
Great Bridge PostgreSQL
Database Administration &
Performance Tuning Overview

White Paper
December 2000

Table of Contents

1 INTRODUCTION... 1

2 OVERALL DATABASE ARCHITECTURE ... 2
POSTGRESQL DATABASE SYSTEM MODEL ... 2
POSTGRES SERVER SUBCOMPONENTS ... 4
UNIQUE DATABASE FEATURES AVAILABLE WITHIN POSTGRESQL.. 6

3 PHYSICAL DATABASE ENVIRONMENT.. 9
CREATING A POSTGRESQL DATABASE... 9
POSTGRESQL DATABASE FILES .. 11
POSTGRESQL SYSTEM TABLES ... 12
DATABASE SECURITY AND USER ACCESS ... 14
DATABASE STARTUP AND SHUTDOWN... 20
POSTGRESQL BACKUP AND RESTORE ... 25
IMPORT AND EXPORT TOOLS.. 30

4 DATABASE MANAGEMENT AND DATABASE MONITORING 34
USER ACCESS MONITORING TOOLS.. 35

5 DATABASE PERFORMANCE TUNING .. 41
RUN-TIME CONFIGURATION SETTINGS FOR POSTGRESQL SERVERS 42
DATABASE COMPRESSION TOOL (VACUUM) ... 48
TUNING INDEX STRUCTURES USING EXPLAIN PLANS .. 50

6 DATABASE TOOLS AND UTILITIES .. 57
POSTGRESQL COMMAND LINE SQL INTERFACE TOOL (PSQL) ... 58
PGACCESS DATABASE TOOL ... 61
PGADMIN DATABASE ADMINISTRATION AND QUERY TOOL .. 65
POSTGRESQL SUPPORT FOR DATA MODELING TOOLS .. 67
POSTGRESQL UPGRADE TOOL.. 68

7 CONCLUSIONS.. 69

APPENDIX A - POSTGRESQL REFERENCE WEB SITES.. 70
POSTGRESQL DATABASE AND RELATED PRODUCT REFERENCES .. 70
LINUX/UNIX OPERATING SYSTEM TIPS & CONFIGURATION REFERENCES 71
MISCELLANEOUS RESOURCES ON RELATED LINUX/UNIX & POSTGRESQL TOPICS:................ 71

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 1

1 Introduction

Great Bridge PostgreSQL is a feature-rich open source database that is capable of

handling the most challenging demands of today’s e-business applications. It is a high-

powered object-relational database that offers the stability, scalability and reliability

required for mission critical applications.

Great Bridge PostgreSQL is an enhanced distribution of PostgreSQL 7.0.3, which offers

significant transaction throughput, a sophisticated optimizer to streamline complex queries,

commercial-grade SQL support, and flexibility for building full-service e-business solutions.

The purpose of this white paper is to provide an overview of the PostgreSQL Database

Administration and Performance Tuning features that are available within the product.

Specific topics that will be discussed include the PostgreSQL database architecture, unique

features available within PostgreSQL, database administrative functions, performance

tuning capabilities, and helpful database utilities for managing PostgreSQL environments.

The overall goal in presenting these topics is to provide database administrators and ITS

managers a better understanding of the advanced technical features available within

PostgreSQL.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 2

2 Overall Database Architecture

The PostgreSQL database environment comprises three major components outlined in the

Database System Model shown below. Several PostgreSQL databases can run on a

single server site; each server will have one master process called the Postmaster, which is

responsible for managing all incoming database requests and establishing database

connectivity between frontend clients and one or more backend database processes. Once

the Postmaster confirms the client process has the appropriate credentials to access the

requested database(s) running on the server, the Postmaster will spawn a server process

called the Postgres Backend Process. Each client connection will have a dedicated

Postgres process that will run in the background, servicing database requests submitted by

the client.

PostgreSQL Database System Model

Postmaster
Server

Process
Client

Application

Client
Interface
Library

Client Processes

Postgres
Backend
Process

Server Processes

Send/Receive
DB Requests

using
Client Interface API

Spawn
Postgres
Backend

Server Process

Ongoing
Communications

between
Client & Dedicated

Server Process
via TCP/IP Connection

Send Initial
TCP/IP

Connection
Request

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 3

Most client applications communicate with the backend PostgreSQL server using a Client

Interface Library, which provides a set of standard Application Programming Interfaces

(API) for communicating with PostgreSQL. Although client applications can be written to

communicate directly with PostgreSQL using the TCP/IP protocol, the Client Interface

Library provides a more convenient mechanism for managing database connections.

Several Client Interface Libraries are distributed with the base PostgreSQL software. The

most commonly used Client Interface Library is called libpq. Client applications that

support the Open DataBase Connectivity (ODBC) interface standard can access

PostgreSQL using various PostgreSQL ODBC Drivers, which are available within the open-

source community.

The overall architecture for PostgreSQL is very flexible, allowing database administrators to

configure multiple databases with different application topologies to run within the same

server environment. In addition, each PostgreSQL installation provides a standard set of

configuration files for a generic database called template1, which can be modified to reflect

site-specific standards across all database implementations at a given server site. These

environmental standards can be applied to all new databases by using the PostgreSQL

createdb Utility, which uses the template1 configuration files to establish a new database

on the server.

The Postgres backend server process, which services client requests, comprises several

subcomponents that communicate with each other using shared memory and resources

that are available within the server environment. Each client request goes through a series

of processing stages to retrieve and deliver the requested data from the PostgreSQL

database. The diagram labeled Postgres Server Subcomponents illustrates how client

requests are serviced through these various processing stages.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 4

Postgres Server Subcomponents

Postgres Backend Server Processing Stages

Spawn
Postgres Backend Process

Send Initial
TCP/IP Connect Request

Rewrite System

2

Pass
Parsed

Query Tree

Planner/Optimizer

3

Executor

4

Pass Query Plan
&

Query Tree

Postmaster Server
Process

Parser Stage
1

Client

Client Interface Library

Ongoing Communications
between

Client and Dedicated
Postgres Backend Process

Return Retrieved
Data Results
Back to Client

Verify requested
DB Objects

Exist in Database

Retrieve Data
referenced in
Query Tree

using Query Plan

Pass Rewritten Query Tree

Evaluate Access
Paths/Costs using

DB Statistics stored
in System Tables

PostgreSQL
System Catalog

&
Rules Tables

Apply Defined
Transformation Rules to
DB Objects Referenced

in Query Tree

A connection from a client application to a PostgreSQL database server is initially

established via the Postmaster, which listens for network requests on a specific server port.

The default PostgreSQL port setting is 5432. The Postmaster validates whether the

requesting client is authorized to access the Postgres Server and/or the specified

database(s), using a secure configuration file called pg_hba.conf. If the client is authorized

for access, then a dedicated Postgres backend server process is spawned, and the client is

passed onto the Postgres process to be serviced. This initial connection between the client

and the Postgres backend process needs to be done only once by the Postmaster server

process. After database connectivity is established, the Postgres backend process handles

all subsequent communications between the client and the server.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 5

1. The first stage of servicing a client request is handled by the Postgres Parser, which

checks the client’s SQL request to ensure it is using the correct syntax, and builds an

internal structure called a query tree. The query tree is a data structure used by the

various Postgres subcomponents for parsing all of the SQL statements that are

passed to the server from the client. As the query tree is built, the Parser validates

whether the specified database objects and attributes exist within the PostgreSQL

database. If errors are encountered or there are unresolved database references, an

error message will be returned to the client and processing will be aborted.

2. If the Postgres Parser successfully builds a query-tree structure, processing continues

onto the Query Rewrite System. Within PostgreSQL, there is a powerful Rule System

that enables processing and transformation rules to be defined within the database

engine. The PostgreSQL Rule System will be explained in more detail later in this

chapter, but one of its primary roles is to resolve queries that access database Views.

The Rewrite System uses the PostgreSQL Rule System to determine if any

transformation rules have been defined for any of the objects referenced in the query

tree. If so, the Rewrite System will apply the transformation rules defined within the

PostgreSQL Rule System by rewriting the query tree.

For example if a database View is referenced in a query tree, the Rewrite System will

rewrite the query to retrieve the underlying base tables associated with the View

definition. All Views are maintained within the PostgreSQL Rule System. Once all

database rules have been applied to the query tree, the results are passed onto the

Postgres Planner/Optimizer.

3. The next stage is the Planner/Optimizer, which utilizes a sophisticated algorithm to

determine the most efficient method for retrieving the data that is referenced in the

passed query tree. Access paths for retrieving the data, and their associated resource

cost estimates are evaluated by the Postgres Planner/Optimizer. The

Planner/Optimizer selects the most efficient execution plan and builds a query plan,

based upon the evaluated resource costs. Both the query plan and the query tree are

then passed to the Executor to retrieve the data from the database.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 6

4. The Executor takes the query plan and query tree passed by the Postgres

Planner/Optimizer and starts retrieving the data as specified in these internal

structures. The Executor processes all data sorting and table joins in this processing

stage. When all specified data is retrieved, the results are returned to the client.

Ongoing communications between the client and the Postgres Server process continue

until all client requests are serviced, and the client terminates the database session.

Unique Database Features Available within PostgreSQL

There are several advanced features within PostgreSQL that distinguish it from

commercially available database products. PostgreSQL supports both relational and

object-oriented database models. Although some database vendors claim their products

support both models, the reality is most of these databases were originally designed solely

for relational use. As these databases matured, their architectures were extended to

support object-oriented concepts to meet market demands. The results of these

implementations are hybrids of both relational and objected-oriented models that have

restrictions. Fortunately, PostgreSQL has none of these restrictions, since it was

architecturally designed to support both models from its inception.

Objected-oriented features such as object class inheritance and non-atomic data values

(i.e. arrays of base types and set-valued attributes) can be defined and referenced within

PostgreSQL. In addition, all PostgreSQL functions and procedures that are embedded

within the core database engine are extensible. These extensions allow developers to

customize objects to support business-specific requirements. This is possible because

PostgreSQL operates in a catalog-driven environment, where all of its internal database

objects are stored within its System Catalog. Besides storing basic information about

databases, tables, columns, and indices, the Postgres System Catalog also stores

metadata about supported class types, functions, access methods, languages, and so on.

Thus, the basic concepts of object-oriented programming are fully leveraged within the

PostgreSQL architecture.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 7

One example of the extensibility PostgreSQL provides within its base software is a

mechanism for incorporating user-written code into the core database engine through

dynamic loading. In other words, the user can specify an object code file (e.g., a compiled

object file or shared library) that implements a new type or function, allowing the Postgres

Server to dynamically link to it as required. This is particularly useful for development

environments where rapid prototyping of applications is needed, or for market-driven e-

commerce businesses that demand seamless integration of disparate legacy systems.

Thus, PostgreSQL provides a facility for developers to build middleware components that

can be referenced from within the database at run-time.

Another powerful feature is the PostgreSQL Rule System. As previously discussed, the

PostgreSQL Rule System is used to resolve database View definitions during the Query

Rewrite stage of processing a SQL request. Since the Rule System is accessed between

the Parser and Planner/Optimizer processing stages, it can be utilized to apply business

specific rules or complex operations on data prior to executing the target SQL statement in

the Executor phase of processing. There are subtle differences between using standard

database triggers for such operations, and applying this functionality within PostgreSQL’s

Rule System. However, there are situations where using the Rule System can actually

improve database performance versus using triggers (See Chapter 8 of the PostgreSQL

Programmer’s Guide for more details at www.postgresql.org/docs/programmer/rules.htm).

The PostgreSQL database also provides other techniques for enhancing overall

performance, like its Multi-Version Concurrency Control (MVCC) feature. MVCC is an

advanced transactional model that is superior to most commercial database systems.

PostgreSQL maintains data consistency using a multi-version model versus using page or

row-level locking. In a traditional database system, any row that is modified within a

transaction is locked until the transaction is committed or rolled back. This prevents users

from reading data that has been altered, but not committed, by other database users.

Using PostgreSQL’s MVCC model, every database user can read and write consistent data

without imposing database locks. Every database user is given a snapshot or version of

the data that existed at the time the database session was initiated. Thus, database

readers never block database writers from performing their tasks and vice-versa.

http://www.postgresql.org/docs/programmer/rules.htm

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 8

Database administrators can utilize these unique features within PostgreSQL to solve many

complex business problems. These features enable applications to be deployed within

PostgreSQL that would normally require extensive programming in other database

environments. In addition, the open-source software community provides a wealth of

database tools and applications that can be implemented with the PostgreSQL database to

extend its capabilities. Harnessing these capabilities with the power of the PostgreSQL

database, Great Bridge intends to provide value-added software and support services for

PostgreSQL customers. Great Bridge is committed to providing the level of support for

PostgreSQL that database administrators and ITS managers within the industry expect

from their database management systems.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 9

3 Physical Database Environment

The PostgreSQL database environment provides a suite of tools for creating and

maintaining PostgreSQL databases. Many of these tools are provided as standard utilities

within the PostgreSQL environment. The open-source community also provides a wealth

of software resources that supplement the existing PostgreSQL functionality. These

resources come in the form of software tools and helpful technical notes on how to perform

specific tasks within PostgreSQL. As these resources mature, Great Bridge intends to

incorporate them into the base PostgreSQL product offerings, along with providing

technical support for PostgreSQL clients. This section provides an overview of the

PostgreSQL database environment, highlighting some of the tools that are available for

maintaining its physical infrastructure.

Creating a PostgreSQL Database

When the PostgreSQL software is installed for the first time, a sample database is created

and then utilized as a template database for creating all subsequent databases.

PostgreSQL provides a utility called initdb, which can be used to specify all environmental

variables associated with the PostgreSQL database environment. The initdb utility can also

be used when upgrading an existing PostgreSQL environment to a newer release of

PostgreSQL. Once the initial PostgreSQL database is created, it will reside in the database

directory area under the name template1. When any new databases are created on the

server, all internal structures from within the template1 database are copied to establish

the foundation for the new database.

Thus, the PostgreSQL infrastructure provides a means of standardizing database

implementations across an entire organization through the use of the template database.

Database administrators can apply environmental standards, and/or define custom objects

within the template1 database. Once these standards are established, they can be

incorporated into new PostgreSQL databases that are created on the server, using the

template1 database as a base.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 10

New databases are typically created using another PostgreSQL utility called createdb. The

createdb utility merely takes input from the operating system command line and passes this

information onto the psql interface tool to execute a SQL “CREATE DATABASE”

statement. The example below shows how to invoke the createdb utility.

