| library(keras) |
| |
| mnist <- dataset_mnist() |
| x_train <- mnist$train$x |
| y_train <- mnist$train$y |
| x_test <- mnist$test$x |
| y_test <- mnist$test$y |
| |
| |
| x_train <- array_reshape(x_train, c(nrow(x_train), 784)) |
| x_test <- array_reshape(x_test, c(nrow(x_test), 784)) |
| |
| x_train <- x_train / 255 |
| x_test <- x_test / 255 |
| |
| y_train <- to_categorical(y_train, 10) |
| y_test <- to_categorical(y_test, 10) |
| |
| model <- keras_model_sequential() |
| |
| model %>% |
| layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>% |
| layer_dropout(rate = 0.4) %>% |
| layer_dense(units = 128, activation = 'relu') %>% |
| layer_dropout(rate = 0.3) %>% |
| layer_dense(units = 10, activation = 'softmax') |
| |
| model %>% compile( |
| loss = 'categorical_crossentropy', |
| optimizer = optimizer_rmsprop(), |
| metrics = c('accuracy') |
| ) |
| |
| model %>% fit( |
| x_train, y_train, |
| epochs = 30, batch_size = 128, |
| validation_split = 0.2 |
| ) |
| |
| export_savedmodel(model, "savedmodel") |