
pgchem::tigress – The chemoinformatics

extension for PostgreSQL: User Guide

Ernst-Georg Schmid

v.7.1 – Summer 2007

1

The project tigress c© Windhund 2004

2

The barsoi accelerator logo c© Windhund 2005

3

Contents

I Caveat 6

II Introduction to pgchem::tigress 6

1 Overview 6

2 The Challenge 6

3 Why PostgreSQL? 7

III Designing your schema 7

4 The molecules table 7

5 The molecular keys and fingerprint tables 8

6 The functional groups table 9

7 The similarity fingerprint table 9

8 The maintenance triggers 9

IV Loading data 10

V Working with data 10

9 Molecule exact searching 11

10 Molecule substructure searching 12

11 Special query features when using MDL V2000 molfiles as query
structure 13

12 Functional group searching 14

13 Tanimoto similarity searching 14

14 Molecule search functions 14

15 Calculating properties 15

16 Conversions 16

17 Modifications 17

18 Helper functions 17

4

VI Running with Barsoi 17

19 FastMatch searching 17

VII Miscellaneous 17

20 Rejecting duplicate molecules 17

21 Tuning 18

22 Security 18

23 Limitations 19

24 Links & Things 19

A The OpenBabel Type2 molecular fingerprint format 19

B The molecular keys format 19

5

Figure 1: Mesomeric extremes of Benzene

Part I

Caveat
pgchem::tigress is not exhaustively tested and may contain errors in function-
ality and code. Therefore it should not be used unconsiderate and does not
replace the advice of a trained chemist. Notably, pgchem::tigress was not de-
signed to be used in GxP environments, for material safety systems and other
safety critical environments.

Part II

Introduction to pgchem::tigress

1 Overview

pgchem::tigress is a chemoinformatics extension to the PostgreSQL object-relational
database management system. It enables PostgreSQL to handle chemical datatypes.
Pgchem::tigress is basically a wrapper around the checkmol/matchmol molec-
ular analyzer and the OpenBabel computational chemistry package, plus some
database functions and tables to access their functionality purely through SQL
statements.

Pgchem::tigress supports exact and substructure searching on molecules and
reactions with strict and relaxed adherence of atom and bond types, searching
by functional groups, calculation of chemical properties like molecular formula
and molecular weight, datatype conversion and Tanimoto similarity searching.

pgchem::tigress is c© Ernst-Georg Schmid, except parts that are marked as
c© Bayer Business Services GmbH, Department of Science & Technology, who
sponsored parts of the project, and released under the lesser GNU Public License
2.1.

As of version 8.x of PostgreSQL, pgchem::tigress compiles and runs natively
(at least) on Linux, Solaris, OS X and Win32.

2 The Challenge

A molecule can basically be represented as an undirected graph, where the atoms
are the nodes and the bonds are the edges of the graph. A program operating
on such graphs must calculate all kinds of chemical information from that graph
to determine if, e.g. two molecules are chemically equal or different. In Figure 1
the atoms (nodes) are at the same positions. The bonds (edges) however have
changed places. Those two graphs are not topologically equal but are chemically

6

CREATE TABLE example.molecules
(
iiid serial NOT NULL,
molecule bytea NOT NULL,
CONSTRAINT pk_molecules PRIMARY KEY (iiid)

)

Figure 2: A basic molecules table

equal to Benzene. To recognize this, a program must know about mesomerism
and aromatic bindings and detect, that those are the two mesomeric extremes
of the aromatic ring Benzene. Benzene can also be drawn in a third way with a
circle in the center to symbolize the delocalized electrons, also shown in Figure 1.
This is only one of the many challenges of chemoinformatics.

3 Why PostgreSQL?

Because it is tried and tested, suitable for heavy-duty applications and has a
clean interface for custom extensions. So far it has proven to be a good choice,
but there are no reasons why there should not be a fbchem::tigress for Firebird
or an orachem::tigress for Oracle in the future. Actually, mychem for MySQL
has started at http://sourceforge.net/projects/mychem/.

Part III

Designing your schema
Pgchem::tigress needs a few special tables that act as additional indexes for
speeding up queries. Those tables have to be present in every database that
uses pgchem::tigress. The layout of those tables is very rigid (as not to say:
fixed) because all the functions and mainly the maintenance triggers rely on
those tables.