$ createdb testdb

The above command creates a new PostgreSQL database instance called testdb, taking all

of the standard defaults based upon predefined PostgreSQL environmental variables. If

any customizations are required, parameter options can be specified on the createdb

command line to install the database in an alternate location, or specify a different

database owner, etc. By default, the user account that creates a PostgreSQL database

becomes the owner of the database, unless an alternate user is specified. Once the

database is successfully created, database administrators can create users and other

database objects within the new database environment.

In addition to using the createdb utility, other database tools, available free, provide a

Graphical User Interface (GUI) to the PostgreSQL environment. PgAccess and pgAdmin

are two GUI tools that provide functionality for creating and maintaining PostgreSQL

databases. PgAccess, which was developed by Constantin Teodorescu from Romania, is

written in Tcl/Tk and runs on several operating environments, including Linux/Unix,

Windows, Macintosh, and AS400. PgAccess will be included with the Great Bridge

software distribution of the PostgreSQL database in November 2000. In addition,

PgAccess can be downloaded from the Internet at www.flex.ro/pgaccess/index.html. The

pgAdmin tool, which was developed by Dave Page from the United Kingdom, is a

Windows-based application that enables remote client desktops to interact with

PostgreSQL using Open Database Connectivity (ODBC). The pgAdmin software can be

downloaded from the Internet at www.pgadmin.freeserve.co.uk/.

Both the PgAccess and pgAdmin tools are referenced throughout this document as viable

alternatives to many of the standard PostgreSQL command-line utilities. Most of the

PostgreSQL utilities, including many of these open-source tools, execute standard SQL

statements to create and maintain PostgreSQL database objects.

http://www.flex.ro/pgaccess/index.html
http://www.vale-it.demon.co.uk/freeware/index.html

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 11

PostgreSQL Database Files

Several environmental variables must be defined within the PostgreSQL environment.

These variables are used to locate where key PostgreSQL components reside within the

operating system. These are defined during the PostgreSQL installation, but can be

overwritten when invoking any of the PostgreSQL utilities. All of the PostgreSQL utilities

accept run-time parameters for specifying custom settings or overwriting the system

defaults. The table below highlights the main environmental variables and file locations

that are referenced by the PostgreSQL software. Typically, PostgreSQL executables

reside in the /usr/bin directory, but this is not a requirement.

PostgreSQL
Environment Variables Purpose of PostgreSQL Variable

PGDATA Defines the physical location where the PostgreSQL Data
Directory resides on the server. Within a base subdirectory
established in this area, the defined PostgreSQL databases
have their own unique subdirectories. Typical location for the
data is /var/lib/pgsql/data. In the example of our testdb, its
physical database files will be located in the following
directory: /var/lib/pgsql/data/base/testdb.

PGHOST References the Database Server Name where PostgreSQL is
installed and running.

PGLIB Defines the location where all the PostgreSQL Run-Time
Libraries and Configuration files exist. Typical location for
these files is in the following directory: /usr/lib/pgsql.

PGPATH Defines the default location of where all PostgreSQL
command line utilities and tools reside on the server. These
files will typically reside in the following area: /usr/bin.

PGPORT Defines the default communication port that has been
assigned to the Postmaster process. All PostgreSQL Client
requests must reference this port when communicating with a
PostgreSQL database. Default port setting is 5432.

System Variables Purpose of System Variable
PATH Standard system variable used by the operating system to

locate executable programs. Any user accounts, which
require access to PostgreSQL, should include the directory
location where the PostgreSQL executables reside in their
PATH setting. Typically, these files reside in /usr/bin.

LD_LIBRARY_PATH References the location of the shared system libraries that
reside on the server. The PGLIB variable must be appended
to this variable to allow other system resources to reference
PostgreSQL's Run-Time Libraries.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 12

PostgreSQL System Tables

The core database engine within PostgreSQL utilizes a sophisticated set of system tables

that are responsible for cataloging and maintaining all structures that are defined within the

database. All PostgreSQL system table names are prefixed with the letters “pg_”. There

are 33 inter-related system tables within a PostgreSQL database. As previously

mentioned, the PostgreSQL database was architecturally designed to support both

relational and objected-oriented database models. This is obvious when reviewing the

primary system-table relationships.

All database components such as tables, columns, indices, functions, etc., are identified as

objects, which are subdivided into classes. Each class of object has attributes and access

methods that are defined within the internal system tables. The alphabetical listing below

describes how these system tables are referenced within the PostgreSQL database

environment.

PostgreSQL
System Table Catalog Brief Description of System Table

PG_AGGREGATE Stores standard and customized Aggregate
Functions that have been defined within the
database.

PG_AM Describes Access Methods that are available within
the database for storing indices.

PG_AMOP Describes Access Method Operators.
PG_AMPROC Stores Access Method Support Functions.
PG_ATTRIBUTE Stores Attribute Definitions and related Data Integrity

Rules associated with attribute.
PG_CLASS Stores Table Definitions.
PG_DATABASE Stores information about all existing PostgreSQL

databases that reside on the server, including their
data directory paths.

PG_GROUP Stores all defined user groups with references to all
the database users that are considered to be
members of the group. Used for granting access to
designated database objects.

PG_INDEX Stores Index Definitions that have been created for
each Table in the database.

PG_OPCLASS Describes Access Method Operator Classes.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 13

PostgreSQL
System Table Catalog Brief Description of System Table

PG_OPERATOR Stores all standard operators and custom operators
defined within PostgreSQL, along with their
associated precedence and functions.

PG_PROC Stores all Database Procedures and their associated
attributes that have been defined within the
database.

PG_RELCHECK Stores all defined data integrity checks/constraints.
PG_REWRITE Stores Rewrite Rule Definitions used by the Query

Rewrite System when processing database queries.
PG_SHADOW Stores all database users and their associated

privileges that have been assigned to them.
PG_STATISTICS Stores internal statistics about database objects,

which is referenced by the PostgreSQL Optimizer.
PG_TRIGGER Stores information about defined Database Triggers.

Many of these system tables can be accessed via standard SQL query statements.

However, some of the internal data stored in these tables may not make any sense, since

the structures are intended to be referenced by the core PostgreSQL database engine.

The purpose in presenting this information is to provide database administrators and

developers with an overview of where database objects are defined and stored internally

within the database.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 14

Database Security and User Access

The PostgreSQL database environment provides several layers of security for protecting

both the data and the physical database structures themselves, and for preventing

unauthorized access to the environment. Security mechanisms can be enabled or disabled

at several points to establish the appropriate level of protection required by any operating

environment. Security checks can be enabled for clients accessing PostgreSQL via a

remote network or local host connection. In addition, security can be enabled internally

within the database by assigning specific database privileges and passwords to database

users and/or groups of users.

By default, the person who creates a new PostgreSQL database becomes the owner of the

database. This is also true for other database objects, like tables, functions, and

procedures, where the creator becomes the owner of the defined object. Database object

owners and users, who are assigned SuperUser privileges, are the only people who can

make structural modifications to objects defined within the database and/or delete them.

The concept of SuperUsers within PostgreSQL is similar to how the “root” account works

within a Linux/Unix environment. SuperUsers can bypass all database privilege checks

that are applied to normal database users. In addition, SuperUsers can create, delete, and

modify database user privileges. Typically, SuperUser privileges are reserved for database

administrators, but they can be granted to other users if deemed necessary. One other

privilege that can be granted to database users is the right to create databases within the

PostgreSQL environment. Basic data manipulation of database objects is controlled by

assigning access rights to all database users and/or groups of users.

For example, the database owner or database administrator may want to only assign

UPDATE capabilities for an employee table to designated department managers. This can

easily be done by establishing a group called managers, and assigning only certain

database users to this group, granting them the appropriate access privilege. For all

database users, generic access can be assigned using the keyword PUBLIC.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 15

Four major access types, as described below, exist within the PostgreSQL database

environment. These access types can be assigned to individual users and/or groups of

users, dictating what type of operations can be performed on the designated database

objects.

PostgreSQL Access Permission Types

PostgreSQL
Access Type Access Type Description
READ Read-Only Access, which is shown using a lowercase (“r”), allows

users to issue SELECT statements on the designated database
object. Granting any other privileges like Append, Write, or Rule to
a user will automatically imply the user will have Read Access as
well.

APPEND Append Access enables users to issue INSERT statements on the
designated database object. Access permission is shown within
the database using a lowercase (“a”).

WRITE Write Access enables users to issue both UPDATE and DELETE
statements on the designated database object. Access permission
is shown using a lowercase (“w”).

RULE Rule Access is a special access privilege within PostgreSQL that
allows users to define customized processing rules within the
database engine itself. As previously discussed, the PostgreSQL
Rules System is invoked during the Rewrite Phase of processing a
database query. Access permission is shown using an uppercase
(“R”).

The PostgreSQL command line interface psql allows anyone to view the assigned

permission on a database object. The psql utility provides several user functions or meta-

commands that enable users to retrieve information on various database objects. For

example, database permissions can be viewed by simply issuing a meta-command (e.g.

“\DP database-object-name is a shortcut command meaning “describe permissions”

assigned to the specified database object) from within the psql utility. All psql meta-

commands are specified using the backslash (“\”) character. In the example shown below,

a psql meta-command is invoked, requesting the database to show what access

permissions are assigned to the table employee, giving the following results.

$ psql testdb
testdb=# \DP employee
 Access permissions for database "testdb"

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 16

 Relation | Access permissions
--------------+--
 employee | {"postgres=arwR","group managers=rw"}

Since the testdb was created by the postgres Account, the first access permission shows

the postgres database user is granted full privileges to perform any database operation on

the table employee. Granted permissions include READ, APPEND, WRITE, and the ability

to define transformation RULES on the employee table. Only READ and WRITE privileges

have been granted to the group managers.

External security measures can be established for PostgreSQL environments using a

configuration file called pg_hba.conf, which is located in the /var/lib/pgsql/data area.

Database and System Administrators can restrict database access to specific remote and

local network clients using this configuration file, stipulating how users are authenticated.

The Postmaster checks the pg_hba.conf file to authenticate and authorize database

connectivity for all client requests that are submitted to the database server. Several

authentication methods are supported by PostgreSQL, including Kerberos V4 and V5,

which have become de-facto industry standards for authenticating users within a TCP/IP

protocol network.

The pg_hba.conf file comprises several line entries that contain keywords for defining

security settings for all potential network connections to the PostgreSQL environment.

Within this structure, three record types can be specified: host, local, and hostssl, the latter

providing authentication of users via Secured-Socket Layers (SSL). Each record type has

its own set of arguments, but the basic syntax includes the name of the database that the

client can access, the complete or partial IP Address information associated with the client,

and the authentication method to be used. As previously mentioned, PostgreSQL supports

several authentication methods. The table below summarizes each authentication method

that can be applied within the pg_hba.conf file:

Authentication
Method Description of Authentication Method

Trust No authentication is done using this method. It assumes all
client connections originating from the designed host IP

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 17

Authentication
Method Description of Authentication Method

Address have the authority to use whatever username they
specify. This is the least secure of all the authentication
methods, and it is not recommended unless you are working in
a closed, secure network environment.

Password Expects the client to provide an username and password that
is validated against PostgreSQL’s Internal Security Files.

Crypt Expects the client to pass an encrypted username and
password over the network that can be validated against
PostgreSQL’s Internal Security Files.

Ident Authentication is done by matching a supplied identifier, and
mapping the identifier to a designated PostgreSQL database
user, which is defined within a map file called pg_ident.conf.

Krb4 Provides support for Kerberos V4 Authentication, which uses
secret-key cryptography to verify the identity of a client. For
detailed discussion using this industry standard authentication
method, consult information available on the Internet at
www.isi.edu/gost/publications/kerberos-neuman-tso.html or
web.mit.edu/kerberos/www.

Krb5 Provides support for Kerberos V5 Authentication, which is an
enhanced release of the Kerberos Authentication Protocol that
uses secret-key cryptography to verify the identity of a client.
Kerberos V5 provides additional support for using multiple IP
Addresses and networking protocols within an assigned
Kerberos Ticket. Kerberos V5 also provides more encryption
algorithms than Kerberos V4. For detailed discussion using
this latest version of Kerberos, consult information available on
the Internet at www.isi.edu/gost/publications/kerberos-
neuman-tso.html or web.mit.edu/kerberos/www.

reject Rejects any client requests that originate from the specified IP
network address.

The most commonly deployed methods used within PostgreSQL environments are

password and crypt authentications. However, many commercial implementations with a

strong e-commerce presence will probably want to deploy one of the Kerberos

authentication methods. Depending upon the topology of the user community, multiple

authentication methods can be deployed within the same business environment. Thus,

PostgreSQL provides the flexibility to interchange these internal and external security

mechanisms to establish the most optimum environment for allowing appropriate access to

information, without compromising the integrity of the assets stored within the database.

http://www.isi.edu/gost/publications/kerberos-neuman-tso.html
http://www.isi.edu/gost/publications/kerberos-neuman-tso.html
http://www.isi.edu/gost/publications/kerberos-neuman-tso.html

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 18

Database User Setup and Assigning Security Privileges

Most database users are typically setup within the database and assigned access

privileges using standard SQL statements like “CREATE USER” and “GRANT…ON…TO

USER x”. PostgreSQL fully supports this method of establishing database users, but it also

provides a database utility called createuser that accomplishes the same task. This utility

will accept input parameters from the operating system command line. If no parameters

are specified when the createuser utility is invoked, it will prompt the user for the required

information necessary to establish a PostgreSQL database user. The basic syntax used in

the createuser utility is demonstrated below.

$ createuser -A -D -e -P test_dbuser
Enter password for user "test_dbuser":
Enter it again:
CREATE USER "test_dbuser" WITH PASSWORD 'test_dbuser' NOCREATEDB

NOCREATEUSER;
CREATE USER

The example above specifies several parameter options for creating a database user by

the name of test_dbuser. Parameter option (“-A”) restricts the database user from creating

other database users, and option (“-D”) prevents them from creating new databases. The

(“-e”) option instructs the createuser utility to display the generated SQL statement that will

be executed by this command line. The last option (“-P”) instructs the createuser utility to

prompt for the user password that will be initially assigned to the user. The two prompts

following the command line are a result of specifying the (“-P”) option in the command line.

