf -CEV -a <fsm_soure>
• visualize the files enc . Those files contains one state name followed by its hex-

adecimal code value.
• write stimuli (test vectors) and simulate with ASIMUT .

ALLIANCE TUTORIAL 9

PART 2 Logic synthesis

3 Automaton for digicode

We want to design a digicode circuit whose keyboard is represented on the figure 4.
The specifications are as follows:

0

1 2 3

4 5 6

7 8 9

A B

O

Figure 4: Clavier

• The numbers from 0 to 9 are coded in natural binary on 4 bits. A and B are coded
in the following way:

– A: 1010
– B: 1011

• The digicode works in two modes:

– Day Mode: The door opens while pressing on "O" or if entering the good code
– Night Mode: The door opens only if the code is correct.

To distinguish the two cases an external "timer" calculates the signal day which is
equal to ’ 1 ’ between 8h00 and 20h00 and ’ 0 ’ otherwise.

• The digicode order an alarm as soon as one of the entered numbers is not the good.
• The digicode automaton returns in idle state if nothing returned to the keyboard

at the end of 5 seconds or if alarm sounded during 2mn - signal reset -. For that
it receives a signal from reset external timer.

• The chip works at 10MHz.
• Any pressure of a key of the keyboard is then followed by the signal press_kbd .

This one announces to the chip that the output data of the keyboard is valid. This
signal is set to 1 during a clock-edge.

The code is 53A17 (but you can take the code who agrees to you). The interface of
this automaton is as follows:

• in ck
• in reset
• in day

ALLIANCE TUTORIAL 10

PART 2 Logic synthesis

• in i[3:0]
• in O
• in press_kbd
• out door
• out alarm

reset et press_kbd

reset

reset ou press_kbd

i=0101 et O

reset et press_kbd

reset et press_kbd

i=0011 et O

reset et press_kbd

reset et press_kbd

ou (O and day)

ou (O and day)

ou (O and day)

ou (O and day)

i=0111
ou (O and day)

i=0101

E5

E0
Ea

E1

E2

E3

E4

i=0011

reset

reset
reset

reset

reset

reset

i=1010

i=0001

i=1010 et O

i=0001 et O

door=0
alarm=0

door=0
alarm=1

door=0
alarm=0

door=0
alarm=0

door=0
alarm=0

door=0
alarm=0

door=1
alarm=0

day and O

(day and O)

ou (i=0111 et O)

day and O

day and O

day and O

Figure 5: Digicode states graph

3.1 Step to follow

• draw the states graph.
• describe it in the fsm format .
• synthesize your description with SYF using different state encoding algorithms

-a, -j, -m, -o, -r and by using the options -CEV.> syf -CEV -a <fsm_soure>
• write stimuli (test vectors).
• simulate with ASIMUT all the resulting vbe descriptions.

ALLIANCE TUTORIAL 11

PART 2 Logic synthesis

4 Logic synthesis and structural optimization

4.1 Introduction

4.1.1 Logic synthesis

The logic synthesis permits to obtain a netlist of gates given a Boolean network (format
vbe). Several tools are available:

• The tool BOOM allows the Boolean network optimization before mapping with
BOOG .

• The tool BOOG synthesizes a netlist by using a library with predefined cells such
as SXLIB . The netlist can be either with the format vst or with the format al .
Check the environment variable MBK_OUT_LO=vst.

4.1.2 Solve fan-out problems

Generated netlists may contain internal signals that drive a significant number of gates
(large FAN-OUT). In order to solve this problem, the tool LOON replaces the cells
having a too large fan-out by more powerful cells and/or insert buffers.

4.1.3 Long path visualization

At any moment, the netlists can be graphically displayed using XSCH. This tool permits
also to highlight the longest path on the schematic thanks to the files xsc and vst
generated by BOOG and LOON .

T

RC

T+RC

propagation time

R
i0C

T: intrinsic time

R: equivalent resistor of AND

C: equivalent capacity of NOR

Figure 6: Simplified timing diagram

Equivalent resistor R of the figure 6 is calculated on the totality of the transistors of
the AND belonging to the active way. In the same way, the capacity C is calculated on
the busy transistors of the NOR corresponding to the way between i0 and the output
of the cell.