4 The molecules table

The molecules table holds the molecules itself, but can be extended to store
whatever additional information should be attached to those molecules. It con-
sists of at least two columns, as shown in Figure 2.

The iiid is a type serial , artificial key to connect each molecule to their
corresponding entries in the index tables.

I don’t remember what iiid originally meant, but one i stands for internal.
That means that you should not rely on this as a key outside the pgchem::tigress
subschema. If you need a key for your own application-specific tables, add your
own key column, e.g. the CAS-registry-number.

The molecule column holds the molecule as MDL V2000 molfile. The actual
name of the molecule column is unimportant for pgchem::tigress, choose it to
your liking, but it has to be of type bytea.

7

CREATE TABLE example.molkeys
(
iiid int4 NOT NULL DEFAULT 0,
n_atoms int2 NOT NULL DEFAULT 0,
n_bonds int2 NOT NULL DEFAULT 0,
n_rings int2 NOT NULL DEFAULT 0,
n_qa int2 NOT NULL DEFAULT 0,
n_qb int2 NOT NULL DEFAULT 0,
n_chg int2 NOT NULL DEFAULT 0,
n_c1 int2 NOT NULL DEFAULT 0,
...
CONSTRAINT molkeys_pkey PRIMARY KEY (iiid),
CONSTRAINT fk_mol FOREIGN KEY (iiid)
REFERENCES example.molecules (iiid) ON UPDATE NO ACTION
ON DELETE CASCADE
)

Figure 3: The molecular keys table

CREATE TABLE example.molfingerprints
(
iiid integer NOT NULL,
fp2bitmap bytea NOT NULL,
CONSTRAINT molsimilarity_pkey PRIMARY KEY (iiid),
CONSTRAINT fk_id FOREIGN KEY (iiid)

REFERENCES example.acd2d_moltable (iiid) MATCH SIMPLE
ON UPDATE RESTRICT ON DELETE CASCADE

)

Figure 4: The molecular fingerprints table

5 The molecular keys and fingerprint tables

Chemical matching is a time-consuming process. If all molecules of a database
with more than 2-300 entries would have to be individually graph-checked,
search performance would severely degrade. So what happens is that for ev-
ery molecule the molecular keys and/or a molecular fingerprint is generated
and stored in the molecular keys and fingerprint tables.

Figure 3 shows an excerpt of the molecular keys table definition. It is linked
to the molecules table via the iiid and consists of integer columns which store
qantitative information about each molecule, e.g. how many atoms, how many
bonds etc. Consequently, this table is called molkeys within pgchem::tigress.

Using that table as a sort of index, the workload of chemical matching can
be dramatically reduced by matching the molecular keys of the query molecule
against this table first and to process only the candidates which came out of
this search. For an exact match search, the molecular keys are compared by
the ’=’ operator and for a substructure search by the ’>=’ operator to filter for
possible candidates. See Part V about how to do this in SQL.

8

CREATE TABLE example.molfgroups
(
iiid int4 NOT NULL,
code char(8) NOT NULL,
CONSTRAINT molfgroups_pkey PRIMARY KEY (iiid, code),
CONSTRAINT fk_mol FOREIGN KEY (iiid) REFERENCES
example.molecules (iiid)
ON UPDATE NO ACTION ON DELETE CASCADE

)

Figure 5: The functional groups table

Figure 4 shows the fingerprints table definition. It is linked to the molecules
table via the iiid and consists of a 1024 bit wide bytearray, each bit representing
the presence/absence of a pattern derived from the molecule. Like the molecular
keys table, this can be used as an index for finding possible match candidates.
For an exact match search, the fingerprints are compared by the ’=’ operator
and for a substructure search by the substruct screen fingerprint(bytea, bytea)
function to filter for possible candidates. Experience shows that combining
molecular keys and fingerprints for screening yields the best (smallest, fastest)
results.

The fingerprints table entires can also be used to calulate the similarity
between to molecules, e.g. using the Tanimoto coefficient.

6 The functional groups table

The functional groups table contains 0..n rows per molecule. As shown in Fig-
ure 5, each row contains a code that indicates the presence of a specific functional
group in this molecule. Checkmol/matchmol currently detects 190 functional
groups, thus does pgchem::tigress. This table can be used to directly search for
molecules containing a given set of functional groups. See Part V about how to
do this in SQL.

7 The similarity fingerprint table

Merged into 5.