Both the generated SQL statement and the end results are displayed on the client. As

previously stated, the createuser would automatically prompt for this information, if no

username or parameters were specified on the command line.

In addition to using the PostgreSQL createuser utility, the PgAccess tool enables

authorized users to create database users using its GUI environment. PgAccess provides

the facility to define new PostgreSQL database users, specifying the username, password,

whether the user will have privileges to create other users and databases, and the ability to

set an expiration date when the user will no longer be valid.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 19

The pgAdmin tool also provides the capability of creating PostgreSQL database users from

a desktop client. An additional feature that pgAdmin provides but PgAccess doesn’t is the

ability to define user groups and assign database users as members of a group. This can

greatly simplify the administration of granting access privileges amongst a large population

of database users.

Both the PgAccess and pgAdmin tools provide the capability of viewing, modifying, and

dropping database users all from within the same menu option. Both tools offer the ability

for granting access privileges to individual users and/or groups of users on designated

database objects, using their respective Table Option Menus. Depending upon the

database administrator’s preferences, any of these database interfaces can be used to

establish users within the PostgreSQL environment

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 20

Database Startup and Shutdown

Each database server must have at least one master process running in the background,

called the Postmaster, to establish connectivity to a PostgreSQL database. The

Postmaster is responsible for managing all incoming database requests and establishing

database connectivity between frontend clients and one or more backend database

processes. In addition, the Postmaster is responsible for allocating shared memory buffer

pools and other system resources that are required by the backend Postgres database

processes. All database startup and shutdown procedures are processed through the

Postmaster.

Although the Postmaster can be directly invoked from the operating system prompt, the

PostgreSQL software comes with a utility called pg_ctl that can be used for starting,

stopping, restarting, and reporting the status of the Postmaster. Both the Postmaster and

the pg_ctl utility accept the same run-time parameters and arguments for specifying shared

memory buffers, data directory paths, and backend processing options. However, the

pg_ctl utility provides additional mechanisms for displaying the status of the Postmaster

process, restarting the Postmaster, and shutting down the Postmaster, with up to three

different modes that control how the Postmaster handles the shutdown of all active

backend Postgres processes.

The simplest method of starting a Postmaster server process is by issuing the following

command using the pg_ctl utility.

$ pg_ctl –w start

As previously mentioned, a number of run-time parameters can be specified at run-time.

However, most of these are usually defined within a Postmaster Configuration File (i.e.

postmaster.opts), which is located in the PostgreSQL Data Directory. Any options that are

specified at run-time will override the default options established in the postmaster.opts file.

In the above example, the parameter (“-w”) instructs the pg_ctl utility to wait for the

Postmaster server process to come up; verifying a Postmaster Process Identification (PID)

File is created.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 21

To display the current status of the Postmaster process, the following pg_ctl command can

be issued, giving the following results.

$ pg_ctl status
pg_ctl: postmaster is running (pid: 6401)
options are:
/usr/bin/postmaster
-p 5432
-D /var/lib/pgsql/data
-B 64
-i
-N 32

This output shows a listing of the various parameters that have been specified for the

Postmaster server process. We can see from this example that the Postmaster is running,

and has been assigned a PID of 6401. The directory path of the Postmaster executable is

/usr/bin directory. The option (“-p”) indicates the assigned Port for incoming database

requests is set to Port 5432, which is the default setting for PostgreSQL. The option (“-D

/var/lib/pgsql/data”) indicates where the PostgreSQL data directory is located on the server.

The remaining parameters affect the overall performance of your PostgreSQL environment

and are dependent upon the availability of system resources running on the server.

The option (“-B”) shows 64 shared-memory disk buffers are currently allocated for use by

the backend Postgres processes. Option (“-i”) enables “Internet Domain” connectivity for

clients to connect to PostgreSQL databases via TCP/IP. Without this option, the

Postmaster will only accept local socket connections from the host. The last parameter

shown in the above example is the (“-N”) option, which controls the maximum number of

backend Postgres server processes that can be started by the Postmaster. Here, the

current maximum is set to 32, but this can be set as high as 1024, depending upon the size

and configuration of your server hardware.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 22

Once the Postmaster is up and running, several backend Postgres server processes will be

spawned and terminated as database requests are processed by the Postmaster. If the

database is shutdown for any reason, the Postmaster is responsible for handling the

orderly shutdown of all active Postgres backend processes. As previously mentioned,

three different shutdown modes are available via the pg_ctl utility. These are briefly

described below:

• (S)mart Shutdown Mode – This is the default shutdown mode, which is used, if

nothing is specified on the shutdown command line. When using this

shutdown mode, the Postmaster will restrict any further database connections

from being established. It waits for all current connections to logout, along

with ensuring that active transactions have completed before shutting down

the database.

• (F)ast Shutdown Mode – Signals all backend Postgres processes that the

PostgreSQL database is shutting down. All active database transactions are

rolled back prior to actually shutting down the database.

• (I)mmediate Shutdown Mode - Signals all backend Postgres processes that

the PostgreSQL database will be immediately shutdown and aborts all active

transactions running within the database. This option should be used only

when there is a critical situation that requires immediate shutdown of all server

processes. In this case, database recovery will probably be required when the

database is brought back up.

Sample outputs for these various shutdown modes are demonstrated in the following

examples. The shutdown mode parameter is prefixed with the option (“-m”), and followed

by the first letter of the selected shutdown mode (i.e. “s” for Smart Shutdown Mode).

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 23

Sample pg_ctl Shutdown Procedure using Smart Mode:

$ pg_ctl -w -m s stop
Smart Shutdown request at Fri Aug 25 13:37:41 2000
Waiting for postmaster shutting down.......................000825.13:38:02.549
Database System shutting down at Fri Aug 25 13:38:02 2000
done.
postmaster successfully shut down.

Prior to executing the Smart Shutdown, one interactive psql session was activated

generating a SQL query against the database. The “Waiting for postmaster shutting

down….” message appears because the Postmaster is waiting for the active database

session to complete and logout. Once the session terminated, the Postmaster shut down

the database and a message stated that the Postmaster was successfully shut down.

Sample pg_ctl Shutdown Procedure using Fast Mode:

$ pg_ctl -w -m f stop
Fast Shutdown request at Fri Aug 25 13:53:37 2000
Database System shutting down at Fri Aug 25 13:53:37 2000
Waiting for postmaster shutting down...000825.13:53:37.335
Database System shut down at Fri Aug 25 13:53:37 2000
done.
Postmaster successfully shut down.

When specifying Fast Mode Shutdown, notice the database is immediately shut down, prior

to the Postmaster process being shut down. ROLLBACKs were performed on any active

database transactions that were running at the time the Fast Shutdown was issued.

Sample pg_ctl Shutdown Procedure using Immediate Mode:

$ pg_ctl -w -m i stop
Immediate Shutdown request at Fri Aug 25 14:14:35 2000
Waiting for postmaster shutting down..done.
postmaster successfully shut down.

When specifying Immediate Mode Shutdown, the database is immediately shut down,

aborting all active database transactions that were running when the Immediate Shutdown

was issued. This shutdown mode is intended for emergency situations that require the

database to be quickly shut down.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 24

At times there may be a need for a database administrator to restart the Postmaster in

order to reconfigure the PostgreSQL environment or change some run-time options to

adjust the overall performance of the server. In this situation, the database administrator

can issue a pg_ctl command using the restart argument. This instructs the Postmaster to

perform a Smart Shutdown of the database, and immediately start the database again.

The following command performs a database restart:

$ pg_ctl –w restart

As demonstrated in this section, PostgreSQL provides several options for performing

database startup and shutdown operations, along with reporting the current status of the

Postmaster server process. The intent behind the pg_ctl utility is to provide database

administrators with a common tool for standardizing startup and shutdown operations within

a PostgreSQL database environment. Many other database vendors require Database

Administrators to write their own custom scripts for performing these types of functions.

This often leads to inconsistent operating procedures within large ITS organizations and

extends the learning curve for new DBA staff members. Thus, PostgreSQL alleviates these

problems by providing a standard utility that is well documented regardless of the operating

environment in which the database is installed.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 25

PostgreSQL Backup and Restore

There are two primary mechanisms for backing up a PostgreSQL database. The

recommended methods are to use a PostgreSQL utility called pg_dump or a variation

called pg_dumpall. The intent behind both utilities is to dump all database object definitions

including tables, indices, triggers, data, etc. into a flat file that can be used to restore the

database to its original state at a given point in time. Multiple parameters can be specified

with these utilities to accommodate unique backup requirements for a given database

environment. Both “Hot” Backups, which allow backup operations to run while the

database is running, and “Cold” Backups can be performed using these PostgreSQL

backup utilities.

An alternative method to using one of these PostgreSQL utilities is to backup the physical

database files, using the backup facility at the operating system level. However, file system

backups have some inherit restrictions that must be considered when backing up

PostgreSQL databases. Since file system backups do not interact with the internals of

PostgreSQL like the pg_dump or pg_dumpall utilities do, the database server process must

be shut down prior to performing file system backups. This must be done to ensure that

the integrity of the database structures is maintained internally within PostgreSQL.

Consequently, the same is true when restoring physical database files from a file system

backup.

Another consideration when selecting a system level backup approach is the file size of the

backups. System-level backups will be significantly larger than the pg_dump/pg_dumpall

files because the data for both the tables and their associated indices must be backed up.

In contrast, pg_dump and pg_dumpall utilities only dump the table data and the index

definitions. The index data content is not backed up, since indices are rebuilt during the

restore operation when using either pg_dump or pg_dumpall. Thus, the effort required to

restore a database using a system-level backup file versus a dump file produced by

pg_dump or pg_dumpall can be significantly more involved.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 26

Although database backups can be done using either approach, most business

environments demand the type of flexibility offered by the pg_dump and pg_dumpall

utilities. The distinction between using pg_dump versus pg_dumpall is whether you want to

backup one single PostgreSQL database or an entire cluster of PostgreSQL databases that

run on a given server. Depending upon your database backup strategy, one or both of

these utilities may be appropriate for your environment.

Both utilities accept the same parameter options, which can be used to customize the

output format of the generated dump files. The only difference between the two utilities is

how they are invoked from the command line, and what kinds of privileges are required to

run each utility. Since pg_dumpall assumes that it will dump all of the PostgreSQL

databases that are running on the server, there are no arguments for specifying a database

name as with the pg_dump utility. As previously mentioned, you can selectively backup

specific tables when using the pg_dump utility. If you are performing a selective backup of

a database table, the pg_dump utility requires both the name of the PostgreSQL database

to be backed up and the name of a specific table.

Since pg_dumpall must have access to every PostgreSQL database running on a given

server, this utility does require “SuperUser” privileges like those assigned to the Postgres

Account to perform a pg_dumpall operation. However, the pg_dump utility requires a user

to have only READ access privileges to the database and/or objects being backed up. The

examples below show the syntax for invoking these two utilities and the various options that

are available for customizing your backups. The first example shows how to invoke the

pg_dumpall utility, directing the output to be written to a file named dbserver_backups.sql:

$ pg_dumpall –v > /home/postgres/dbserver_backups.sql

The above parameter (“-v”) instructs the pg_dumpall utility to operate in “verbose” mode,

which enables the display of informational messages to the console during the dump

operation. All related database objects and data are written to the specified file

/home/postgres/dbserver_backups.sql via the Linux/Unix pipe symbol (“>”). The generated

output from pg_dumpall is intended to provide a SQL based text file that can be used to

restore all of the databases to their original state at the point of the backup. The dump file

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 27

contains SQL Data Definition Language (DDL) statements for re-creating the database

objects during a restore operation, and PostgreSQL COPY commands for loading the text-

formatted data back into the database.

An example of how to invoke the pg_dump utility, shown below, follows the same syntax as

the pg_dumpall command, with the added argument of a specific database to be backed

up.

$ pg_dump –v testdb > /home/postgres/testdb_backup.sql

Here, the database testdb will be backed up using the pg_dump utility, and all related

database objects that reside in this database will be dumped to an output file. The

generated output will be written to the file testdb_backup.sql.

If a selective backup of one particular table within the database was needed, the above

pg_dump command could be modified to dump only the contents of one table residing in

the testdb database. This type of DBA operation is very common in environments where

critical tables must be backed up for special processing or periodically archived after

performing batch updates. The example below instructs the pg_dump utility to dump only

the table sales to a dump file from the testdb database, using the parameter option (“-t”)

and the name of the table to dump (i.e. sales):

$ pg_dump –tv sales testdb > /home/postgres/testdb_sales_backup.sql

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 28

A sample of the output generated from the above pg_dump command is shown below. The

output format of the dump file is identical to the other examples previously mentioned for

both the pg_dump and pg_dumpall utilities. In the case of the pg_dumpall utility, a

separate database connection statement would be embedded in the dump file for every

database backed up on the server.

Generated Output written to testdb_sales_backup.sql:
\connect - postgres
CREATE TABLE "sales" (
 "stor_id" character varying(4) NOT NULL,
 "ord_num" character varying(20) NOT NULL,
 "ord_date" date NOT NULL,
 "qty" int4 NOT NULL,
 "payterms" character varying(12) NOT NULL,
 "title_id" character varying(6) NOT NULL,
 PRIMARY KEY ("stor_id", "ord_num", "title_id")
);
GRANT SELECT on "sales" to PUBLIC;
GRANT ALL on "sales" to "postgres";

COPY "sales" FROM stdin;
6380 6871 1994-09-14 5 Net 60 BU1032
6380 722a 1994-09-13 3 Net 60 PS2091
7066 A2976 1993-05-24 50 Net 30 PC8888
7066 QA7442.3 1994-09-13 75 ON invoice PS2091
7067 D4482 1994-09-14 10 Net 60 PS2091
7067 P2121 1992-06-15 40 Net 30 TC3218
7067 P2121 1992-06-15 20 Net 30 TC4203
7067 P2121 1992-06-15 20 Net 30 TC7777
7131 N914008 1994-09-14 20 Net 30 PS2091
7131 N914014 1994-09-14 25 Net 30 MC3021
7131 P3087a 1993-05-29 20 Net 60 PS1372
7131 P3087a 1993-05-29 25 Net 60 PS2106
7131 P3087a 1993-05-29 15 Net 60 PS3333
7896 QQ2299 1993-10-28 15 Net 60 BU7832
7896 TQ456 1993-12-12 10 Net 60 MC2222
7896 X999 1993-02-21 35 ON invoice BU2075
8042 423LL930 1994-09-14 10 ON invoice BU1032
8042 P723 1993-03-11 25 Net 30 BU1111
8042 QA879.1 1993-05-22 30 Net 30 PC1035
\.