ALLIANCE TUTORIAL 12

PART 2 Logic synthesis

4.1.4 Netlist Checking

The netlist must be validated. For that, you have ASIMUT , but also the tool PROOF
which proceeds to a formal comparison of two behavioral descriptions (vbe). The tool
FLATBEH is usefull to obtain a new behavioral file starting from a netlist (given a vbe
file for each leave cells of the hierarchy).

4.1.5 Scan-path insertion

With SCAPIN we can insert a scan-path into the netlist. The scan-path allow the
designer to observe in test mode the value of all registers of your circuit. The path is
created by changing each registers into a mux_register (or by inserting a multiplexer in
front of all registers).

ALLIANCE TUTORIAL 13

PART 2 Logic synthesis

4.2 Step to follow

4.2.1 Mapping on predefined cells

For each Boolean network obtained previously:

• set properly environment variables;
• synthesize the structural view:> boog <vbe_soure>
• launch BOOG on different netlists to observe SYF options influence (different

state encoding technics).
• validate the work of BOOG with ASIMUT , the netlists obtained with stimuli

which were used to validate the initial Boolean network.

4.2.2 Netlist visualization

• The longest path (critical path) is described in the xsc file produced by boog .
The XSCH tool will use it to highlight this path on the schematic. To launch the
graphical schematic viewer:>xsh -I vst -l <vst_soure>

• The red color indicates the critical path.
• you can use the option ’ -slide ’ followed by netlist names to display one by one a

set of schematics. The keys ’ + ’ and ’ - ’ can then be used to display respectively
next and previous netlist.

4.2.3 Boolean network optimization

To analyze Boolean optimization effect :

• launch Boolean optimization with the tool BOOM by asking an optimization in
surface then in delay ;>boom -V <vbe_soure> <vbe_destination>

• test BOOM with the various algorithms - S, - J, - B, - G, - p..., the options specifie
which algorithm has to be used for the boolean optimization.

• compare the literal number after factorization.
• remake the Boolean networks synthesis with the tool BOOG and compare the

results.

4.2.4 Netlist optimization

For all the structural view obtained previously:

• launch LOON with the command:>loon <vst_soure> <vst_destination> <lax_param>
ALLIANCE TUTORIAL 14

PART 2 Logic synthesis

• carry out an fanout optimization by modifying the fanout factor in the option file
.lax .The optimization mode and level are able to be change in this file.

• impose capacities values on the outputs.

4.2.5 Netlist checking

to carry out on the best of your netlists:

• validate the work of LOON by running ASIMUT on the different netlists ob-
tained, using the stimuli that were defined to validate the initial behavioral view.

• Make a formal comparison of your netlist with the original behavioral file resulting
from SYF :>flatbeh <vst_soure> <vbe_dest>>proof -d <vbe_origin> <vbe_dest>

Checks if the files are formally identicals.

4.2.6 Scan-path insertion in the netlist

to carry out on the best of your netlists:

• insert a scan-path connecting all the digicode registers.>sapin -VRB <vst_soure> <path_file> <vst_dest>

ALLIANCE TUTORIAL 15

PART 2 Logic synthesis

Example of .path fileBEGIN_PATH_REGs_0s_1s_2END_PATH_REGBEGIN_CONNECTORSCAN_IN sinSCAN_OUT soutSCAN_TEST testEND_CONNECTOR
• build ten patterns to test the scan-path and simulate with ASIMUT .

ALLIANCE TUTORIAL 16

PART 2 Logic synthesis

5 AMD 2901

5.1 exercise

First of all, here is an exercise to understand the AMD2901 chip functionality. The goal
is to design it using Alliance, as described in the following parts of this tutorial.

To explore all functionalities, you will have to validate the behavioral view that will
be provided. All needed informations will be find in appendix.

The validation will have to be done using stimuli generated by genpat. The vectors
must be carefully written to enable you to detect BUG in your behavioral file .vbe .
Approximately 500 patterns will be enough for debugging your AMD 2901.

5.2 step to follow

It is necessary to generate stimuli that tests all the parts and all functions of the AMD
following the specifications described in the documentation.