8 The maintenance triggers

Consistency between the molecules table and the various index tables is main-
tained automagically in pgchem::tigress. DELETE is handled by the referential
integrity relations between the tables, this avoids orphaned rows in the index
tables. INSERT and UPDATE are a little more complex, as the input molecule
has to be analyzed in various ways to fill the index tables. This is handled
by two triggers on the molecule table. One trigger adds additional informa-
tion to the molecule. Checkmol/matchmol has to determine which bonds are
truly aromatic, their stereo configuration etc. to do its magic and this is an

9

CREATE TRIGGER precompute_properties
BEFORE INSERT OR UPDATE
ON example.molecules
FOR EACH ROW
EXECUTE PROCEDURE public.t_precompute_properties();

Figure 6: The tweak molecule trigger

CREATE TRIGGER maintain_pgchem_indextables
AFTER INSERT OR UPDATE
ON example.molecules
FOR EACH ROW
EXECUTE PROCEDURE public.t_maintain_pgchem_indextables();

Figure 7: The main maintenance trigger

expensive operation, because it cannot rely on the information in the molfile
(you can mark every bond as aromatic, wether it is or not), but has to apply
the Hückel rule. So checkmol/matchmol has an option to store this information
precalculated in unused fields of the molfile to speed up all further operations.
The trigger shown in Figure 6 performs that precalculation upon every change
of a molecule entry in the database. This is optional, but highly recommended.

The main maintenance trigger shown in Figure 7 however is mandatory. It
guarantees, that every change to a molecule entry is propagated to the cor-
responding entries in the index tables and must not be omitted, except there
are no updates to the tables after initial loading and the index tables are filled
manually.

Part IV

Loading data
If the Schema is set up correctly and all the maintenance triggers are in place,
start loading your molecules table by any means you like. Make sure, that the
molfiles are sent to the database as bytea, not as text, with UN*X or DOS style
line endings. For every INSERT or UPDATE, the content of all index tables will be
automatically adjusted. If something did not work the first time, issuing ’UPDATE
<molecule table> SET <molecule column>=<molecule column>;’ forces
a complete rebuild of the index tables.

A complete rebuild is also necessary, when checkmol/matchmol changes it’s
fingerprint semantics, e.g. from 0.2i to 0.2j, but this rarely happens.

Pgchem::tigress neither needs nor supports the notion of a MDL No-Structure.
Filter No-Structures before or while loading and replace them with NULL. All
pgchem::tigress functions are declared STRICT and handle NULL input gracefully.

10

SELECT <molecule_table>.iiid FROM
<molecule_table>,molkeys WHERE
n_atoms=13 AND n_bonds=15 AND
n_rings=6 AND n_C2=11 AND
n_C=11 AND n_CHB1p=4 AND
n_N2=1 AND n_N3=1 AND n_b2=6 AND
n_bar=15 AND n_CN=4 AND
n_rN=5 AND n_rN1=3 AND n_rN2=2 AND
n_rX=5 AND n_rar=6 AND
<molecule_table>.iiid=molkeys.iiid AND
match_exact(<query_molecule>,<molecule_column>,false,false,
false,false,false,false)=TRUE;

Figure 8: Exact match with a function

Figure 9: Example search without E/Z geometry checking

Part V

Working with data
All examples use abstract placeholders for table/column names and SQL vari-
ables. How they have to look like for a specific programming language/database
driver combination is left as an excercise to the reader.

9 Molecule exact searching

Exact searching can be done by using the function match exact(). The function
call variant is shown in Figure 8. With E/Z geometry matching switched on,
E/Z-stereoisomers are treated as different structures. Figure 9 shows an example
for (Z)-2-Butene and (E)-2-Butene.

With R/S geometry matching switched on, R/S-stereoisomers are treated as
different structures. Figure 10 shows an example. R/S geometry matching by
default does not reject otherwise matching structures with flat or bonds! If
you need this, either switch on strict adherence to atom and bond types also.

The test for chemical equality is commutative.

Figure 10: Example search without R/S geometry checking

11

Figure 11: Example substructure search with relaxed atom and bond typing:
different bond types

Figure 12: Example substructure search with relaxed atom and bond typing:
different atom types

10 Molecule substructure searching

Substructure searching is a bit more complex that exact searching, namely be-
cause atom and bond types now become a variable. Figure 11 shows an example.
With relaxed adherenece of typing, the search for the substucture on the left
finds the result on the right. With strict adherence of typing, it would reject
this match, because the uppermost double bond of the query molecule is not
aromatic, but the corresponding bond in the benzene ring of the result molecule
is.