CREATE UNIQUE INDEX "sales_pk" on "sales" using btree ("stor_id" "varchar_ops",
 "ord_num" "varchar_ops", "title_id" "varchar_ops");
CREATE INDEX "ord_num" on "sales" using btree ("ord_num" "varchar_ops");

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 29

Generated Output written to testdb_sales_backup.sql (Continued)

CREATE INDEX "sales_by_dte_idx" on "sales" using btree ("ord_date" "date_ops",
 "stor_id" "varchar_ops", "ord_num" "varchar_ops");
CREATE CONSTRAINT TRIGGER "fk_on_sales_titleid" AFTER INSERT OR UPDATE
ON "sales" NOT DEFERRABLE INITIALLY IMMEDIATE FOR EACH ROW
EXECUTE PROCEDURE "RI_FKey_check_ins" ('fk_on_sales_titleid', 'sales', 'titles',
'UNSPECIFIED', 'title_id', 'title_id');
CREATE CONSTRAINT TRIGGER "fk_on_sales_storid" AFTER INSERT OR UPDATE
ON "sales" NOT DEFERRABLE INITIALLY IMMEDIATE FOR EACH ROW
EXECUTE PROCEDURE "RI_FKey_check_ins" ('fk_on_sales_storid', 'sales', 'stores',
'UNSPECIFIED', 'stor_id', 'stor_id');

Other parameter options are available to both the pg_dump and pg_dumpall utilities for

customizing the generated output. For example, a DBA may only want to back up the data

rather than back up both the database structures and their associated data contents. This

is easily handled by specifying a run-time parameter (“-a”), which flags the utility to dump

the data without the schema definitions. Another parameter option (“-s”) will dump just the

schema definitions. Consequently, multiple pg_dump and pg_dumpall operations can be

configured to accommodate many different backup strategies.

Database restores are handled by invoking the PostgreSQL Interactive SQL Tool called

psql, passing the generated output from either pg_dump or pg_dumpall as input to this

database interface. Using the previous example from the pg_dump of the testdb database,

we can restore this database by issuing the following command at the operating system

prompt:

$ psql –e testdb < /home/postgres/testdb_backup.sql

The parameter option (“-e”) is used to instruct the psql tool to display all commands

executed within the psql session. In this example, we are connecting to the testdb

database, and the generated dump file testdb_backup.sql is being read as standard input

to restore the database. Once the dump file is processed within the psql session, the

testdb database will be restored to its original state at the point when the backup operation

was performed.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 30

Import and Export Tools

The PostgreSQL Database provides several options for importing and exporting data. The

most common means of importing data is using the PostgreSQL COPY command, which

accepts input from a flat file or the operating system’s standard input device (i.e., stdin).

The format of the input file can be either text or binary, using any type of field delimiters that

can be specified within the COPY command. The End-Of-File (EOF) marker within the

data file is indicated by using a special terminator symbol (“\.”) followed by a new line at the

end of the file. The COPY command is executed from within the psql utility. Thus, data

can be easily loaded directly into a PostgreSQL database without having to write complex

scripts or programming code. An example of importing data with the COPY command is

shown below:

Data Import Sample using COPY Command

$ psql testdb
testdb=> COPY jobs FROM ‘/home/postgres/jobs_data.txt’ USING DELIMITERS ‘|’;
1|New Hire - Job not specified|10|10
2|Chief Executive Officer|200|250
3|Business Operations Manager|175|225
4|Chief Financial Officier|175|250
5|Publisher|150|250
6|Managing Editor|140|225
7|Marketing Manager|120|200
8|Public Relations Manager|100|175
9|Acquisitions Manager|75|175
10|Productions Manager|75|165
11|Operations Manager|75|150
12|Editor|25|100
13|Sales Representative|25|100
14|Designer|25|100
\.

In this example, we have a table called jobs that already exists within the database. The

table is made up of four columns: job_id, job_desc, min_lvl, and max_lvl. As specified in

the COPY statement, the data is delimited by a pipe symbol (“|”). Similarly, data can also

be exported from PostgreSQL using the COPY command. When exporting data, the

COPY command syntax changes by substituting the “FROM” with a “TO”. All standard

data-integrity checks are enforced using defined database triggers and constraints.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 31

Another option for importing and exporting data into PostgreSQL is to use the PgAccess

GUI Tool. PgAccess provides both import and export capabilities within a Linux/Unix

environment. Using the PgAccess Import Table function, data can be imported into a

PostgreSQL Table from a flat file that resides on the file system. The tool actually mimics

the functionality of the COPY command by enabling users to specify the target table that

will receive the imported data, the import filename, and the column/field delimiter values.

Then, PgAccess parses this information and formulates a COPY command to be executed

by the backend Postgres process (Refer to Section 6 – Database Utilities for more details

regarding other PgAccess features).

The Windows-based tool pgAdmin can also import and export data into PostgreSQL via its

ODBC interface. Using pgAdmin’s IMPORT Tool, data can be loaded into PostgreSQL

tables directly from delimited flat files that reside on other operating platforms other than

Linux/Unix. The tool provides some additional formatting capabilities, such as specifying

the column order of the input data and mapping the input to the target table columns. In

addition, this tool gives status summaries of the import operation, reporting the number of

records imported and the number of records that encountered errors. All data errors are

written to a log file, along with details about the errors encountered (See Section 6 –

Database Utilities for a more detailed discussion of pgAdmin’s capabilities).

As was previously mentioned, data exports from PostgreSQL can be accomplished using

the COPY command from within the psql interface, PgAccess, or pgAdmin. However,

pgAdmin also provides Exporter Tools that can export data into HTML formatted files for

display on the Web, or into Excel using Microsoft’s Object Linking and Embedding (OLE)

technology. These Exporters are incorporated into several pgAdmin functions, such as the

Quick SQL Tool and the Data Viewer, which is a tool that displays the contents of selected

PostgreSQL Tables.

The pgAdmin Quick SQL Tool is useful for customizing queries to extract data based upon

some selection criteria. Then, the query results can be exported to either an HTML Web

page or Excel spreadsheet. This latter technique is commonly used in the business

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 32

community for producing Ad Hoc Reports required for business analysts and management.

The HTML Exporter is helpful for data warehousing environments that require monthly and

quarterly snapshots of data to be viewable corporate-wide across an established Intranet

environment.

In addition to these useful third-party interfaces to PostgreSQL, there is an integral feature

within the pg_dump Backup utility that can be used for exporting data from a PostgreSQL

database. Although pg_dump is typically used for performing database backups, it can

also serve as a data exporter. By specifying various pg_dump parameters, data can be

extracted from an entire database or a select set of tables. For example, data from one

PostgreSQL table can be extracted to a flat file by issuing the following pg_dump

command:

$ pg_dump –at jobs testdb > /home/postgres/dump_jobs_data

The above parameters (“-at”) instruct the pg_dump utility to dump only the data from the

table jobs from within the testdb database. The data output is written to the specified file

/home/postgres/dump_jobs_data via the Linux/Unix pipe symbol (“>”). The output format of

the data will be tab-delimited by default. The output file can then be imported into another

PostgreSQL database, using the COPY command example that was previously shown

without the “USING DELIMITERS ‘|’” clause.

One extensible option that the pg_dump utility provides is the facility for extracting data into

a flat file formatted with ANSI SQL92 INSERT statements. Thus, output formatted in this

matter via the pg_dump utility can be loaded into any other SQL92 compliant database,

using standard SQL scripts. The example below shows how this can be done using the

parameter option (“-d”), which instructs pg_dump to extract the data, encapsulating the

data with SQL92 “INSERT…VALUE” statements.

$ pg_dump –adt jobs testdb > /home/postgres/insert_jobs_data.sql

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 33

Sample output generated from this pg_dump command is shown below:

INSERT INTO "jobs" VALUES (1,'New Hire - Job not specified',10,10);
INSERT INTO "jobs" VALUES (2,'Chief Executive Officer',200,250);
INSERT INTO "jobs" VALUES (3,'Business Operations Manager',175,225);
INSERT INTO "jobs" VALUES (4,'Chief Financial Officier',175,250);
INSERT INTO "jobs" VALUES (5,'Publisher',150,250);
INSERT INTO "jobs" VALUES (6,'Managing Editor',140,225);
INSERT INTO "jobs" VALUES (7,'Marketing Manager',120,200);
INSERT INTO "jobs" VALUES (8,'Public Relations Manager',100,175);
INSERT INTO "jobs" VALUES (9,'Acquisitions Manager',75,175);
INSERT INTO "jobs" VALUES (10,'Productions Manager',75,165);
INSERT INTO "jobs" VALUES (11,'Operations Manager',75,150);
INSERT INTO "jobs" VALUES (12,'Editor',25,100);
INSERT INTO "jobs" VALUES (13,'Sales Representative',25,100);
INSERT INTO "jobs" VALUES (14,'Designer',25,100);

This capability further demonstrates how PostgreSQL can be integrated into existing

database environments, allowing data to be easily shared across multiple database

platforms. For additional details on the pg_dump utility, please refer to the PostgreSQL

Backup and Restore Section in Chapter 3 – Physical Database Environment.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 34

4 Database Management and Database Monitoring

The PostgreSQL database provides several tools for assisting in the day-to-day

management and monitoring of the database environment. These tools come in the form

of run-time parameters that can be set to write specific information to the database log files

and operating system utilities that display information about active server processes.

Generally, both system managers and database administrators actively participate in

monitoring activity on the database server. Because potential bottlenecks that affect

performance may be detected from one of several different sources, more detailed

information may need to be collected. Once this information is captured, it can be reviewed

by your ITS staff to evaluate the overall performance of the database server.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 35

User Access Monitoring Tools

Two operating system utilities commonly used to monitor user access in a Linux/Unix

environment are the Process Status (ps) utility and the top utility. The ps utility provides a

snapshot of information about current processes that are running on the server. The top

utility is an interactive tool that dynamically gathers process statistics about the most CPU

intensive processes that are running on the server. Both utilities accept options for

specifying particular information to display in their output listings. Since the PostgreSQL

environment comprises at least one primary process, which is the Postmaster process, and

one to many backend Postgres processes, database administrators can selectively target

processes to monitor by referencing one of these process names.

The example below shows how to monitor all of the Postgres backend processes that are

running on the server using the ps utility. Since we are primarily interested in monitoring

only the Postgres backend processes, the option (“U process-name”) is used to instruct the

ps utility to only display processes that have the process name of postgres.

$ ps U postgres
 PID TTY STAT TIME COMMAND
 2481 ? S 0:00 /usr/bin/postgres 216.54.52.152 smith pubs idle
 2899 ? R 0:00 /usr/bin/postgres localhost dbuser test SELECT
 3104 ? S 0:00 /usr/bin/postgres 216.54.52.147 dbamgr pubs idle
 3105 ? D 0:00 /usr/bin/postgres 216.54.52.147 dbamgr test commit

Based upon the results displayed by the ps utility, we can see there are four active user

connections running on the server, and only two PostgreSQL databases are being

accessed. Reading the results from left to right, we see that a process, which is assigned a

process identifier (PID) of 2481, is connected via a remote TCP/IP connection, originating

from a remote computer with a TCP/IP address of 216.54.52.152. This user is logged into

the server under the username of smith, and is accessing the pubs database. Currently,

the process is idle. The second process under PID 2899 is connected via a local host

connection under the username of dbuser, and is accessing the test database. Here, the

ps utility shows us dbuser is executing a SQL SELECT statement against the test

database. Finally, we see two processes (i.e. PID 3104 and 3105) that are both assigned

to the same user (dbamgr), but this user is accessing two databases (i.e. pubs and test).

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 36

The STAT or state code shows the current state of the process. In the above example, all

of the processes are (S)leeping with the exception of PID 2899, which has a process state

of (R)unning because it is processing a SQL SELECT statement running in the test

database. In addition, PID 3105 has a process state of (D), which indicates the process is

in an uninterruptible sleep state. This state usually reflects some type of I/O activity, which

is confirmed by the fact that the ps utility shows PID 3105 is in the process of committing a

transaction to the database. Other types of state codes, which may appear in the ps

results, are (T) indicating the process is in a traced or stopped state, and (Z) indicating the

process is in a “zombie” state. Several options can be specified on the ps utility command

line to display different information and output formats in the results. For further details,

please refer to your operating system documentation for other available ps options.

To get more specific information about the system resources that each process is using,

the top utility can be used. The top utility provides an interactive display of the activity that

is running on the server in real time. The results are periodically refreshed based upon a

specified interval to reflect changes occurring on various processes. For demonstration

purposes, let’s say we want to get more information about the four processes shown in our

ps results example. The top utility enables us to selectively monitor these processes by

specifying their assigned process identifiers using the option (“-p”). This instructs the top

utility to display only information related to the specified process identifiers.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 37

The following example shows how to use the top utility for monitoring the four process

identifiers listed in the previous example.

$ top –p 2481 –p 2899 –p 3104 –p 3105
6:54pm up 5 days, 10:20, 4 users, load average: 0.37, 0.11, 0.03
4 processes: 3 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: 5.5% user, 1.9% system, 0.0% nice, 92.5% idle
Mem: 517120K av, 269540K used, 247580K free, 92600K shrd, 182352K buff
Swap: 530104K av, 0K used, 530104K free 31692K cached

 PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND
2481 postgres 0 0 2856 2856 2268 S 0 0.0 0.5 0:00 postmaster
2899 postgres 0 0 2868 2868 2212 R 0 0.0 0.5 0:00 postmaster
3104 postgres 0 0 2736 2736 2220 S 0 0.0 0.5 0:01 postmaster
3105 postgres 6 0 2708 2708 2196 D 0 2.3 0.5 0:00 postmaster

Reading the above results from the top utility, we can see that the four processes

referenced in the ps example are still active. The top utility also shows the status of all

system resources currently being utilized, including the amount of available memory with

the average amount of memory used, available shared memory, amount of allocated

memory buffers, and the swap file statistics. Although the results indicate the system is

running about 92.5% idle, the process assigned PID 3105 is using approximately 2.3% of

the CPU. Using the results from both the ps and top utilities, we know PID 3105 is

obviously performing the most intensive database activity compared to the other active

users.