• filling and reading the 16 boxes memories of the RAM .
• test the RAM shifter
• filling and reading of the accumulator.
• test the accumulator shifter .
• test the arithmetic and logic operations (addition, subtraction, overflow, carry,

propagation, etc...) .
• exhaustive test of the inputs conditioned by I[2:0].
• data-path test vectors

5.3 error found

You can notice that for the RAM shifter values "101" and "111" of i[8:6], the AMD causes
a shift of the accumulator that should not take place.

for the values "000" and "001" of i[8:6], the circuit writes the ALU output in RAM .
The AMD carries out the operation R xor S for I[5:3]=111 instead of carrying out

the operation for I[5:3]=110.
It carries out the operation /(R Xor S) for I[5:3]=110 instead of I[5:3]=111.

ALLIANCE TUTORIAL 17

PART 2 Logic synthesis

6 AMD2901 structure

We break up Amd2901 into 2 blocks:

CHIP

CORE

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

OPERATIVE
part

CONTROL
part

Figure 7: Amd2901 Organization

• The data-path contains the Amd2901 regular parts , the registers and the arithmetic
logic unit.

• The control part contains irregular logic, the instructions decoding and the flags
computation.

ALLIANCE TUTORIAL 18

PART 2 Logic synthesis

We will use the following hierarchical description:

amd2901_core

amd2901_chip

amd2901_dptamd2901_ctl

Pads

Figure 8: Hierarchy

The provided files are as follows:

• amd2901_ctl.vbe, behavioral description of the part controls
• amd2901_dpt.vbe, behavioral description of the part data-path
• amd2901_ctl.c, file C of the part controls
• amd2901_dpt.c, file C of the part of data path
• amd2901_core.c, file C of the heart
• amd2901_chip.c, file C of the circuit containing the pads
• pattern.pat, tests file
• CATAL, file listing the behavioral files, to be modify
• Makefile, to automate the generation

ALLIANCE TUTORIAL 19

PART 2 Logic synthesis

7 Part controls design

This part of irregular logic will be carried out with the cells of the library SXLIB.

Description in VHDL netlist (i.e .vst) of the various gates hazardous when the cir-
cuit contain several thousands of them. there exists a tool for procedural signals lists
generation , genlib . It is then enough to describe in C using macro-functions the sig-
nals list in gates of the block. The library of macro-functions C is called genlib . The
genlib execution produces a description VHDL with the format .VST . For more details,
consult the manual (man) on genlib .

7.1 genlib description example

here a simple circuit:

a
sb

c

d

e

f1 h1

i1g1

The equivalent genlib file is as follows:#inlude <genlib.h>main(){GENLIB_DEF_LOFIG("iruit");/* Connetors delaration */GENLIB_LOCON("a",IN,"a1");GENLIB_LOCON("b",IN,"b1");GENLIB_LOCON("",IN,"1");GENLIB_LOCON("d",IN,"d1");GENLIB_LOCON("e",IN,"e1");GENLIB_LOCON("s",OUT,"s1");GENLIB_LOCON("vdd",IN,"vdd");GENLIB_LOCON("vss",IN,"vss");/* Combinatorial gates instaniation */GENLIB_LOINS("na2_x1","nand2","a1","1","f1","vdd","vss",0);GENLIB_LOINS("no2_x1","nor2","b1","e1","g1","vdd","vss",0);GENLIB_LOINS("o2_x2","or2","d1","f1","h1","vdd","vss",0);GENLIB_LOINS("inv_x1","inv","g1","i1","vdd","vss",0);GENLIB_LOINS("a2_x2","and2","h1","i1","s1","vdd","vss",0);/* Save of the figure */GENLIB_SAVE_LOFIG();exit(0);}
Save it under the name “ circuit.c ” then compile the file with the command :> genlib iruit

ALLIANCE TUTORIAL 20

PART 2 Logic synthesis

You obtain the file “ circuit.vst ”. (if is not it, it may be due to environment variables
that are not properly set for genlib).

7.2 provided files checking

Create the file CATAL in your simulation directory . It must contain the following lines:amd2901_tl Camd2901_dpt C
It makes the simulator use the behavioral files (.vbe) of “ amd2901_ctl ” and of “

amd2901_dpt ’ ’.> asimut amd2901_hip pattern result
You can verify the resulting patterns by using xpat on the file “ result ”.