Figure 12 shows another example. With relaxed adherenece of typing, the
search for the substucture on the left finds the result on the right. With strict
adherence of typing, it would reject this match, because the left Sulphur atom
is an S3 (sp3 sulfid) while the right one is an SO2 (sulfon).

The Figure 13 contains an example how to perform such a search by function.
Please note, that now the molecular fingerprint table has to be explicitly refer-

SELECT <molecule_table>.iiid FROM
<molecule_table>,molkeys WHERE
n_atoms>=13 AND n_bonds>=15 AND
n_rings>=6 AND n_C2>=11 AND
n_C>=11 AND n_CHB1p>=4 AND
n_N2>=1 AND n_N3>=1 AND n_b2>=6 AND
n_bar>=15 AND n_CN>=4 AND
n_rN>=5 AND n_rN1>=3 AND n_rN2>=2 AND
n_rX>=5 AND n_rar>=6 AND
<molecule_table>.iiid=molkeys.iiid AND
match_substruct<query_molecule>,<molecule_column>,false,
false,false,false,false,false)=TRUE;

Figure 13: Substructure match with a function

12

enced in the SQL statement and that the fingerprint columns are searched as
described in Section 5. You can get the fingerprint values of the query molecule
from the database by calling the ms fingerprint long() function and then append
it to your SQL statement.

11 Special query features when using MDL V2000
molfiles as query structure

The following special atom symbols may be used in query structures:

• ’A’ matches all atoms except Hydrogen.

• ’Q’ matches all atoms except Hydrogen and Carbon.

• ’X’ matches all halogen atoms.

The following special bond types may be used in queries:

• ’4’ matches aromatic bonds.

• ’5’ matches single or double bonds.

• ’6’ matches single or aromatic bonds.

• ’7’ matches double or aromatic bonds.

• ’8’ matches any bond type.

The following special bond topology markers may be used in queries:

• ’0’ matches any bond topology.

• ’1’ matches ring bonds.

• ’2’ matches chain bonds.

• ’00’ matches any bond topology even in strict mode.

• ’01’ matches only ring bonds that are member of more rings than in the
query (for annulated systems).

• ’02’ matches only ring bonds that are member of exactly the same amount
of rings than in the query.

The following special stereo markers may be used in queries:

• ’Stereo care flag’ switches on E/Z geometry matching.

• ’dblEither’ type bonds switch off E/Z geometry matching.

• ’Chiral flag’ switches on R/S geometry matching.

ACHTUNG: Structures containing query features can be registered, but may
not be fully searcheable. The database server will write a warning referring to
this in the server log.

13

SELECT <molecule_table>.iiid FROM
<molecule_table> WHERE
instant_tanimoto(<query_molecule>,<molecule_column>) > 0.9

Figure 14: On-the-fly similarity search

SELECT <molecule_table>.iiid FROM
<molecule_table>,molsimilarity WHERE
<molecule_table>.iiid=molsimilarity.iiid AND
tanimoto(fingerprint2(<query_molecule>),<molecule_column>) > 0.9

Figure 15: Precomputed similarity search

12 Functional group searching

To search for molecules containing one or more functional groups, just select
the desired functional group codes from the functional groups table and join it
with the molecules table. The example scripts that come with pgchem::tigress
contain a lookup table, containing all known codes with their english names.
This can be used to search by names instead of codes.

13 Tanimoto similarity searching

Currently there are two ways of similarity caclulation, on-the-fly and precom-
puted. On-the-fly is done by the instant tanimoto(bytea,bytea) function, which
takes two molecules and returns their tanimoto coefficient (Figure 14). Pre-
computed is done by the tanimoto(bytea,bytea) function, which takes two fin-
gerprints and returns their tanimoto coefficient (Figure 15). The fingerprints
can be obtained from the similarity fingerprint table or dynamically from the
fingerprint2(bytea) function (Figure 15).

Precomputed searching is typically much faster than on-the-fly.

14 Molecule search functions

• precompute properties(bytea,bool) modifies the input molecule and adds
information about aromaticity etc. Such ’tweaked’ molecules are faster
to compare, because most information was precomputed and stored in
the molecule. The flag toggles whether the molecule is always ’tweaked’,
regardless if it was ’tweaked’ before. This function is mainly used in the
precompute properties trigger (Figure 6).