Once database administrators have isolated the various PostgreSQL processes that they

want to monitor on the server, more database-specific information can be obtained using

PostgreSQL’s database logging and debugging parameters. PostgreSQL provides several

levels of logging information depending upon the amount of detail that is needed for

monitoring activity. Both the Postmaster and Postgres processes will accept run-time

parameters that specify the level of logging desired. Debug logging levels for PostgreSQL

are controlled by the run-time parameter option (“-d integer-value”), which can be passed to

the PostgreSQL server processes. Zero is the default value assigned to this option, which

means no debugging output is generated to the PostgreSQL log file.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 38

The higher the debug level value is set, the more “debugging” information that is generated.

Generally, there is no need to specify any higher setting than four when debugging or

monitoring most database situations. Logging information is written to the system log file,

unless otherwise specified. The example below shows how to specify several debug

options using the Postmaster command line, and directs the output to a database log file

located in the home directory assigned to the postgres user account (e.g. /home/postgres).

$ postmaster –i -d 2 -o "-d 3 -tpa -te" >>/home/postgres/postgresql_db.log 2>&1 &

Reading from left to right, the Postmaster process option (“-i”) is used to enable TCP/IP

connectivity to the backend database, and the debug level option ("-d") is set to a value of

two. The Postmaster option (“-o”) specifies processing parameters that will be passed onto

any Postgres backend processes. All backend options must be enclosed within double

quotes. Here, the Postgres backend process debug level is set to a value of three. In

addition, two run-time options are specified that include the show_parser_stats and the

show_executor_stats, which are both set to on using options (“-tpa” and “-te” respectively).

The command syntax (“>>/home/postgres/postgresql_db.log”) tells the Postmaster to

redirect standard output messages to the designated database log file (e.g.

/home/postgres/postgresql_db.log). The phrase (“2>&1”) instructs the Postmaster to also

send any error messages to the same file where standard output information is being

written (i.e. /home/postgres/postgresql_db.log). Normally, output redirections are specified

using only one (“>”) symbol. The double (“>>”) symbol syntax is used here because both

standard output messages and error messages are being redirected to the same file (i.e.

The double (“>>”) symbol is used to append standard error messages to the same file that

is being used for logging standard output messages). The debug levels for both the

Postmaster process and the Postgres backend processes are set to zero by default, which

means logging is turned off. Finally, the ampersand (“&”) at the end of the command line

instructs the Postmaster to startup as a background process.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 39

Continuing with our scenario from the ps and top results, the Database Administrator can

search for specific PIDs within the database log file to monitor their transaction activity.

Below is an excerpt of the database log information that was generated from the debugging

options specified above. Only activity relating to PID 3105 is shown in this example, since

we know from the top output results that this process is performing a CPU intensive

operation. Using the log information, we can isolate what type of SQL statement PID 3105

is performing.

000919.15:13:20.597 [3105] started: host=216.54.52.147 user=dbamgr database=test
000919.15:13:20.597 [3105] InitPostgres
000919.15:13:20.694 [3105] reset_client_encoding()..
000919.15:13:20.695 [3105] reset_client_encoding() done.
000919.15:13:20.695 [3105] StartTransactionCommand
000919.15:13:20.695 [3105] query: select getdatabaseencoding()
000919.15:13:20.699 [3105] ProcessQuery
000919.15:13:20.699 [3105] CommitTransactionCommand
000919.15:13:25.425 [3105] StartTransactionCommand
000919.15:13:25.425 [3105] query: DROP TABLE "roysched";
000919.15:13:25.425 [3105] ProcessUtility: DROP TABLE "roysched";
000919.15:13:25.442 [3105] CommitTransactionCommand
000919.15:13:25.567 [3105] StartTransactionCommand
000919.15:13:25.567 [3105] query: CREATE TABLE "roysched" (
 "title_id" character varying(6) NOT NULL,
 "royalty" int4 NOT NULL,
 "lorange" int4,
 "hirange" int4,
 PRIMARY KEY ("title_id", "royalty"));
000919.15:13:28.601 [3105] CommitTransactionCommand
000919.15:13:28.603 [3105] StartTransactionCommand
000919.15:13:28.604 [3105] query: INSERT INTO "roysched" ("title_id","royalty",
"lorange","hirange") VALUES ('BU1032',0,5000,10);
000919.15:13:28.606 [3105] CommitTransactionCommand
000919.15:13:28.606 [3105] StartTransactionCommand
000919.15:13:28.607 [3105] query: INSERT INTO "roysched" ("title_id","royalty",
"lorange","hirange") VALUES ('BU1032',5001,5,12);

Reading from the top, we can see that PID 3105 connected to the test database on

September 19th at 3:13 PM, logging in as user dbamgr. Jumping down nine lines, we see

that the user issued a SQL “DROP TABLE” statement against the roysched table. This is

followed by a SQL “CREATE TABLE” statement for lines later, which restores the roysched

table structure. After the roysched table is restored, the log shows a series of SQL INSERT

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 40

statements. Based upon the above log information, it appears the dbamgr is performing

some type of database restore operation, which explains why this process is using

significant portions of the CPU resources.

Although this is only a small example of the type of logging mechanisms available within

PostgreSQL, the scenario presented in this section demonstrates how database

administrators can use the monitoring tools that are available within PostgreSQL.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 41

5 Database Performance Tuning

Several techniques can be applied to the PostgreSQL environment to fine-tune database

performance. Of course, overall database performance is affected by several factors,

including the operating environment where the database is running, number of users

accessing the database, and whether other applications must share the available server

resources. The topics addressed in this section will demonstrate the various tools and

techniques that are available within PostgreSQL for tuning potential bottleneck issues and

maintaining good overall database performance.

In addition, there are general practices that can be deployed to ensure that PostgreSQL is

being used effectively. For example, large data imports and/or loads are best done using

the PostgreSQL COPY command rather than using standard SQL INSERT statements.

The COPY command bypasses a lot of database constraints that enable the database to

load data extremely quickly into PostgreSQL tables. Performance can also be improved

when using either COPY and/or INSERTS if the target table indices are dropped and

reapplied after the bulk load operation completes.

Another technique for improving data access performance is to cluster data into groups.

This is accomplished by using the CLUSTER command, which reorders the data that is

stored in tables to match the ordering of an index. This command is useful in situations

where there are duplicate values for columns that are used to retrieve data, based upon

some type of selection criteria. For example, a book publisher may have a list of books

indexed by author. If all the books written by the same author are grouped together on the

same database page, disk I/O could be reduced by implementing clustering on the author

index. The syntax used to cluster data in this fashion is outlined below:

CLUSTER index-name ON table-name

In our example above, the index-name that references the column authors in the table

titleauthors would be substituted in the CLUSTER statement to reorder the data to match

the index order. This technique is also helpful in eliminating the need for sort operations,

whenever ORDER BY clauses are used in database queries.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 42

Run-time Configuration Settings for PostgreSQL Servers

Many factors must be considered when configuring a PostgreSQL server environment for

optimum performance. The only limitations imposed on PostgreSQL are the amount of

system resources that are physically available on the system. System resources include

the amount of physical memory available on the system, physical disk space, the number

of CPU processors running on the server, and the speed of these processors. Also to be

considered is whether PostgreSQL will be running on a dedicated server, or whether it will

share the system resources with other applications and/or packaged solutions. In all

cases, tuning the database server will involve balancing the performance requirements of

the database with the amount of system resources that can be allocated for use by the

PostgreSQL software.

The standard default settings for PostgreSQL are set to minimum levels to ensure the

database will use the smallest amount of system resources when it is installed. For most

database implementations, some of these run-time settings will need to be increased.

However, it is best to initially startup the PostgreSQL database using the defined defaults,

and then monitor over time the overall performance of the PostgreSQL environment. Prior

to making any changes to the PostgreSQL run-time parameters, it is best to collect

statistics on both the operating system and the PostgreSQL database processes that are

running on the server. This information is invaluable when making determinations about

what environmental settings may need to be adjusted. The gathering of this information is

typically a collaborative effort between database administrators and system managers who

are responsible for the operating environment.

As mentioned above, the overall performance of a PostgreSQL database server will be

dependent upon its operating system resources and the applications that are running on

the server. PostgreSQL will utilize all the allocated resources that are assigned to it during

the startup process, if they are needed. In addition, some run-time parameters can be

dynamically passed to the backend Postgres processes, which are spawned by the

PostgreSQL Postmaster process. Consequently, it is the responsibility of the database

administrators to ensure that the run-time configuration settings do not exceed the available

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 43

system resources. The more information database administrators have about their

respective databases, the better equipped they are to properly configure PostgreSQL.

Although several run-time parameters exist within PostgreSQL, only subsets of these

directly affect the overall performance of the database environment. All the other

parameters can be applied on an as needed basis to customize the database’s behavior for

specific application needs. The table below highlights the PostgreSQL run-time parameters

that have the most impact on database performance. The specified configuration

guidelines are intended as “rules of thumb.” Other considerations, which must be factored

into these guidelines, include the number of concurrent users that are expected to access

the database server and the types of concurrent database transactions that will be running

on the server.

PostgreSQL
Run-time

Parameters
Parameter Description

General
Configuration Guidelines

MaxBackends Maximum Backend Postgres
Processes that can be started by the
Postmaster. This parameter should
be based upon the anticipated
number of concurrent users that will
be accessing the database server.
One Postgres backend process will
be spawned for every database
connection to the server.

Option is specified at database
startup on the Postmaster command
line using parameter option (“-N”).

Generally, this parameter setting should
be set to the maximum number of
anticipated concurrent database users
that will access the system at one time,
plus a safety margin. This parameter
impacts other PostgreSQL run-time
parameters like Shared Memory Disk
Buffers and Sort Buffers. Thus, all
dependent options must be adjusted
whenever this parameter is changed.
Default setting is 32 with a maximum
setting of 1024. The maximum limit can
be overwritten if the PostgreSQL
software is recompiled with higher
ceiling limits.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 44

PostgreSQL
Run-time

Parameters
Parameter Description

General
Configuration Guidelines

NBuffers Specifies the amount of Shared
Memory Disk Buffers that are
allocated to PostgreSQL for
database operations. Each buffer is
typically 8192 bytes. The parameter
setting is dependent upon the run-
time value setting specified in the
MaxBackends parameter. The
Shared Memory Disk Buffers value
cannot exceed the amount of
physical Random Access Memory
(RAM) that is available on the server.

Option is specified at database
startup on the Postmaster command
line using parameter option (“-B”).

Generally, this parameter setting should
be minimally set to twice the value
specified in the MaxBackends. If
possible, larger settings should be
specified ensuring the total amount of
buffer space allocated does not exceed
any more than half of the physical RAM
that is available on the server.

The intent is to allocate at least two
separate buffers for every backend
Postgres process that will be spawned
by the Postmaster. For large
installations with a lot of concurrent
users, it is beneficial to have as much
memory as possible. Note this
parameter must be increased whenever
the MaxBackends parameter is
modified.

Default setting is 64 Buffers. Maximum
limits are only constrained by the
amount of available RAM on server.

SortMem Specifies the amount of memory that
is allocated to backend Postgres
processes to perform internal sorts
and database hashes, before
processes resort to using temporary
disk storage. Value is specified in
kilobytes, and this run-time
parameter is passed to all the
backend Postgres processes when
they are spawned.

Special consideration should be
given to databases that process a lot
of complex queries, since multiple
sorts and merge operations can be
invoked from one complex query.

Option is specified at database
startup on the Postmaster command
line as part of the options list (‘-o
“…”’) that is passed onto the
Postgres backend processes. The
SortMem option (“-S xxx”) is
enclosed in quotes when specifying
it in the options list (e.g. ‘-o “-S
4096”’).

Recommend increasing the value
settings for this run-time parameter
whenever complex queries are running
slowly, or there are a significant number
of temporary disk files being created,
while queries are processing (e.g. sort
file names to look for on system are
pg_tempnnn.nn).

Default setting is 512 Kb. Setting
cannot exceed the amount of physical
memory available for all server
processes. Recommend starting with a
minimum value of 4096 Kb.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 45

PostgreSQL
Run-time

Parameters
Parameter Description

General
Configuration Guidelines

FSYNC (boolean) Parameter used to disable or enable
whether PostgreSQL will
automatically flush database write
buffers, which are cached in
memory, to the physical disk after
every update transaction
successfully completes. The name
refers to the “File Synchronization”
operation that PostgreSQL must
perform to write all of the cached
database transactions in memory to
the physical PostgreSQL database
disk files.

If the parameter is disabled, the
operating system controls the
transaction buffering, sorting, and
delaying disk writes as it sees fit. If
the operating system controls when
write caches are flushed to disk, then
there is a potential risk that
incomplete database transactions
could result during power failures or
system crashes. Having this
parameter enabled forces database
transactions to wait whenever the
PostgreSQL database engine
flushes the memory cache to disk.
Thus, significant performance
improvements can be achieved by
disabling this feature.

Option is enabled by default, but it
can be disabled at database startup
by passing the parameter as part of
the options list (‘-o “…”’), which
passes the parameters onto the
Postgres backend processes. The
FSYNCH parameter is enclosed in
quotes when specifying it in the
options list (e.g. ‘-o “-F”’), which
flags both the Postmaster and any
Postgres backend processes to
disable the FSYNC feature.

There is significant controversy
surrounding the benefits and risks
involved with disabling the FSYNC
feature. However, some alternative
solutions may be implemented to
reduce some of the potential risk of
disabling this option.

For example, significant performance
gains can be achieved during large load
operations if FSYNC is temporarily
disabled for bulk loads. Another
alternative for reducing the risk is to
invest in a reliable Uninterruptible
Power Supply (UPS) to prevent power
failures. Assuming you have a stable
operating system combined with a
reliable UPS backup, the FSYNC
parameter could be disabled with
minimal risks.