7.3 Part controls description

The diagrams corresponding to the signals list to design are provided to you. compile it
by using the steps below.

Generate the signals list vst starting from the file c by the command:> genlib amd2901_tl
Then validate the structural view obtained by simulating the complete circuit with

the tests vectors which are provided to you. Replace the behavioral view of the part
controls by his structural view by removing the name amd2901_ctl of CATAL file.> asimut -zerodelay amd2901_hip veteurs result

Note that one carries out a simulation “ without delay ” of the netlist. In the event of
problem, do not hesitate to use xpat .> asimut amd2901_hip pattern result

After having validated the functional behavior of the netlist, simulate it using prop-
agation delays. Modify time values between the patterns. Indeed, asimut is able to
evaluate the propagation times for each cell of the netlist (taken into account the "after"
clauses specify in vbe files).

ALLIANCE TUTORIAL 21

PART 2 Logic synthesis

8 Data-path design

The data path is formed by the regular logic of the circuit. In order to benefit from
this regularity, we generates the signals list in the vectorial operators form (or columns)
via the macro-functions of the tool genlib . That makes it possible to save place by
using several times the same material . For example, the NOT of a mux of N bits is
instanciate only once for these N bits...

8.1 Example of description with genlib macro-functions

Let us consider the following circuit:

a[3:0]

b[3:0]
s[3:0]

v cmd cout

c[3:0]

d[3:0]
e[3:0]

Here the corresponding data-path structure :

a[3]
b[3]

a[2]

a[1]

a[0]

c[3]

b[2]
c[2]

b[1]
c[1]

b[0]
c[0]

s[3]

s[0]

s[1]

s[2]

coutv cmd

Each gate occupies a column, a column making it possible to treat a whole of bits for
the same operator. The first line represents bit 3, the last bit 0 .

ALLIANCE TUTORIAL 22

PART 2 Logic synthesis

The file genlib correspondent is as follows:#inlude <genlib.h>main(){GENLIB_DEF_LOFIG("data_path");/* onnetors delaration */GENLIB_LOCON("a[3:0℄",IN,"a[3:0℄");GENLIB_LOCON("b[3:0℄",IN,"b[3:0℄");GENLIB_LOCON("[3:0℄",IN,"[3:0℄");GENLIB_LOCON("v",IN,"w");GENLIB_LOCON("out",OUT,"t");GENLIB_LOCON("s[3:0℄",OUT,"s[3:0℄");GENLIB_LOCON("md",IN,"md");GENLIB_LOCON("vdd",IN,"vdd");GENLIB_LOCON("vss",IN,"vss");/* operators reation */GENLIB_MACRO(GEN_NAND2, "model_nand2_4bits", F_PLACE, 4, 1);GENLIB_MACRO(GEN_OR2, "model_or2_4bits", F_PLACE, 4);GENLIB_MACRO(GEN_ADSB2F, "model_add2_4bits", F_PLACE, 4);/* operators Instaniation */GENLIB_LOINS("model_nand2_4bits", "model_nand2_4bits","v", "v", "v", "v","a[3:0℄","d_aux[3:0℄",vdd, vss, NULL);GENLIB_LOINS("model_or2_4bits", "model_or2_4bits","d_aux[3:0℄","b[3:0℄","e_aux[3:0℄",vdd, vss, NULL);GENLIB_LOINS("model_add2_4bits", "model_add2_4bits","md","out","ovr","e_aux[3:0℄","[3:0℄","s[3:0℄",vdd, vss, NULL);/* Save of figure */GENLIB_SAVE_LOFIG();exit(0);}
Save it under the name “ data_path.c ”, then compile the file with the command:> genlib data_path
You obtain the file “ data_path.vst ” (in the contrary case, it may be that your envi-

ronment is badly configured for genlib).In this case, pass to the section “ Data path
description”.

Note: genlib can also create the physical placement (the drawing) of a structural
description .

8.2 Data-path description

The diagrams corresponding to the signals list to design are given. Compile it following
the steps below .

ALLIANCE TUTORIAL 23

PART 2 Logic synthesis

Generate the signals list vst starting from the c file, using the command:> genlib amd2901_dpt
Validate the netlist in the same way as it has been done for the control part. Remove

CATAL file and simulate the circuit with asimut .> asimut -zerodelay amd2901_hip pattern result

ALLIANCE TUTORIAL 24

PART 2 Logic synthesis

9 The Makefile or how to manage tasks dependencies

The synthesis under Alliance breaks up into several tools being carried out chrono-
logically on a data flow. Each tool has its own options giving the results more or less
adapted according to the use of the circuit.

fsm vbe vbe vst vst vstSYF BOOM BOOG LOON SCAPIN

synthesys optimisation synthesys optimisation scan−path

automat behavioral netlist netlist netlistbehavioral

Figure 9: the synthesis

The data dependency in the flow are materialized in reality by file dependency. The
file Makefile carried out using the command make makes it possible to manage these
dependencies.

9.0.1 Rules

A Makefile is a file containing one or more rules translating the dependency between
the actions and the files.

example : target1 : dependene1 dependene2#Rq: eah ommand must be preeded by a tabulationommand_Xommand_Y...
The dependencies and targets represent files in general.

Only the first rule (except the models cf 9.0.2) of the Makefile is examined. The fol-
lowing rules are ignored if they are not implied by the first.
So some dependencies of a rule X are themselves of the rules in the Makefile then
these last will be examined before the appealing rule X .
For each rule X examined, so at least one of its dependencies is more recent than its
target then the commands of the rule X will be carried out. Note:: the commands are
generally used to produce the target (i.e a new file).
A target should not represent a file. In this case, the commands of this rule will be
always carried out.

9.0.2 models Rules

These rules are more general-purpose because you can specify more complex depen-
dency rules. A model rule be similar to a normal rule, except a symbol (%) appears in

ALLIANCE TUTORIAL 25

PART 2 Logic synthesis

the target name. The dependencies also employ (%) to indicate the relation between
the dependency name and the target name. The following model rule specifies how all
the files vst are formed starting from the vbe .#example of rule for the synthesis%.vst : %.vbeboog $*
9.0.3 Variables definitions

You can define variables in any place of the file Makefile , but for legibility we will
define them at the beginning of file.#variables definitionsMY_COPY = p -rMY_NUM = 42MY_STRING ="hello"

They are usable in any place of the Makefile . They must be preceded by the
character $ #use a variable in a ruleopy: ${MY_COPY} digiode.vbe tmp/
9.0.4 Predefined variables

• $@ Complete target name.
• $* Name of the targets file without the extension.
• $< Name of the first dependent file.
• $+ Names of all the dependent files with double dependencies indexed in their

order of appearance.
• $^ Names of all the dependent files. The doubles are remote.
• $? Names of all the dependent files more recent than the target.
• $% Name of member for targets which are archives (language C). If, for example,

the target is libDisp.a(image.o) , $% is image.o and $@ is libDisp.a .

ALLIANCE TUTORIAL 26

PART 2 Logic synthesis

10 Appendix: Diagrams as an indication but not-in conformity with

the behavioral

opr_mx(1) = ((not i(2) and i(1)) or (i(2) and (not i(1)) and (not i(0))

i
(
1
)

i
(
2
)

i
(
0
)

ops_mx(0)

ops_mx(1)

ops_mx(2)

opr_mx(0)

opr_mx(1)

ops_mx(0) = (not i(2)) and i(0)
ops_mx(1) = i(2) and (not i(1))

ops_mx(2) = i(2) and i(1) and i(0)

opr_mx(0) = i(2) or i(1)

Decoding of the multiplexers R and S.
i
(
5
)

i
(
4
)

i
(
3
)

alu_k(4)

alu_k(3)

alu_k(2)

alu_k(1)

alu_k(0)

alu_k(0) = i(5) xor i(3)

alu_k(2) = i(5) and (not i(4))
alu_k(1) = i(5) xor i(4)

alu_k(3) = (not i(5)) and i(4) and i(3)
alu_k(4) = (i(5) or i(4)) and i(3)

alu_np(2)
alu_np(3)

alu_np(1)
alu_np(0)

alu_np(1)

alu_ng(0)

alu_np(3)

alu_np(2)

alu_ng(1)

alu_ng(3)
alu_np(3)

alu_ng(2)

core_g

core_p

alu_over
core_nover

alu_cout core_ncout

alu_f(2)
alu_f(1)
alu_f(0)

core_nzero

core_nsignalu_f(3)

T
o

th
e

pl
ot

s
(i

nv
er

so
rs

)

ALU flags calcul.

V
er

s
le

 c
he

m
in

 d
e

do
nn

ee
s.

ALU commands decoding.

ALLIANCE TUTORIAL 27

PART 2 Logic synthesis

acc_scout core_acc_o_nup

i
(
8
)

i
(
7
)

i
(
6
)

ram_sh(0)

ram_sh(1)

shifters control
Write in RAM and ACCU.

acc_wen

fonc_modecore_fonc

core_test

out_mx

ram_nwri

acc_i_up

acc_i_down

core_acc_o_ndown

core_acc_i_nup

core_acc_i_ndown

ram_i_up

ram_i_down

acc_q_down

alu_f(3)

alu_f(2)

RAM and ACCU inputs/outputs shifters.

T
o

tr
is

ta
te

s
pl

ot
s(

in
ve

rs
or

s)
.

T
o

da
ta

 p
at

h.

core_ram_i_ndown

core_ram_i_nup

core_ram_o_ndown

core_ram_o_nup

core_sh_nright

core_sh_nleft

ALLIANCE TUTORIAL 28

PART 2 Logic synthesis

DPGEN_SFF

(i.e acc_q[3:0])

(registers group)

DPGEN_MUX2

DPGEN_MUX2

DPGEN_MUX2

DPGEN_MUX2

acc_i_up & acc_scout & acc_q[2:1]
acc_q[2:1] & acc_q_down & acc_i_down

ram_sh[1]

ram_sh[0]

o
p
r
_
d

r
a
m
_
r
a

r
a
m
_
r
b

DPGEN_MUX2

out_mx

acc_ck

acc_scin
acc_test

acc_q_down

acc_wen

alu_cin

opr_mx[1]

ops_mx[2]

ram_ck[15:0]

DPGEN_MUX2

DPGEN_MUX2

DPGEN_NAND2MASK

DPGEN_NAND2MASK

ops_mx[1]

ops_mx[0]

opr_mx[0]

acc_sh[0]

acc_sh[1]

DPGEN_MUX2

alu_f[3:0]

alu_cout
alu_over

alu_ng[3:0]
alu_np[3:0]

alu_k[4:0]

a
l
u
_
n
s

ALU

RAM

ACCU

a
l
u
_
n
r

a
l
u
_
f

acc_scout & acc_q[2:1] & acc_q_down

A
M

D
2901 data path.

o
u
t
_
x

ram_i_up & alu_f[3:1]

alu_f[2:0] & ram_i_down

a[15:0]
b[15:0]
b_w[15:0]

acc_scout /*acc_q_up*/DPGEN_SFFT

ALLIANCE TUTORIAL 29

PART 2 Logic synthesis

alu_f (2)

al
u_

np
 (

2)

al
u_

ng
 (

2)

alu_ns (2)

alu_k (1)

alu_k (0)

alu_nr (2)

alu_carry (3)
(i.e alu_over)

ALU slice 2 representation

alu_k (2)

alu_k (4)

alu_carry (2)

alu_k (3)

a[0]

a[1]

a[2]

a[3]

BLOCK RAM on port A

deca[7]

Decoding of the reading command of register 7

ALLIANCE TUTORIAL 30

PART 2 Logic synthesis

b[2]

b[0]

b[1]

b[3]

decbw[7]

ram_wri

write decoding command in register 7 of BLOCK RAM

4
decb[7]

deca[7]

ram_ra[4:0]

ram_rb[4:0]

not registreQg[4:0]

ram_ck[7]
register_file_scin[7]

d[4:0]

4

Slice 7 of BLOCK RAM

re
gi

st
re

 7

b_w[7]

ALLIANCE TUTORIAL 31