• match exact(bytea,bytea,bool,bool,bool,bool,bool,bool) takes a query molecule,
a molecule to exact match the query against, and six flags. The first flag
toggles strict comparison of atom and bond types (particularly aromatic),
the second flag globally toggles E/Z geometry matching of double bonds,
the third flag globally toggles R/S matching of chiral centers1. The fourth

1R/S and E/Z geometry matching can also be specified per query, as described in Section
11.

14

flag toggles strict checking of charge, the fifth flag toggles strict checking
of isotope and the the sixth flag toggles strict checking of radical. A return
value of TRUE indicates a match.

• match substruct(bytea,bytea,bool,bool,bool,bool,bool,bool) takes a query molecule,
a molecule to substructure match the query against, and three flags. The
first flag toggles strict comparison of atom and bond types (particularly
aromatic), the second flag globally toggles E/Z geometry matching of dou-
ble bonds and the third flag globally toggles R/S matching of chiral cen-
ters2. The fourth flag toggles strict checking of charge, the fifth flag toggles
strict checking of isotope and the the sixth flag toggles strict checking of
radical. A return value of TRUE indicates a match.

• match substruct smarts(text,bytea) takes a query SMARTS, a molecule to
substructure match the query against. A return value of TRUE indicates a
match. This function uses an alternative subgraph isomorphism checking
algorithm which is less precise but about 2 times faster. I assume that it
respects stereo features in the SMARTS, but I haven’t checked that.

• molkeys long(bytea,bool,bool,bool) takes a query molecule and returns its
fingerprint in long form. Long means, that for every column a name/value
pair name:value; is generated. This can be used to obtain the screening
fingerprint for exact or substructure matches by replacing the : with = or
>= and the ; with AND . The first flag toggles strict checking of charge,
the second flag toggles strict checking of isotope and the the third flag
toggles strict checking of radical. When used in combination with a
match function, the settings of these flags must be identical to
the settings of the corresponding flags of the match function.

• fgroup codes(bytea) takes a query molecule and returns its functional group
codes. This can be used to obtain the codes for a functional group search
by drawn example.

• substruct screen fingerprint(bytea, bytea) takes a query fingerprint, a fin-
gerprint to substructure screen the query against. A return value of TRUE
indicates a possible substructure match candidate.

For convenience, all search functions taking boolean flags have overloaded sib-
lings without those flags, assuming FALSE for all of them.

15 Calculating properties

• molweight(bytea) takes a molecule and returns the standard molar mass
given by IUPAC atomic masses, including all implicit hydrogens.

• exactmass(bytea) takes a molecule and returns the the mass given by iso-
topes (or most abundant isotope, if not specified), including all implicit
hydrogens .

2R/S and E/Z geometry matching can also be specified per query, as described in Section
11.

15

• total charge(bytea) takes a molecule and returns the total charge (0=neu-
tral), including all implicit hydrogens.

• number of atoms(bytea) takes a molecule and returns the number of atoms,
including all implicit hydrogens.

• number of heavytoms(bytea) takes a molecule and returns the number of
heavy atoms. This also counts Deuterium an Tritium!

• number of bonds(bytea) takes a molecule and returns the number of bonds,
including all implicit hydrogens.

• number of rotatable bonds(bytea) takes a molecule and returns the number
of rotatable bonds3.

• is chiral(bytea) takes a molecule and tries to perceive its chirality.

• is 2D(bytea) takes a molecule and returns true if 2D coordinates are
present.

• is 3D(bytea) takes a molecule and returns true if 3D coordinates are
present.

• molformula(bytea) takes a molecule and returns the molformula, including
all implicit hydrogens.

• fingerprint2(bytea) takes a molecule and returns the OpenBabel Type 2
binary fingerprint.

16 Conversions

• molecule to molfile(bytea) takes a molecule and converts it to a V2000
molfile.

• molfile to molecule(text) takes a V2000 molfile and converts it to a molecule.

• molecule to V3000(bytea) takes a molecule and converts it to a V3000
molfile.

• V3000 to molecule(text) takes a V3000 molfile and converts it to a molecule.

• molecule to smiles(bytea) takes a molecule and converts it to a SMILES
string.

• molecule to canonical smiles(bytea,bool) takes a molecule and converts it
to a canonical SMILES string. If parameter two is false, any additional
stereo information is discarded.