Unless your database environment
cannot tolerate any risk at all, the
performance gains far outweigh the
risks of disabling this parameter.

Prior to setting any of the above run-time parameters, database administrators should

confirm what system resources are available on the server. This information combined with

the recommended guidelines outlined in the above table will assist database administrators

in tuning their PostgreSQL environments.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 46

When parameter adjustments need to be made, they can be specified during database

startup on either the Postmaster command line or by passing these settings via the pg_ctl

utility. In addition, there is a PostgreSQL initialization file where run-time parameter

settings can be permanently specified. The examples below show how the PostgreSQL

parameters can be modified using one of these methods.

$ pg_ctl -o '-i -B 300 -N 150 -o "-F -S 8192"' start
postmaster successfully started up.

$ pg_ctl status
pg_ctl: postmaster is running (pid: 2708)
options are:
/usr/bin/postmaster
-p 5432
-D /var/lib/pgsql/data
-B 300
-b /usr/bin/postgres
-i
-N 150
-o '-F -S 8192'

The above example uses the pg_ctl utility to startup the PostgreSQL database. Please

note the use of the parameter options (“-o”) that appear to be referenced twice. The first

(“-o”) option is a pg_ctl parameter, which instructs the pg_ctl utility to pass the specified

run-time parameters onto the Postmaster process. The second (“-o”) option is a

Postmaster parameter, which is used by the Postmaster, to specify “backend” processing

options that need to be passed onto all Postgres backend processes. All run-time

parameters that are passed via the pg_ctl utility must be enclosed in quotes. Since one of

the pg_ctl utility options (“-o”) also requires quotes, the entire run-time parameter list is

enclosed with single quotes, and the Postmaster options (“-o”) list is enclosed with double

quotes.

Reading from left to right, option (“-i”) enables TCP/IP connectivity to the backend

database, option (“-B”) sets the Shared Memory Disk Buffers to 300, and option (“-N”) sets

the Maximum Backend Processes to 150. The FSYNCH feature is disabled with option

(“-F”), and the Sort Buffer Size option (“-S”) is set to 8192 Kb. The second pg_ctl command

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 47

requests the status of the Postmaster after the database is started. This command

confirms the current PostgreSQL database settings that are running on the server.

An alternative method for starting up PostgreSQL databases with customized run-time

settings is to invoke the Postmaster using the following command at the operating system

prompt. The same run-time parameter settings, which we used in the pg_ctl example

above, are specified here using the Postmaster command. The only additional syntax used

with the Postmaster command is the ampersand (&), which is an operating system symbol

that indicates the process should be started up as a background process.

$ postmaster –i -B 300 -N 150 -o "-F -S 8192" &
[1] 2752

$ pg_ctl status
pg_ctl: postmaster is running (pid: 2752)
options are:
postmaster
-p 5432
-D /var/lib/pgsql/data
-B 300
-b /usr/bin/postgres
-i
-N 150
-o '-F -S 8192'

As previously mentioned, run-time parameters can also be specified in an initialization file,

which is typically located in the /etc/rc.d/init.d area. The name of the file is

postgresql.init. Whenever the server boots up, the Postmaster is started using this file.

Thus, run-time parameters can be automatically assigned when the server reboots by

editing the postgresql.init file and appending the appropriate parameter options to all of the

command lines that reference the Postmaster command. The syntax for specifying these

parameters in the initialization file is exactly the same as the example shown above, where

the Postmaster is called directly.

Database administrators must monitor and evaluate server performance on a regular basis

to assess whether database needs and/or server demands have changed. The

configuration guidelines outlined in this section demonstrate how PostgreSQL can be fine-

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 48

tuned to achieve optimal performance for a given server environment. Thus, PostgreSQL

enables Database Administrators to proactively manage database performance.

Database Compression Tool (vacuum)

The PostgreSQL vacuum utility serves two primary purposes for ensuring a PostgreSQL

database will perform at optimum levels. First, the vacuum utility is responsible for

reclaiming storage space on disk that has not been completely freed up by the database

engine. Part of this housekeeping function involves cleaning out ROLLBACK transaction

segments, and/or table rows that have been marked for deletion. The second function

involves collecting database statistics, which are used by the PostgreSQL Optimizer to

determine retrieval paths for resolving queries. Database performance can be significantly

improved by keeping these statistics current. The vacuum utility should be run on a nightly

basis, and preferably after performing database backups.

Although the vacuum utility can be run without specifying any parameters, it does provide a

facility for running selective vacuum operations on more dynamic database objects. For

example, several volatile tables within the database may warrant running this utility more

often than other objects, if they are constantly being modified or frequently accessed. The

table below shows what parameter options are available within the vacuum utility and how

they can be used.

VACUUM
Run-Time Parameters Purpose of Parameter Option
Verbose Instructs the PostgreSQL vacuum utility to printout a

detailed activity report for actions performed on each
database object.

Analyze Collects and updates table/column/index statistics stored
within the System Catalog for use by PostgreSQL
Optimizer. In addition, other housekeeping functions are
performed to reclaim storage space on disk that has not
been freed up by the database engine.

table-name Performs vacuum operations on specified Table. Default
setting is to perform vacuum operations on all database
objects.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 49

VACUUM
Run-Time Parameters Purpose of Parameter Option
table-name (column,.) Performs vacuum analyze operations on specified

column, and/or list of columns. Special Note: Using this
syntax instructs the vacuum utility to only collect statistics
for the columns which are listed, skipping other columns
that exist within the specified table.

The PostgreSQL vacuum utility is invoked from within the psql environment. The vacuum

operation targets the current database that was specified when launching the psql tool.

The utility should be run when all database users are logged out of the database, or during

slow processing periods to get the most benefit from performing a vacuum operation. In

addition, only the database/table owner is authorized to run the vacuum utility. An example

of how to execute the vacuum command from within psql is shown below:

$ psql testdb
testdb=> vacuum verbose;

The above example will perform both housekeeping functions and collect statistics on the

testdb database, giving detailed activity reports on what was done during the operation. If

a database administrator wanted to perform a selective vacuum operation on a group of

columns that made up a concatenated key for a table to update statistics, the following

vacuum command could be invoked:

$ psql testdb
testdb=> vacuum verbose analyze authors (au_lname, au_fname);

In this example, the vacuum operation will analyze the specified columns au_lname and

au_fname, which reside within the table authors. Both columns are part of a concatenated

key that is used for performing name lookups within the database. The statistics gathered

during this operation will be updated to the associated objects within the System Catalog.

The PostgreSQL Optimizer will utilize these statistics to determine which path to use when

retrieving data from the table authors.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 50

Tuning Index Structures using Explain Plans

One of the most common tasks a database administrator will perform is to analyze why

certain database queries take longer to run than other queries that appear to be similar in

structure. At first glance, the database administrator will probably breakdown the SQL

statements into manageable pieces to determine how the database engine might process

the query to return the desired data results. These explain plans help eliminate the

guesswork involved with finding the root cause of why queries are not performing optimally.

The intent behind an explain plan is to map out the data retrieval paths that the database

engine will take to find the requested data.

Explain plans also provide a mathematical estimation of the resource costs involved with

traversing a data structure. Resource costs include CPU utilization, disk I/O, sort

operations, memory usage, and processing time involved with satisfying a database query.

These cost estimates are similar to the way database optimizers find the best retrieval

method for getting data out of a database. The PostgreSQL database provides a utility

called EXPLAIN, which can estimate the costs involved with processing any SQL statement

that is created within the database.

The EXPLAIN utility tabulates the startup costs associated with sorting data before it is

used for scanning data values. It provides a ballpark estimate of the number of rows

targeted for output, based upon database statistics stored within the PostgreSQL System

Tables. In addition, it will provide an average size in bytes of the rows estimated to be

returned, which helps the database administrator determine whether network buffer sizes

may be exceeded. Finally, the utility will provide a total cost estimate for executing the

specified query, giving its associated access paths.

Database administrators can derive a wealth of information about how to tune and/or

structure the data, based upon the output that is generated by the EXPLAIN utility. For

example, the EXPLAIN utility can help database administrators determine whether a SQL

statement will sequentially scan a table versus using a defined index. The utility shows

what indices are being used, if any, along with whether data must be sorted/merged before

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 51

it can be processed. Thus, database administrators can experiment with making index

changes and adjusting run-time parameters to see if the explain-plan results are affected

by these changes. In some situations, adding or restructuring an index can make

significant improvements on the overall performance of the database. Once the

appropriate remedy is determined, it can be implemented in the base system environment.

The EXPLAIN utility is an invaluable tool in helping database administrators monitor and

debug database performance issues. The following example demonstrates how to invoke

the EXPLAIN utility and the explain plans that it generates. In this example, the EXPLAIN

utility is used to analyze a query that merges information from two tables, titles and

publishers, which are linked together by a common data element named pub_id, and

displays the results. The pub_id uniquely identifies publishers that have published various

book titles. The query performs a simple JOIN between two tables, titles and publishers,

using a foreign key containing the column pub_id.

$ psql testdb
testdb=# EXPLAIN select t.title_id, t.title, p.pub_id, p.pub_name, p.city, p.state,
testdb=# p.country from titles t, publishers p where t.pub_id = p.pub_id;
NOTICE: QUERY PLAN:

Hash Join (cost=1.10..5.00 rows=36 width=96)
 -> Seq Scan on titles t (cost=0.00..2.36 rows=36 width=36)
 -> Hash (cost=1.08..1.08 rows=8 width=60)
 -> Seq Scan on publishers p (cost=0.00..1.08 rows=8 width=60)

EXPLAIN
testdb=#

The output from the EXPLAIN utility depicts a tree structure of processing steps that should

be read from the bottom to the upper portions of the tree. The upper processing steps are

the last operations to be executed during the query process. Thus, we will start at the first

processing step, which performs a sequential scan of the publishers table. The EXPLAIN

utility estimates this step will take up to 1.08 cost units, which means one disk page is

fetched plus a little CPU time to perform the operation. The utility also estimates the scan

will return eight rows with an averaging size of 60 bytes per row. Since there is no

“WHERE” clause that independently restricts the rows retrieved from the publishers table,

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 52

we can infer only eight rows exist within this table. This is also consistent with the fact that

the publishers table size fits within one database page.

The EXPLAIN utility shows the PostgreSQL Optimizer chose to perform a sequential scan

of the publishers table rather than using its primary key index, which contains the column

pub_id. If significantly more rows were populated in the publishers table, the index would

probably have been used to avoid the sequential scan. Moving on to the next processing

step, we see the rows retrieved from the publishers table are placed into a “hash” table in

memory, which is signified by the “Hash” statement. The next step shows a sequential

scan of the titles table, which is estimated to return 36 rows within an average size of 36

bytes per row.

The final step performs a “Hash Join” operation that matches all rows returned from the

titles table scan with the rows of publishers that reside in the “hash” table in memory. The

pub_id values from the two tables are used as “hash” keys. For each match the “Hash

Join” step will generate one joined row. The EXPLAIN utility estimates 36 joined rows will

result. The total cost of this retrieval plan is estimated to be five cost units, or five disk

pages fetched with an estimated 1.1 units expended before any output rows can result.

The expended cost estimate accounts for processing time required to setup the “hash”

table join. The PostgreSQL Optimizer estimates startup times separately from the total

time so that it can make intelligent choices for queries using “LIMIT” clauses, since this

would restrict the amount of rows needed in the query results.

Based upon the output generated from the above example, a database administrator may

want to adjust some run-time parameters that are available within the PostgreSQL

database to avoid some of the sequential scans highlighted by the EXPLAIN utility. As

previously referenced early in this section, the PostgreSQL database provides several run-

time parameters that can be adjusted to address a particular performance issue. Many of

these parameters can be specified when invoking various database utilities. This enables

developers and database administrators to experiment with run-time configurations to

achieve the optimum performance for a given application environment.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 53

For example, there is a parameter that controls whether the PostgreSQL Optimizer will

perform sequential scans when resolving a SQL query. Database administrators can

sometimes force the Optimizer to use an index by turning this feature on or off accordingly.

This can be done from within the psql utility by issuing a SET command, referencing the

appropriate run-time parameter. Continuing with our earlier example of joining the two

tables titles and publishers, a database administrator could set a run-time parameter to

disable sequential scans performed by the PostgreSQL Optimizer, and force it to use the

primary key index. The example below disables sequential scans, wherever possible,

during the current psql session, giving the following revised explain-plan results.

$ psql testdb
testdb=# SET ENABLE_SEQSCAN TO OFF
testdb=# EXPLAIN select t.title_id, t.title, p.pub_id, p.pub_name, p.city, p.state,
testdb=# p.country from titles t, publishers p where t.pub_id = p.pub_id;

NOTICE: QUERY PLAN:

Merge Join (cost=100000003.29..100000008.93 rows=36 width=96)
 -> Index Scan using publishers_pk on publishers p (cost=0.00..5.09 rows=8 width=60)
 -> Sort (cost=100000003.29..100000003.29 rows=36 width=36)
 -> Seq Scan on titles t (cost=100000000.00..100000002.36 rows=36 width=36)

EXPLAIN
testdb=#

Setting the run-time parameter ENABLE_SEQSCAN to off did force the use of the primary

key on publishers. Again reading the generated output from the bottom, the processing

step shows the data was retrieved differently by going to the titles table first. Since no

suitable index is available within the titles table, the table is sequentially scanned and then

sorted by pub_id to order the rows for the join. The next step shows an index scan of the

publishers table, which uses the primary key (publishers_pk). The leveling of the tree

structure within the explain plan also reveals the index scan of the publishers table and the

sort/scan operation performed on the titles table are done in parallel. The matching rows

between the two tables are joined by their pub_id values and merged into a “hash” table in

memory, giving the final results of the query.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 54

The estimated costs reveal how the ENABLE_SEQSCAN run-time parameter really works.

Setting the ENABLE_SEQSCAN to off adds a large constant to the estimated costs, so that

the query planner will only choose the sequential scan when no other alternative exists.

The low-cost “Hash Join,” which was used in the first example, is now rejected because its

estimated costs include two costly sequential scans of the publishers and titles tables.