• smiles to molecule(text) takes a SMILES/canonical SMILES string and
converts it to a molecule.

• molecule to inchi(bytea) takes a molecule and converts it to a IUPAC
InChI string.

3Any non-ring bond with hybridization of sp2 or sp3 is considered a potentially rotatable
bond. There is no special bond-typing, e.g. for amide C-N bonds with their high rotational
energy barrier.

16

17 Modifications

• strip salts(bytea) takes a molecule and strips all atoms except for the
largest contiguous fragment.

• add hydrogens(bytea,bool,bool) takes a molecule and adds hydrogens. Pa-
rameter one controls if all or only polar hydrogens are added and param-
eter two if a correction for Ph=7 should be done.

• remove hydrogens(bytea,bool) takes a molecule and removes hydrogens.
Parameter two controls if all or only non-polar hydrogens (true) shall
be removed. This also removes Deuterium and Tritium!

18 Helper functions

• validate cas no(varchar) takes a CAS-No. and checks its validity with the
official CAS checksum algorithm.

• validate molecule(bytea) checks if a molecule appears to be valid (with a
very simple algorithm).

• is nostruct(bytea) checks if a molecule is a MDL NoStruct.

• pgchem version() returns the pgchem::tigress version identifier.

• pgchem barsoi version() returns the barsoi version identifier.

Part VI

Running with Barsoi
Removed since 7.0. All search functions now use Barsoi by default.

19 FastMatch searching

Removed since 7.1. All search functions now use FastMatch internally where
applicable.

Part VII

Miscellaneous

20 Rejecting duplicate molecules

In order to emulate a unique constraint on molecules, a row level INSERT and
UPDATE trigger can be used. First create a trigger function like that in Figure 16.
As the exact search in this function is dependent on the name and layout of the
specific molecules table, do not put this in the public schema. Then attach a

17

trigger like Figure 17 to that molecule table. Every new molecule will now be
compared to those already in the table and rejected if it is a duplicate.

21 Tuning

• Use Barsoi if you can (Standard since pgchem::tigress version 7.0).

• Use PostgeSQL 8.1.x or better, because its performance enhancements
really speed up the fingerprint screening stage.

• If speed is paramount to precision for substructure searching, use match substruct smarts()
instead of match substruct().

• Encapsulate searches in stored procedures to keep them close to the database.
A full example can be found in the examples/searching directory: chem-
bank find matching molecules.sql.

• Combine molecular keys and fingerprints for screening.

• Avoid on-the-fly similarity calculation for searching.

• Frequently update the statistics on the tables.

• Configure PostgreSQL correctly for your type and size of application.

• Query the database as precise as possible, especially for substructure
searches, e.g. avoid to search for Benzene or Naphthalene as substruc-
tures without further constraints. An application can use a screening only
search to guess the worst case return scenario and ask the user, e.g. ’This
search will probably yield 23432 rows (87%) of the database. Do you really
want to continue?’.

• Use the LIMIT option for PostgreSQL queries if you want to limit the
number of hits returned. LIMIT kills the entire query at once when the
specified result set limit has been reached, effectively reducing the work-
load for high-yield queries.

• Always keep in mind, that the database optimizer has no information
whatsoever about the selectivity of pgchem::tigress’s functions, except,
that he has no information whatsoever about the selectivity of pgchem::tigress’s
functions. That means it will probably apply them after all known result
set reduction mechanisms have been applied, which is good, but may fail
to do so. So take an occasional look at EXPLAIN and the query plan.

• Pgchem::tigress is generally a bit faster on UN*X than on Win32.

22 Security

• Validating all data in an application on input and output is always a good
idea.

• pgchem::tigress and barsoi have be hardened against classical buffer over-
flows, but may not be immune.

18

23 Limitations

• Stereochemistry is absolute.

• If R/S geometry checking is on together with strict adherence to atom and
bond types, ’squiggle’ bonds are treated as flat bonds, i.e. rejected.

• The double bond stereo query feature (MDL: bond stereo dblEither) for
E/Z stereochemistry is experimentally supported.

• Strict adherence to atom and bond types does not always work as ex-
pected. Handle this option with care.

• MDL NoStructs are very weakly supported. Avoid them if you can at any
cost. The concept of a special non-structure is grotesque anyway when
you can use NULL.

24 Links & Things

• checkmol/matchmol: http://merian.pch.univie.ac.at/∼nhaider/cheminf/cmmm.html

• OpenBabel: http://openbabel.sourceforge.net/

• PostgreSQL: http://www.postgresql.org/

• pgchem::tigress + barsoi: http://pgfoundry.org/projects/pgchem/

A The OpenBabel Type2 molecular fingerprint
format

Since the Type2 fingerprint works like a Daylight fingerprint, see http://www.daylight.com/
dayhtml/doc/theory/theory.finger.html#RTFToC80 for how it works. The un-
folded Type2 fingerprint used in pgchem::tigress is 1024 bits wide.

B The molecular keys format

19

CREATE OR REPLACE FUNCTION example.t_is_molecule_unique()
RETURNS "trigger" AS

$BODY$
DECLARE is_not_unique bool;
DECLARE mol_fp text;
BEGIN

is_not_unique:=false;

IF TG_OP=’INSERT’ OR TG_OP=’UPDATE’ THEN

mol_fp:=ms_fingerprint_long(NEW.molecule,false,false,false);

mol_fp:=replace(mol_fp,’:’,’=’);
mol_fp:=replace(mol_fp,’;’,’ AND ’);

is_not_unique := EXECUTE ’EXISTS (SELECT iiid FROM
example.molecules WHERE’ || mol_fp ||
’match_exact(decode(’’’||encode(NEW.molecule,
’hex’)||’’’,’’hex’’),molecule,FALSE,FALSE,FALSE,FALSE,FALSE,
FALSE)=TRUE’;

IF is_not_unique THEN RAISE EXCEPTION ’MOLECULE IS NOT
UNIQUE ON INSERT OR UPDATE!’; END IF;

ELSE

RAISE EXCEPTION ’PGCHEM IS-MOLECULE-UNIQUE TRIGGER CALLED
OUTSIDE INSERT OR UPDATE!’;

END IF;
RETURN NEW;
END;
$BODY$
LANGUAGE ’plpgsql’ VOLATILE;

Figure 16: The unique molecules trigger function

CREATE TRIGGER is_molecule_unique
BEFORE INSERT OR UPDATE
ON example.molecules
FOR EACH ROW
EXECUTE PROCEDURE example.t_is_molecule_unique();

Figure 17: The unique molecules trigger

20

Field(s) Descriptor
ntoms, n bonds, n rings number of atoms, bonds, rings
n QA, n QB, n chg number of query atoms, query bonds, charges
n C1, n C2, n C number of sp, sp2 hybridized, and total no. of car-

bons
n CHB1p, n CHB2p, n CHB3p, n CHB4 number of C atoms with at least 1, 2, 3 hetero bonds
n O2, n O3 number of sp2 and sp3 oxygens
n N1, n N2, n N3 number of sp, sp2, and sp3 nitrogens
n S, n SeTe number of sulfur atoms and selenium/tellurium

atoms
n F, n Cl, n Br, n I number of fluorine, chlorine, bromine, iodine atoms
n P, n B number of phosphorus and boron atoms
n Met, n X number of metal and ”other” atoms (not listed else-

where)
n b1, n b2, n b3, n bar number single, double, triple, and aromatic bonds
n C1O, n C2O, n CN, n XY number of C-O single bonds, C=O double bonds, CN

bonds (any type), hetero/hetero bonds
n r3, n r4, n r5, n r6, n r7, n r8 number of 3-, 4-, 5-, 6-, 7-, and 8-membered rings
n r9, n r10, n r11, n r12, n r13p number of 9-, 10-, 11-, 12-, and 13plus-membered

rings
n rN, n rN1, n rN2, n rN3p number of rings containing N (any number), 1 N, 2

N, and 3 N or more
n rO, n rO1, n rO2p number of rings containing O (any number), 1 O,

and 2 O or more
n rS, n rX, n rAr, n rBz number of rings containing S (any number), any het-

eroatom (any number), number of aromatic rings,
number of benzene rings

n br2p number of bonds belonging to more than one ring
n psg01, n psg02, n psg13, n psg14 number of atoms belonging to elements of group 1,

2, etc.
n psg15, n psg16, n psg17, n psg18 number of atoms belonging to elements of group 15,

16, etc.
n pstm, n psla number of transition metals, lanthanides/actinides
n iso, n rad number of isotopes, radicals

Table 1: The molecular keys format, all descriptors are integers

21