If an index existed on the column pub_id in the titles table, the explicit sort could be

eliminated reducing the overhead costs reflected in the above explain plan. Since there

may be other queries on the titles table that select by pub_id, the database administrator

can experiment with adding a new index to see if the overhead costs can be reduced. The

following explain plan shows the impact of adding this new index on the titles table:

NOTICE: QUERY PLAN:

Merge Join (cost=0.00..14.03 rows=36 width=96)
 -> Index Scan using publishers_pk on publishers p (cost=0.00..5.09 rows=8 width=60)
 -> Index Scan using titles_pubid_idx on titles t (cost=0.00..8.40 rows=36 width=36)

EXPLAIN

Notice in the above explain-plan output, the query planner believes the “Merge Join” will be

almost three times slower than the original “Hash Join” from the first example (i.e. 14.03

cost units versus 5 cost units). If the ENABLE_SEQSCAN is reset to on, the query planner

would go back to using the “Hash Join” retrieval method shown in the first example, despite

the presence of the new index. This demonstrates why database administrators and

developers need to carefully analyze the impact of making database changes, using a tool

like the EXPLAIN utility. However, the query planner’s cost estimates are based on

statistical “guesses” and simple cost models that may not always correspond to the actual

run-time conditions of the processing environment. Thus, the end results of conducting an

experiment like this may determine the “Merge Join” in the last example is actually the

faster retrieval method for satisfying the query.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 55

Other run-time parameters that can be adjusted are outlined in the following table.

Although this is not an exhaustive list, it does reflect the most significant run-time

parameters that impact how the PostgreSQL Optimizer processes database queries.

PostgreSQL
Run-Time Parameters Description of Run-Time Parameter Usage

ENABLE_HASHJOIN Enables or disables the use of hash-join plan types.
Default setting is set to ON.

ENABLE_INDEXSCAN Enables or disables the use of index scans. Default
setting is set to ON.

ENABLE_MERGEJOIN Enables or disables the use of merge-join plan types.
Default setting is set to ON.

ENABLE_NESTLOOP Enables or disables the use of nested loop joins when
processing a query. Disabling nested loop joins will not
entirely suppress this occurrence, but it will force the
Optimizer to use other methods when they are available.
Default setting is set to ON.

ENABLE_SEQSCAN Enables or disables the use of sequential scans when
processing a query. This will not eliminate sequential
scans, but it will force the Optimizer to consider other
approaches like using an index or rewriting the query, as
shown in the above examples.

ENABLE_SORT Enables or disables the use of sorts. This is helpful if
you know data is already indexed in sorted order. Thus,
using an index may circumvent a sort. Default setting is
set to ON.

GEQO Special feature within PostgreSQL that eliminates the
need for the Planner to perform an exhaustive search for
a viable retrieval path, based upon a mathematical
algorithm. The parameter name stands for Genetic
Query Optimization. Default setting is set to ON. Refer
to PostgreSQL Developer’s Guide for further details.

GEQO_RELS Integer specifying a threshold value for when to use the
Genetic Query Optimization (GEQO) method. The value
instructs the Optimizer to only use the GEQO method,
when processing the same number of relations as
specified by this parameter. If value is set to 5, then the
GEQO method will only be used when there are five or
more tables/relations involved in a complex query.

KSQO Parameter stands for Key Set Query Optimizer (KSQO).
It is used to instruct the Optimizer to convert queries that
contain multiple ANDs along with ORs into UNION
queries. This can significantly improve ODBC queries
generated from tools like Microsoft Access, which tend to
execute queries of this form.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 56

The examples shown in this section demonstrate how PostgreSQL can be adjusted using a

number of techniques to get the optimum performance from the database. However, it also

shows why database administrators must use tools like the EXPLAIN utility to thoroughly

analyze what is the right solution for a database performance problem. The information

gathered from explain plans and monitoring the impact of adjusting the PostgreSQL run-

time parameters provide invaluable feedback for database administrators. This feedback

will also assist with configuring the right database environment for running business

applications using PostgreSQL. The key point here is that the PostgreSQL database

provides flexibility and scalability to accommodate diverse business environments.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 57

6 Database Tools and Utilities

The open-source community has made significant contributions in developing various tools

that supplement the features available within the PostgreSQL database software. Since

the PostgreSQL environment supports many different application interfaces, there are

several choices in the type of tools one can use. PostgreSQL provides API libraries for C,

C++, Tool Command Language/Graphical User Interface Toolkit (Tcl/Tk). In addition,

PostgreSQL provides fully compliant ODBC and JDBC drivers for building GUI applications

written in commercial languages like Delphi, Visual Basic, PowerBuilder, and Java. Other

third parties have built API extensions for accessing PostgreSQL using Perl, PHP, and

Python. Depending upon your server and desktop operating environments, one or a

combination of these tools may be appropriate for your organization.

Although this section does not cover all of the PostgreSQL tools that are available, it does

feature some of the more widely adopted ones. As these tools mature and developer

alliances are formed with Great Bridge, the intent will be to incorporate a suite of tools in

the PostgreSQL product offerings from Great Bridge.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 58

PostgreSQL Command Line SQL Interface Tool (psql)

The standard tool for accessing PostgreSQL databases from within a server environment is

the psql utility. It is a command line interface, which allows users to execute SQL

statements against a PostgreSQL database. In addition, it provides several user functions

for obtaining information about database objects defined within the database. The psql

utility supports several text editors for editing commands entered during a psql session.

These include vi, emacs, pico, jed, and kedit. The default editor is vi, but this can be

overwritten by specifying another editor using one of the following environment variables:

PSQL_EDITOR, EDITOR, and VISUAL.

The psql executable is located in the /usr/bin directory. It can be invoked from the

operating system prompt, passing the database name of the PostgreSQL database that

you want to access. The example below shows how to invoke the psql tool and what is

displayed when first entering the psql environment.

$ psql testdb
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

testdb=#

The psql prompt will always reflect the name of the database that is being accessed for the

current session. Informational messages are provided to advise users of the commands

that can be executed within the psql environment. The “\h” command provides online help

for all the SQL commands that are available from within PostgreSQL. For example, you

can view the SQL syntax for creating a table by typing “\h CREATE TABLE” at the psql

prompt. To exit out of a psql session, simply type the “\q” command.

The psql tool provides several built-in functions that can be invoked using a meta-

command, which is prefixed by a backslash (i.e. “\”). Meta-commands provide easy

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 59

shortcuts for accessing information about the database environment, simply through typing

a backslash (“\”) and an alphabetic character. A complete list of all these built-in functions

can be retrieved by typing the command “\?” at the psql prompt. Some of the most useful

meta-commands are listed in the following table.

Psql
Meta-Commands Functional Description of Meta-Command
\c or \connect Enables user to connect to another PostgreSQL Database

from within the psql tool (i.e. \c sales_db).

\d relation-name Describes all of the related columns for the specified relation,
which could be a table, view, or index. If no relation is
specified, this command displays all of the defined database
objects that exist within the current database.

\df [pattern] Lists all of the functions that have been defined within the
current database. The [pattern] is an optional argument,
which can be passed as an argument to the command. This
will search all defined functions that contain the letters
specified (e.g. \df abs – Displays all functions containing abs
in their names).

\distvS This command is a variation on the “\d” command above. Any
of the following letters can be specified to show a listing of all
(i)ndices, database (s)equences, (t)ables, (v)iews, or
(S)ystem Tables.

To list only defined tables, you would type \d at the psql
prompt.

\e or \edit Invokes the default text editor allowing the user to edit a
specified file, or the last SQL statement issued within the psql
session.

\i filename Instructs psql to read the specified file as input, executing the
statements as if the user entered them. Useful for executing
SQL scripts that have been previously saved in a text file.

\l Lists all the PostgreSQL Databases that are running on the
server. Helpful tool for database administrators and
developers who want to know what databases exist on a
server.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 60

Psql
Meta-Commands Functional Description of Meta-Command
\o filename Directs future query results to an output file, formatting the

output by separating columns with the pipe (“|”) symbol.

\z [pattern] Lists all tables defined within the current database, along with
their assigned permissions. If arguments are passed to this
command, it will show any table that contains the specified
letters. This is extremely helpful if you only know part of the
table name, but cannot recall the exact spelling of it. For
example, there may be two tables called titles and
title_authors. These could be listed if you entered the
command “\z tit”.

\! [command] Allows user to execute an operating system command from
within the psql environment, or escape out to the operating
system environment. If no command is specified, the user is
temporarily spawned to an operating system prompt. Type
“exit” to return to the psql environment.

When comparing the psql tool to other database interfaces like Oracle’s SQL*Plus utility,

PostgreSQL’s psql interface offers significantly more features like the built-in meta-

commands and online help facility. Both of these features enable users to easily obtain

information about the PostgreSQL database environment, along with getting assistance on

standard SQL statement syntax. Thus, the psql tool accommodates both novice and expert

users, allowing organizations to quickly become productive in a PostgreSQL environment.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 61

PgAccess Database Tool

PgAccess provides a graphical interface for accessing and maintaining PostgreSQL

databases from multiple platforms. The tool is available from the open-source community

and was originally developed by Constantin Teodorescu, who lives in Romania. The

PgAccess source code and executables can be downloaded off the Internet by referencing

the following URL address: www.flex.ro/pgaccess/index.html. PgAccess is written in

Tcl/Tk, which is an open-source programming language that runs on several operating

environments, including Linux/Unix, Windows, Macintosh, and AS400. As a result,

PgAccess can be deployed in most business environments that require access to

PostgreSQL backend databases.

PgAccess was designed primarily to be an access tool for PostgreSQL, as its name

implies. However, the tool also provides a host of administrative functions that may be

useful to database administrators and developers responsible for defining and maintaining

PostgreSQL database objects. The PgAccess application environment provides ten menu

tabs along the left-hand side of its display Window as shown below.

http://www.flex.ro/pgaccess/index.html

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 62

These menu tabs correspond to specific database objects, which can be accessed and

modified using the PgAccess tool. Along the top of the application window, there are three

buttons labeled New, Open, and Design that serve as launching points for accessing the

various database objects listed along the menu tabs. The PgAccess menu options are

outlined below:

• Table Menu Tab – Provides the capability of displaying all of the tables, which are

defined within the current PostgreSQL database. When this menu tab is selected, a

list of the database table objects is displayed, allowing users to specify the type of

operation they want to perform (e.g. Create New table, Open table for viewing the

data, or Design table for modifying the selected table structure). User can click on

the New Button to create a new table, which invokes a pop-up data entry window for

entering various attributes associated with the new table. The Open Button

launches a data viewer window, which executes a SQL SELECT statement against

the specified table. The Design Buttonallows users to make minor modifications to

the exiting table. Thus, both maintenance and query activities can be performed on

database tables, using this PgAccess Menu Tab.

• Query Menu Tab – Enables users to create new database queries, open existing

queries that have previously been saved, and/or modify an existing database query.

This is the primary function used within PgAccess for accessing data from a

PostgreSQL database. Within the Query function, there is a GUI Query Wizard that

can be used to generate database SQL queries. Once queries are designed and

built, they can be saved within the PgAccess environment for later use. In addition,

database Views can be created, which are based upon queries defined within this

menu option.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 63

• View Menu Tab - Provides the capability of accessing database Views, which are

defined within the current PostgreSQL database. When this menu tab is selected, a

list of defined Views is displayed. This allows users to specify the type of operation

they want to perform (e.g. Create New View, Open View to display the data that is

returned from the underlying SQL statement, or Design View for modifying the

View’s underlying SQL statement). User can click on the New Button to create a

new View, or use an existing database query saved within PgAccess to define a

View. The Open Button launches a data viewer window, which executes the

underlying SQL statement defined within the View. The Design Buttonallows users

to make minor modifications to the underlying SQL statement defined within the

View. Thus, both maintenance and query activities can be performed on database

Views, using the PgAccess View menu option.

• Sequence Menu Tab – Provides the capability of defining, viewing, and modifying

sequence objects within the current PostgreSQL database. Sequence objects are

database structures that maintain and generate random number sequences used

within a PostgreSQL application environment. For example, a table may be defined

with an attribute that uniquely identifies the existence of a table row like a

transaction-id. A sequence object can be used to generate random numbers, which

will be used to populate the transaction-id column whenever a new row is inserted

into the table.

• Function Menu Tab – Provides a utility for building and maintaining database

functions that are referenced within the PostgreSQL database. This PgAccess utility

supports the writing of functions in one of several programming languages including

SQL, PL/pgSQL which is a procedural language built within PostgreSQL, PL/Tcl

which is a Tcl/Tk to PostgreSQL API, and ANSI Standard C. All user-defined

functions defined within this utility are stored within the PostgreSQL database.

• Report Menu Tab - Provides a facility for defining and maintaining reports, which can

be used for browsing select PostgreSQL database objects. This utility is based

upon the Tcl/Tk open-source programming language. Thus, users must have some

working knowledge of Tcl/Tk to successfully build reports using this menu option.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 64

• Form Menu Tab – Provides a facility for defining and maintaining data entry forms

that can be used to insert data into PostgreSQL database tables. This utility is

based upon the Tcl/Tk open-source programming language, which is an excellent

tool for building applications within the PostgreSQL environment. Users must have

some working knowledge of Tcl/Tk to successfully build forms using this menu

option.

• Script Menu Tab – Provides a facility for defining and maintaining user-defined SQL

scripts that can be called to perform various database operations.

• User Menu Tab – Provides a utility for creating and modifying database users that

can access the PostgreSQL database. Database user passwords can also be reset

from within this menu option.

• Schema Menu Tab – Provides a utility for defining a new database instance within

the PostgreSQL environment. In addition, this utility provides the ability to copy

existing database table structures into the new database schema environment.

In addition to the above menu options, the PgAccess File Menu provides three

administrative utilities that can be used to perform several database operations, like a

PostgreSQL vacuum, data imports, and data exports. The import and export utilities

enable users to migrate data to and from PostgreSQL databases, using external flat files as

input and/or output. Both utilities enable users to specify the delimiter characters that are

used to separate data fields. All of these utilities, including the main menu tabs within

PgAccess, generate standard SQL statements to perform these functions within the

PostgreSQL backend database.

PgAccess is an excellent client interface for managing and accessing PostgreSQL

databases within multi-platform environments. It provides a portable tool for businesses to

easily integrate PostgreSQL into their existing operating environments. Both database

administrators and developers will appreciate the flexibility offered by PgAccess for building

and maintaining PostgreSQL applications using its various database tools. PgAccess is

also an excellent prototyping tool for quickly generating database applications.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 65

PgAdmin Database Administration and Query Tool

The pgAdmin tool is a Windows-based application that offers an entire suite of functionality

for accessing and maintaining PostgreSQL database objects. The tool, originally

developed by Dave Page of the United Kingdom, is available for download at no charge

using the following URL address: www.pgadmin.freeserve.co.uk/. The pgAdmin application

was written in Visual Basic V6.0 using an ODBC interface to PostgreSQL. The latest

PostgreSQL ODBC driver can be downloaded from the PostgreSQL Website using the

following URL address: ftp://ftp.postgresql.org/pub/odbc/index.html. The application was

primarily designed to be a database administration tool. However, it can also be extremely

useful for the average user who just wants to perform ad hoc queries against the database.

The pgAdmin functionality is subdivided into the five basic menu options outlined below:

• Schema Menu – Provides the ability to view information about all of the PostgreSQL

Databases running on a specific server, and their associated objects, including

Tables, Indices, Views, Triggers, Functions, Languages defined within the database,

and Privileges. The pgAdmin tool enables users to create, rename, add attributes,

delete, and query the database objects mentioned above.

• System Menu - Provides the capability to perform administrative tasks such as

running the PostgreSQL vacuum utility, adjusting database tuning parameters,

creating new database users, creating database groups, and assigning users to

groups.

• Tools Menu – Provides several tools that enable users to execute ad hoc SQL

queries against a PostgreSQL database, perform selective imports of data from an

external file into an existing database table, and perform selective exports of data

from a table to an external flat file. In addition, it provides a database migration tool

for selectively moving data from other data sources into a PostgreSQL database

environment. It supports migrating data from any ODBC compliant data source into

PostgreSQL, including popular desktop tools like Microsoft Excel and Microsoft

Access databases.

• Utilities Menu – Provides the capability for launching the Windows ODBC Data

Source Administration Tool for changing ODBC driver configurations, and/or other

http://www.vale-it.demon.co.uk/freeware/index.html
ftp://ftp.postgresql.org/pub/odbc/index.html

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 66

data source parameters. In addition, it provides a psql window that launches the

interactive PostgreSQL psql utility running on the database server, and a Remote

Procedure Call (RPC) utility for executing server operating-system commands on the

database server. As previously mentioned, the pgAdmin application can export data

from PostgreSQL into flat files, but it also can export data generating output in either

HTML or Excel formats. Other export utilities can be loaded into the pgAdmin

environment by using a tool called the Export Manager. The Export Manager installs

or uninstalls data exporters that are available using Dynamically-Linked Library

(DLL) Plug-Ins.

• Reports Menu – Provides several report formats for displaying and printing out

information about various database objects that exist within a PostgreSQL database.

Reports are designed to accept selection criteria for specifying database objects

and/or objects owned by particular database owners. The reports can be viewed

online, or sent to a printer device.

Like some of the other PostgreSQL GUI Tools, the pgAdmin application generates

standard SQL statements to perform the various functions outlined above. However, it

provides a display window at the bottom of the application window, which shows each SQL

statement that is sent to the PostgreSQL database server. Any SQL statements that are

generated by pgAdmin can be copied, saved, and reused in the pgAdmin SQL utility.

The pgAdmin tool is an excellent client interface for managing and accessing PostgreSQL

databases within a Windows environment. It enables businesses that have already made

investments in Windows platforms to utilize their existing infrastructure to access

PostgreSQL database environments. PostgreSQL tools like pgAdmin also demonstrate

how simple it can be to integrate PostgreSQL into existing operating environments.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 67

PostgreSQL Support for Data Modeling Tools

PostgreSQL provides both Open DataBase Connectivity (ODBC) and Java DataBase

Connectivity (JDBC) API Interfaces to PostgreSQL, which are compliant with the latest

industry standard specifications for both interfaces. As a result, any data modeling tool that

is ODBC- and/or JDBC-compliant should be able to access the PostgreSQL environment.

One common data-modeling tool that uses this type of technology is ERwin, a commercial

product offered by Computer Associates, Incorporated. (Additional information on ERwin is

available on the Internet at http://www.cai.com/products/alm/erwin.htm.) Many database

administrators and data architects use ERwin to analyze and graphically design relational

databases.

Using the PostgreSQL ODBC Interface with the ERwin tool enables database

administrators to access PostgreSQL databases and retrieve information about their data

structures. Several features within ERwin enable database structures to be reversed-

engineered from a physical database, generating a graphical model of the database. Data

models can be modified by adding, changing, or deleting various data structures using

ERwin. Once these modifications are complete, ERwin provides a facility for generating

standard SQL Data Definition Language (DDL) scripts that reflect the modified structures

defined within the data models. The generated scripts can be written to an output file for

later use, or ERwin can interactively reapply the database changes within PostgreSQL,

using the PostgreSQL ODBC Interface.

Capitalizing on the open architecture of the PostgreSQL environment and the features

available within ERwin, ITS staff members can integrate many disparate environments into

one comprehensive repository of information. For example, personnel data residing in a

third-party package running Oracle can be shared with a departmental application housing

information in a Microsoft SQL Server environment. Both of these data sources can be

integrated into a single data warehousing application that runs on a PostgreSQL database.

The key to this type of integration is to have tools and database environments that are both

flexible and architecturally open. PostgreSQL possesses many of these characteristics,

making it a viable integration solution for complex business environments.

http://www.cai.com/products/alm/erwin.htm

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 68

PostgreSQL Upgrade Tool

The PostgreSQL software provides a utility called pg_upgrade that will assist in upgrading

existing PostgreSQL databases to newer releases of the database, without reloading data.

The pg_upgrade utility requires the Database Administrator to perform two preliminary

operations prior to running the utility. The first requirement is to establish a backup file of

the existing PostgreSQL database that contains only the schema definitions with no data.

This can be accomplished by running the pg_dump or pg_dumpall utilities, using the (“-s”)

option (See “Chapter 3: Database Backup and Restore” of this document for more details).

The second requirement involves renaming the existing database directory in which the

physical database files reside to an alternate area (i.e. mv $PGDATA/db-directory

$PGDATA/old-db-directory).

Once a backup file of the existing database is created and the physical database area is

renamed, the new PostgreSQL software can be installed and configured. The upgrade

step will involve launching the pg_upgrade utility, passing the backup file as an input

argument, and specifying the renamed database directory. The example below shows how

to execute the pg_upgrade utility passing these input arguments.

$ pg_upgrade –f $PGDATA/backups/db_backups.out $PGDATA/old-db-directory

The pg_upgrade utility will read the backup file db_backups.out to restore all of the

databases and their associated structures into the new PostgreSQL environment without

the data. The final task will be to copy the physical database files containing the data to the

new target database. When the upgrade operation completes, all of the existing databases

should be upgraded to the new version of PostgreSQL. The renamed directory can be

deleted, once the database administrator confirms the databases have been successfully

upgraded.

Database upgrades often involve tedious planning and testing before actually performing

an upgrade. The intent behind the pg_upgrade utility is to assist the database

administrators in transitioning existing databases to a newer release of PostgreSQL. This

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 69

will also ensure organizations can take advantage of the latest features of PostgreSQL

when they become available for distribution.

7 Conclusions

Great Bridge PostgreSQL is a mature open-source database that is the product of 23 years

of development by some of the best software developers in the industry. The quality and

functionality of the PostgreSQL database makes it the most advanced open-source

database server available today. As demonstrated throughout our discussions of the

PostgreSQL administrative features, the database provides both flexibility and scalability in

deploying applications within the PostgreSQL environment. Many tools and utilities are

available within PostgreSQL that help database administrators and system managers

manage and tune PostgreSQL.

Great Bridge provides a broad spectrum of professional services and support for Great

Bridge PostgreSQL, including technical support packages, developer-to-developer support,

VAR partner programs and consulting services.

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 70

Appendix A - PostgreSQL Reference Web Sites

The following list provides a summary of online references that are available on the

Internet, covering topics related to PostgreSQL and Linux/Unix operation systems. We

recommend visiting the Great Bridge Website at www.greatbridge.com for the latest news

regarding PostgreSQL software.

PostgreSQL Database and Related Product References

Friberg, P., Hellman, S., Templeton, M. (1999, September 21). Managing Earthquake
Data With PASSCAL Database Tools – Appendix B PostgreSQL Installation
Instructions. [Online]. Available:
http://www.passcal.nmt.edu/manuals/smallfont/apb.html

Owen, Lamar (1999, November 5). Map of a RPM PostgreSQL Installation. [Online].
Available: http://www.ramifordistat.net/postgres/redhat_map.html

FAQs on PostgreSQL and Related Access Tools. [Online]. Available:
http://www.postgresql.org/users-lounge/docs/faq.html
http://laplace.snu.ac.kr/~pos7hink/Interests/Database/Database-
HOWTO.html#toc34
http://laplace.snu.ac.kr/~pos7hink/Interests/Database/Database-HOWTO-34.html

Layered Software Components for PostgreSQL related Tools. [Online]. Available:
http://gatekeeper.pa.dec.com/pub/BSD/NetBSD/packages/pkgsrc/databases/pgacc
ess/
http://gatekeeper.pa.dec.com/pub/BSD/NetBSD/packages/pkgsrc/databases/postg
resql/

Open Source and PostgreSQL Mailing List Archives (Indexed by Topic). [Online].
Available:
http://www.geocrawler.com/lists/3/Databases
http://www.geocrawler.com/lists/3/Gnome
http://www.geocrawler.com/lists/3/Red-Hat-Linux

PgAccess Configuration Help. [Online]. Available:
http://www.postgresql.org/mhonarc/pgsql-docs/1999-08/msg00036.html

PostgreSQL Documentation Resources. [Online]. Available:
http://www.greatbridge.com/docs/

http://www.greatbridge.com/
http://www.passcal.nmt.edu/manuals/smallfont/apb.html
http://www.ramifordistat.net/postgres/redhat_map.html
http://laplace.snu.ac.kr/~pos7hink/Interests/Database/Database-HOWTO.html#toc34
http://laplace.snu.ac.kr/~pos7hink/Interests/Database/Database-HOWTO.html#toc34
http://laplace.snu.ac.kr/~pos7hink/Interests/Database/Database-HOWTO-34.html
http://gatekeeper.pa.dec.com/pub/BSD/NetBSD/packages/pkgsrc/databases/pgaccess/
http://gatekeeper.pa.dec.com/pub/BSD/NetBSD/packages/pkgsrc/databases/pgaccess/
http://gatekeeper.pa.dec.com/pub/BSD/NetBSD/packages/pkgsrc/databases/postgresql/
http://gatekeeper.pa.dec.com/pub/BSD/NetBSD/packages/pkgsrc/databases/postgresql/
http://www.geocrawler.com/lists/3/Databases
http://www.geocrawler.com/lists/3/Gnome
http://www.geocrawler.com/lists/3/Red-Hat-Linux
http://www.postgresql.org/mhonarc/pgsql-docs/1999-08/msg00036.html
http://www.postgresql.org/doxlist.html

Great Bridge PostgreSQL Administration & Tuning December 2000
Great Bridge, LLC Page 71

Zeos Library of Interactive Database Tools for PostgreSQL. [Online]. Available:
http://www.zeos.dn.ua/eng/index.html

Linux/Unix Operating System Tips & Configuration References

GNOME Project References. [Online]. Available: http://www.gnome.org/

Linux HOWTOs Index – Linux & PostgreSQL Quick Installation Instructions. [Online].
Available:
http://garbo.uwasa.fi/ldp/HOWTO/HOWTO-INDEX/index.html
http://garbo.uwasa.fi/ldp/HOWTO/PostgreSQL-HOWTO.html
http://garbo.uwasa.fi/ldp/HOWTO/Config-HOWTO.html#toc4

RedHat Linux Support Database. [Online]. Available:
http://www.redhat.com/apps/support/

RedHat Support – Using RPM. [Online]. Available:
http://www.redhat.com/support/manuals/RHL-6.0-Manual/install-
guide/manual/doc074.html

Miscellaneous Resources on Related Linux/Unix & PostgreSQL Topics:

Linux World References to Open Source & PostgreSQL. [Online]. Available:
http://www.linuxworld.com/linuxworld/lw-2000-05/lw-05-database_p.html
http://www.linuxworld.com/linuxworld/lw-1998-12/lw-12-linux101_p.html

SEVA Incorporated – Porting Access97 to PostgreSQL. [Online]. Available:
http://www.sevainc.com/Access/index.html

http://www.zeos.dn.ua/eng/index.html
http://www.gnome.org/
http://garbo.uwasa.fi/ldp/HOWTO/HOWTO-INDEX/index.html
http://garbo.uwasa.fi/ldp/HOWTO/PostgreSQL-HOWTO.html
http://garbo.uwasa.fi/ldp/HOWTO/Config-HOWTO.html#toc4
http://www.redhat.com/apps/support/
http://www.redhat.com/support/manuals/RHL-6.0-Manual/install-guide/manual/doc074.html
http://www.redhat.com/support/manuals/RHL-6.0-Manual/install-guide/manual/doc074.html
http://www.linuxworld.com/linuxworld/lw-2000-05/lw-05-database_p.html
http://www.linuxworld.com/linuxworld/lw-1998-12/lw-12-linux101_p.html
http://www.sevainc.com/Access/index.html

	Great Bridge PostgreSQL
	PostgreSQL Database System Model
	Postgres Server Subcomponents
	Unique Database Features Available within PostgreSQL
	Creating a PostgreSQL Database
	PostgreSQL Database Files
	PostgreSQL System Tables
	Database Security and User Access
	Database Startup and Shutdown
	PostgreSQL Backup and Restore
	Import and Export Tools
	User Access Monitoring Tools
	Run-time Configuration Settings for PostgreSQL Servers
	Database Compression Tool (vacuum)
	Tuning Index Structures using Explain Plans
	PostgreSQL Command Line SQL Interface Tool (psql)
	PgAccess Database Tool
	PgAdmin Database Administration and Query Tool
	PostgreSQL Support for Data Modeling Tools
	PostgreSQL Upgrade Tool
	PostgreSQL Database and Related Product References
	Linux/Unix Operating System Tips & Configuration References
	Miscellaneous Resources on Related Linux/Unix & PostgreSQL Topics:

