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Chapter 1

Introduction

idas is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [20]. This suite consists of cvode, arkode, kinsol, and ida, and variants of these
with sensitivity analysis capabilities, cvodes and idas.

idas is a general purpose solver for the initial value problem (IVP) for systems of differential-
algebraic equations (DAEs). The name IDAS stands for Implicit Differential-Algebraic solver with
Sensitivity capabilities. idas is an extension of the ida solver within sundials, itself based on
daspk [5, 6]; however, like all sundials solvers, idas is written in ANSI-standard C rather than
Fortran77. Its most notable features are that, (1) in the solution of the underlying nonlinear system
at each time step, it offers a choice of Newton/direct methods and a choice of Inexact Newton/Krylov
(iterative) methods; (2) it is written in a data-independent manner in that it acts on generic vectors
without any assumptions on the underlying organization of the data; and (3) it provides a flexible,
extensible framework for sensitivity analysis, using either forward or adjoint methods. Thus idas
shares significant modules previously written within CASC at LLNL to support the ordinary differen-
tial equation (ODE) solvers cvode [21, 12] and pvode [8, 9], the DAE solver ida [24] on which idas
is based, the sensitivity-enabled ODE solver cvodes [22, 34], and also the nonlinear system solver
kinsol [13].

At present, idas may utilize a variety of Krylov methods provided in sundials that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [33],
FGMRES (Flexible Generalized Minimum RESidual) [32], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [36], TFQMR (Transpose-Free Quasi-Minimal Residual) [17], and PCG (Preconditioned Con-
jugate Gradient) [18] linear iterative methods. As Krylov methods, these require little matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow
for a user-supplied preconditioner matrix, and, for most problems, preconditioning is essential for an
efficient solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods,
and are often the only feasible choice. Among the Krylov methods in sundials, we recommend
GMRES as the best overall choice. However, users are encouraged to compare all options, especially
if encountering convergence failures with GMRES. Bi-CGFStab and TFQMR have an advantage
in storage requirements, in that the number of workspace vectors they require is fixed, while that
number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage in
that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

idas is written with a functionality that is a superset of that of ida. Sensitivity analysis capabili-
ties, both forward and adjoint, have been added to the main integrator. Enabling forward sensitivity
computations in idas will result in the code integrating the so-called sensitivity equations simultane-
ously with the original IVP, yielding both the solution and its sensitivity with respect to parameters
in the model. Adjoint sensitivity analysis, most useful when the gradients of relatively few functionals
of the solution with respect to many parameters are sought, involves integration of the original IVP
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forward in time followed by the integration of the so-called adjoint equations backward in time. idas
provides the infrastructure needed to integrate any final-condition ODE dependent on the solution of
the original IVP (in particular the adjoint system).

There are several motivations for choosing the C language for idas. First, a general movement away
from Fortran and toward C in scientific computing was apparent. Second, the pointer, structure,
and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for idas because of
the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended Fortran.

1.1 Changes from previous versions

Changes in v2.1.0

Added nvector print functions that write vector data to a specified file (e.g., N VPrintFile Serial).
Added make test and make test install options to the build system for testing sundials after

building with make and installing with make install respectively.

Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation and
to ease interfacing of custom linear solvers and interoperability with linear solver libraries. Specific
changes include:

• Added generic sunmatrix module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented API.

• Added example problems demonstrating use of generic sunmatrix modules.

• Added generic SUNLinearSolver module with eleven provided implementations: sundials na-
tive dense, sundials native banded, LAPACK dense, LAPACK band, KLU, SuperLU MT,
SPGMR, SPBCGS, SPTFQMR, SPFGMR, and PCG. These replicate previous SUNDIALS
generic linear solvers in a single object-oriented API.

• Added example problems demonstrating use of generic SUNLinearSolver modules.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic sunmatrix and SUNLinearSolver objects.

• Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces
and SUNLinearSolver/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate
Jacobian solver available to cvode and cvodes.

• Converted all sundials example problems and files to utilize the new generic sunmatrix and
SUNLinearSolver objects, along with updated Dls and Spils linear solver interfaces.

• Added Spils interface routines to arkode, cvode, cvodes, ida, and idas to allow specification
of a user-provided ”JTSetup” routine. This change supports users who wish to set up data
structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where the cost
of one JTSetup setup per Newton iteration can be amortized between multiple JTimes calls.

Two additional nvector implementations were added – one for CUDA and one for RAJA vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
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only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about RAJA, users
are referred to the web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32 t or int64 t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
sundials.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE
have been changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It
is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials fconfig.h was added. This file contains sundials type information
for use in Fortran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get sundials release
version information at runtime.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS ENABLE and BLAS LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES ENABLE to EXAMPLES ENABLE C, changing CXX ENABLE to EXAMPLES ENABLE CXX, changing
F90 ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE F77 option.

A bug fix was done to add a missing prototype for IDASetMaxBacksIC in ida.h.
Corrections and additions were made to the examples, to installation-related files, and to the user

documentation.

Changes in v1.3.0

Two additional nvector implementations were added – one for Hypre (parallel) ParVector vectors,
and one for PetSC vectors. These additions are accompanied by additions to various interface functions
and to user documentation.

Each nvector module now includes a function, N VGetVectorID, that returns the nvector
module name.

An optional input function was added to set a maximum number of linesearch backtracks in
the initial condition calculation, and four user-callable functions were added to support the use of
LAPACK linear solvers in solving backward problems for adjoint sensitivity analysis.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver linit function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

A bug in for-loop indices was fixed in IDAAckpntAllocVectors. A bug was fixed in the interpo-
lation functions used in solving backward problems.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

In interpolation routines for backward problems, added logic to bypass sensitivity interpolation if
input sensitivity argument is NULL.
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The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU MT,
including support for CSR format when using KLU.

New examples were added for use of the openMP vector and for use of sparse direct solvers within
sensitivity integrations.

Minor corrections and additions were made to the idas solver, to the examples, to installation-
related files, and to the user documentation.

Changes in v1.2.0

Two major additions were made to the linear system solvers that are available for use with the idas
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to idas.

Otherwise, only relatively minor modifications were made to idas:
In IDARootfind, a minor bug was corrected, where the input array rootdir was ignored, and a

line was added to break out of root-search loop if the initial interval size is below the tolerance ttol.
In IDALapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an

illegal input error for DGBTRF/DGBTRS.
An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian:

With a call to IDADlsSetDenseJacFnBS or IDADlsSetBandJacFnBS, the user can specify a user-
supplied Jacobian function of type IDADls***JacFnBS, for the case where the backward problem
depends on the forward sensitivities.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve.
For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward

sensitivities, options have been added to allow for user-supplied pset, psolve, and jtimes functions.
In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,

SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

In the User Guide, a paragraph was added in Section 6.2.1 on IDAAdjReInit, and a paragraph
was added in Section 6.2.9 on IDAGetAdjY.

Two new nvector modules have been added for thread-parallel computing environments — one
for openMP, denoted NVECTOR OPENMP, and one for Pthreads, denoted NVECTOR PTHREADS.

With this version of sundials, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v1.1.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The function
NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays, re-
spectively. In a minor change to the user interface, the type of the index which in IDAS was changed
from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.
A large number of minor errors have been fixed. Among these are the following: A missing

vector pointer setting was added in IDASensLineSrch. In IDACompleteStep, conditionals around
lines loading a new column of three auxiliary divided difference arrays, for a possible order increase,
were fixed. After the solver memory is created, it is set to zero before being filled. In each linear solver
interface function, the linear solver memory is freed on an error return, and the **Free function now
includes a line setting to NULL the main memory pointer to the linear solver memory. A memory leak
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was fixed in two of the IDASp***Free functions. In the rootfinding functions IDARcheck1/IDARcheck2,
when an exact zero is found, the array glo of g values at the left endpoint is adjusted, instead of
shifting the t location tlo slightly. In the installation files, we modified the treatment of the macro
SUNDIALS USE GENERIC MATH, so that the parameter GENERIC MATH LIB is either defined
(with no value) or not defined.

1.2 Reading this User Guide

The structure of this document is as follows:

• In Chapter 2, we give short descriptions of the numerical methods implemented by idas for
the solution of initial value problems for systems of DAEs, continue with short descriptions of
preconditioning (§2.2) and rootfinding (§2.3), and then give an overview of the mathematical
aspects of sensitivity analysis, both forward (§2.5) and adjoint (§2.6).

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the idas solver (§3.2).

• Chapter 4 is the main usage document for idas for simulation applications. It includes a complete
description of the user interface for the integration of DAE initial value problems. Readers that
are not interested in using idas for sensitivity analysis can then skip the next two chapters.

• Chapter 5 describes the usage of idas for forward sensitivity analysis as an extension of its IVP
integration capabilities. We begin with a skeleton of the user main program, with emphasis
on the steps that are required in addition to those already described in Chapter 4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

• Chapter 6 describes the usage of idas for adjoint sensitivity analysis. We begin by describing
the idas checkpointing implementation for interpolation of the original IVP solution during
integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.

• Chapter 7 gives a brief overview of the generic nvector module shared amongst the various
components of sundials, as well as details on the nvector implementations provided with
sundials.

• Chapter 8 gives a brief overview of the generic sunmatrix module shared among the vari-
ous components of sundials, and details on the sunmatrix implementations provided with
sundials: a dense implementation (§8.1), a banded implementation (§8.2) and a sparse imple-
mentation (§8.3).

• Chapter 9 gives a brief overview of the generic sunlinsol module shared among the various
components of sundials. This chapter contains details on the sunlinsol implementations
provided with sundials. The chapter also contains details on the sunlinsol implementations
provided with sundials that interface with external linear solver libraries.

• Finally, in the appendices, we provide detailed instructions for the installation of idas, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from idas functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as IDAInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as idadls, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin. !
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1.3 SUNDIALS Release License

The SUNDIALS packages are released open source, under a BSD license. The only requirements of
the BSD license are preservation of copyright and a standard disclaimer of liability. Our Copyright
notice is below along with the license.

**PLEASE NOTE** If you are using SUNDIALS with any third party libraries linked in (e.g.,!

LaPACK, KLU, SuperLU MT, petsc, or hypre), be sure to review the respective license of the package
as that license may have more restrictive terms than the SUNDIALS license. For example, if someone
builds SUNDIALS with a statically linked KLU, the build is subject to terms of the LGPL license
(which is what KLU is released with) and *not* the SUNDIALS BSD license anymore.

1.3.1 Copyright Notices

All SUNDIALS packages except ARKode are subject to the following Copyright notice.

1.3.1.1 SUNDIALS Copyright

Copyright (c) 2002-2016, Lawrence Livermore National Security. Produced at the Lawrence Livermore
National Laboratory. Written by A.C. Hindmarsh, D.R. Reynolds, R. Serban, C.S. Woodward, S.D.
Cohen, A.G. Taylor, S. Peles, L.E. Banks, and D. Shumaker.
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)
All rights reserved.

1.3.1.2 ARKode Copyright

ARKode is subject to the following joint Copyright notice. Copyright (c) 2015-2016, Southern
Methodist University and Lawrence Livermore National Security Written by D.R. Reynolds, D.J.
Gardner, A.C. Hindmarsh, C.S. Woodward, and J.M. Sexton.
LLNL-CODE-667205 (ARKODE)
All rights reserved.

1.3.2 BSD License

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the disclaimer below.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the disclaimer (as noted below) in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NA-
TIONAL SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
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TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Department of Energy
(DOE). This work was produced at Lawrence Livermore National Laboratory under Contract
No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Security, LLC nor any
of their employees, makes any warranty, express or implied, or assumes any liability or respon-
sibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services by trade name,
trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or Lawrence Livermore National Security, LLC,
and shall not be used for advertising or product endorsement purposes.





Chapter 2

Mathematical Considerations

idas solves the initial-value problem (IVP) for a DAE system of the general form

F (t, y, ẏ) = 0 , y(t0) = y0 , ẏ(t0) = ẏ0 , (2.1)

where y, ẏ, and F are vectors in RN , t is the independent variable, ẏ = dy/dt, and initial values y0,
ẏ0 are given. (Often t is time, but it certainly need not be.)

Additionally, if (2.1) depends on some parameters p ∈ RNp , i.e.

F (t, y, ẏ, p) = 0
y(t0) = y0(p) , ẏ(t0) = ẏ0(p) ,

(2.2)

idas can also compute first order derivative information, performing either forward sensitivity analysis
or adjoint sensitivity analysis. In the first case, idas computes the sensitivities of the solution with
respect to the parameters p, while in the second case, idas computes the gradient of a derived function
with respect to the parameters p.

2.1 IVP solution

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors
y0 and ẏ0 are both initialized to satisfy the DAE residual F (t0, y0, ẏ0) = 0. For a class of problems that
includes so-called semi-explicit index-one systems, idas provides a routine that computes consistent
initial conditions from a user’s initial guess [6]. For this, the user must identify sub-vectors of y (not
necessarily contiguous), denoted yd and ya, which are its differential and algebraic parts, respectively,
such that F depends on ẏd but not on any components of ẏa. The assumption that the system is
“index one” means that for a given t and yd, the system F (t, y, ẏ) = 0 defines ya uniquely. In this
case, a solver within idas computes ya and ẏd at t = t0, given yd and an initial guess for ya. A second
available option with this solver also computes all of y(t0) given ẏ(t0); this is intended mainly for quasi-
steady-state problems, where ẏ(t0) = 0 is given. In both cases, ida solves the system F (t0, y0, ẏ0) = 0
for the unknown components of y0 and ẏ0, using Newton iteration augmented with a line search global
strategy. In doing this, it makes use of the existing machinery that is to be used for solving the linear
systems during the integration, in combination with certain tricks involving the step size (which is set
artificially for this calculation). For problems that do not fall into either of these categories, the user
is responsible for passing consistent values, or risks failure in the numerical integration.

The integration method used in idas is the variable-order, variable-coefficient BDF (Backward
Differentiation Formula), in fixed-leading-coefficient form [3]. The method order ranges from 1 to 5,
with the BDF of order q given by the multistep formula

q∑
i=0

αn,iyn−i = hnẏn , (2.3)
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where yn and ẏn are the computed approximations to y(tn) and ẏ(tn), respectively, and the step size
is hn = tn− tn−1. The coefficients αn,i are uniquely determined by the order q, and the history of the
step sizes. The application of the BDF (2.3) to the DAE system (2.1) results in a nonlinear algebraic
system to be solved at each step:

G(yn) ≡ F

(
tn, yn, h

−1
n

q∑
i=0

αn,iyn−i

)
= 0 . (2.4)

Regardless of the method options, the solution of the nonlinear system (2.4) is accomplished with
some form of Newton iteration. This leads to a linear system for each Newton correction, of the form

J [yn(m+1) − yn(m)] = −G(yn(m)) , (2.5)

where yn(m) is the m-th approximation to yn. Here J is some approximation to the system Jacobian

J =
∂G

∂y
=
∂F

∂y
+ α

∂F

∂ẏ
, (2.6)

where α = αn,0/hn. The scalar α changes whenever the step size or method order changes.
For the solution of the linear systems within the Newton corrections, idas provides several choices,

including the option of an user-supplied linear solver module. The linear solver modules distributed
with sundials are organized in two families, a direct family comprising direct linear solvers for dense,
banded, or sparse matrices and a spils family comprising scaled preconditioned iterative (Krylov)
linear solvers. The methods offered through these modules are as follows:

• dense direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

• band direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

• sparse direct solver interfaces, using either the KLU sparse solver library [14, 1], or the thread-
enabled SuperLU MT sparse solver library [28, 15, 2] (serial or threaded vector modules only)
[Note that users will need to download and install the klu or superlumt packages independent
of idas],

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver without
restarts,

• spfgmr, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver,

• spbcgs, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver, or

• pcg, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator
and any of the preconditioned Krylov methods (spgmr, spbcgs, or sptfqmr) yields a powerful tool
because it combines established methods for stiff integration, nonlinear iteration, and Krylov (linear)
iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [4]. For the spils linear solvers, preconditioning is allowed only
on the left (see §2.2). Note that the dense, band, and sparse direct linear solvers can only be used
with serial and threaded vector representations.
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In the process of controlling errors at various levels, idas uses a weighted root-mean-square norm,
denoted ‖ · ‖WRMS, for all error-like quantities. The multiplicative weights used are based on the
current solution and on the relative and absolute tolerances input by the user, namely

Wi = 1/[rtol · |yi|+ atoli] . (2.7)

Because 1/Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the case of a direct linear solver (dense, band, or sparse), the nonlinear iteration (2.5) is a
Modified Newton iteration, in that the Jacobian J is fixed (and usually out of date), with a coefficient
ᾱ in place of α in J . When using one of the Krylov methods spgmr, spbcgs, or sptfqmr as the linear
solver, the iteration is an Inexact Newton iteration, using the current Jacobian (through matrix-free
products Jv), in which the linear residual J∆y + G is nonzero but controlled. The Jacobian matrix
J (direct cases) or preconditioner matrix P (spgmr/spbcgs/sptfqmr case) is updated when:

• starting the problem,

• the value ᾱ at the last update is such that α/ᾱ < 3/5 or α/ᾱ > 5/3, or

• a non-fatal convergence failure occurred with an out-of-date J or P .

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with
the slow convergence due to infrequent updates. To reduce storage costs on an update, Jacobian
information is always reevaluated from scratch.

We note that with the sparse direct solvers, the Jacobian must be supplied by a user routine in
compressed-sparse-column format, as this is not approximated automatically within idas.

The stopping test for the Newton iteration in idas ensures that the iteration error yn − yn(m) is
small relative to y itself. For this, we estimate the linear convergence rate at all iterations m > 1 as

R =
(
δm
δ1

) 1
m−1

,

where the δm = yn(m) − yn(m−1) is the correction at iteration m = 1, 2, . . .. The Newton iteration is
halted if R > 0.9. The convergence test at the m-th iteration is then

S‖δm‖ < 0.33 , (2.8)

where S = R/(R−1) whenever m > 1 and R ≤ 0.9. The user has the option of changing the constant
in the convergence test from its default value of 0.33. The quantity S is set to S = 20 initially and
whenever J or P is updated, and it is reset to S = 100 on a step with α 6= ᾱ. Note that at m = 1, the
convergence test (2.8) uses an old value for S. Therefore, at the first Newton iteration, we make an
additional test and stop the iteration if ‖δ1‖ < 0.33 · 10−4 (since such a δ1 is probably just noise and
therefore not appropriate for use in evaluating R). We allow only a small number (default value 4)
of Newton iterations. If convergence fails with J or P current, we are forced to reduce the step size
hn, and we replace hn by hn/4. The integration is halted after a preset number (default value 10)
of convergence failures. Both the maximum allowable Newton iterations and the maximum nonlinear
convergence failures can be changed by the user from their default values.

When spgmr, spbcgs, or sptfqmr is used to solve the linear system, to minimize the effect
of linear iteration errors on the nonlinear and local integration error controls, we require the pre-
conditioned linear residual to be small relative to the allowed error in the Newton iteration, i.e.,
‖P−1(Jx+G)‖ < 0.05 · 0.33. The safety factor 0.05 can be changed by the user.

In the direct linear solver cases, the Jacobian J defined in (2.6) can be either supplied by the user or
have idas compute one internally by difference quotients. In the latter case, we use the approximation

Jij = [Fi(t, y + σjej , ẏ + ασjej)− Fi(t, y, ẏ)]/σj , with

σj =
√
U max {|yj |, |hẏj |, 1/Wj} sign(hẏj) ,
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where U is the unit roundoff, h is the current step size, and Wj is the error weight for the component
yj defined by (2.7). In the spgmr/spbcgs/sptfqmr case, if a routine for Jv is not supplied, such
products are approximated by

Jv = [F (t, y + σv, ẏ + ασv)− F (t, y, ẏ)]/σ ,

where the increment σ is 1/‖v‖. As an option, the user can specify a constant factor that is inserted
into this expression for σ.

During the course of integrating the system, idas computes an estimate of the local truncation
error, LTE, at the n-th time step, and requires this to satisfy the inequality

‖LTE‖WRMS ≤ 1 .

Asymptotically, LTE varies as hq+1 at step size h and order q, as does the predictor-corrector difference
∆n ≡ yn − yn(0). Thus there is a constant C such that

LTE = C∆n +O(hq+2) ,

and so the norm of LTE is estimated as |C| · ‖∆n‖. In addition, idas requires that the error in the
associated polynomial interpolant over the current step be bounded by 1 in norm. The leading term
of the norm of this error is bounded by C̄‖∆n‖ for another constant C̄. Thus the local error test in
idas is

max{|C|, C̄}‖∆n‖ ≤ 1 . (2.9)

A user option is available by which the algebraic components of the error vector are omitted from the
test (2.9), if these have been so identified.

In idas, the local error test is tightly coupled with the logic for selecting the step size and order.
First, there is an initial phase that is treated specially; for the first few steps, the step size is doubled
and the order raised (from its initial value of 1) on every step, until (a) the local error test (2.9) fails,
(b) the order is reduced (by the rules given below), or (c) the order reaches 5 (the maximum). For
step and order selection on the general step, idas uses a different set of local error estimates, based
on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders q′

equal to q, q− 1 (if q > 1), q− 2 (if q > 2), or q+ 1 (if q < 5), there are constants C(q′) such that the
norm of the local truncation error at order q′ satisfies

LTE(q′) = C(q′)‖φ(q′ + 1)‖+O(hq′+2) ,

where φ(k) is a modified divided difference of order k that is retained by idas (and behaves asymp-
totically as hk). Thus the local truncation errors are estimated as ELTE(q′) = C(q′)‖φ(q′ + 1)‖ to
select step sizes. But the choice of order in idas is based on the requirement that the scaled derivative
norms, ‖hky(k)‖, are monotonically decreasing with k, for k near q. These norms are again estimated
using the φ(k), and in fact

‖hq′+1y(q′+1)‖ ≈ T (q′) ≡ (q′ + 1)ELTE(q′) .

The step/order selection begins with a test for monotonicity that is made even before the local error
test is performed. Namely, the order is reset to q′ = q−1 if (a) q = 2 and T (1) ≤ T (2)/2, or (b) q > 2
and max{T (q − 1), T (q − 2)} ≤ T (q); otherwise q′ = q. Next the local error test (2.9) is performed,
and if it fails, the step is redone at order q ← q′ and a new step size h′. The latter is based on the
hq+1 asymptotic behavior of ELTE(q), and, with safety factors, is given by

η = h′/h = 0.9/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted so that 0.25 ≤ η ≤ 0.9 before setting h ← h′ = ηh. If the local error test
fails a second time, idas uses η = 0.25, and on the third and subsequent failures it uses q = 1 and
η = 0.25. After 10 failures, idas returns with a give-up message.
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As soon as the local error test has passed, the step and order for the next step may be adjusted.
No such change is made if q′ = q−1 from the prior test, if q = 5, or if q was increased on the previous
step. Otherwise, if the last q + 1 steps were taken at a constant order q < 5 and a constant step size,
idas considers raising the order to q + 1. The logic is as follows: (a) If q = 1, then reset q = 2 if
T (2) < T (1)/2. (b) If q > 1 then

• reset q ← q − 1 if T (q − 1) ≤ min{T (q), T (q + 1)};

• else reset q ← q + 1 if T (q + 1) < T (q);

• leave q unchanged otherwise [then T (q − 1) > T (q) ≤ T (q + 1)].

In any case, the new step size h′ is set much as before:

η = h′/h = 1/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted such that (a) if η > 2, η is reset to 2; (b) if η ≤ 1, η is restricted to
0.5 ≤ η ≤ 0.9; and (c) if 1 < η < 2 we use η = 1. Finally h is reset to h′ = ηh. Thus we do not
increase the step size unless it can be doubled. See [3] for details.

idas permits the user to impose optional inequality constraints on individual components of the
solution vector y. Any of the following four constraints can be imposed: yi > 0, yi < 0, yi ≥ 0,
or yi ≤ 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the Newton iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, idas estimates a new step size h′ using a
linear approximation of the components in y that failed the constraint test (including a safety factor
of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the
calculation of consistent initial conditions.

Normally, idas takes steps until a user-defined output value t = tout is overtaken, and then
computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force idas not to integrate
past a given stopping point t = tstop.

2.2 Preconditioning

When using a Newton method to solve the nonlinear system (2.5), idas makes repeated use of a linear
solver to solve linear systems of the form J∆y = −G. If this linear system solve is done with one of
the scaled preconditioned iterative linear solvers, these solvers are rarely successful if used without
preconditioning; it is generally necessary to precondition the system in order to obtain acceptable
efficiency. A system Ax = b can be preconditioned on the left, on the right, or on both sides. The
Krylov method is then applied to a system with the matrix P−1A, or AP−1, or P−1

L AP−1
R , instead

of A. However, within idas, preconditioning is allowed only on the left, so that the iterative method
is applied to systems (P−1J)∆y = −P−1G. Left preconditioning is required to make the norm of the
linear residual in the Newton iteration meaningful; in general, ‖J∆y + G‖ is meaningless, since the
weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in
some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the
matrix P should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff be-
tween rapid convergence and low cost can be very difficult. Good choices are often problem-dependent
(for example, see [4] for an extensive study of preconditioners for reaction-transport systems).

Typical preconditioners used with idas are based on approximations to the Newton iteration matrix
of the systems involved; in other words, P ≈ ∂F

∂y + α∂F
∂ẏ , where α is a scalar inversely proportional to

the integration step size h. Because the Krylov iteration occurs within a Newton iteration and further
also within a time integration, and since each of these iterations has its own test for convergence, the
preconditioner may use a very crude approximation, as long as it captures the dominant numerical
feature(s) of the system. We have found that the combination of a preconditioner with the Newton-
Krylov iteration, using even a fairly poor approximation to the Jacobian, can be surprisingly superior
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to using the same matrix without Krylov acceleration (i.e., a modified Newton iteration), as well as
to using the Newton-Krylov method with no preconditioning.

2.3 Rootfinding

The idas solver has been augmented to include a rootfinding feature. This means that, while inte-
grating the Initial Value Problem (2.1), idas can also find the roots of a set of user-defined functions
gi(t, y, ẏ) that depend on t, the solution vector y = y(t), and its t−derivative ẏ(t). The number of
these root functions is arbitrary, and if more than one gi is found to have a root in any given interval,
the various root locations are found and reported in the order that they occur on the t axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in
sign of gi(t, y(t), ẏ(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity (no
sign change), it will probably be missed by idas. If such a root is desired, the user should reformulate
the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and then
(when a sign change is found) to home in on the root (or roots) with a modified secant method [19].
In addition, each time g is computed, idas checks to see if gi(t) = 0 exactly, and if so it reports this as
a root. However, if an exact zero of any gi is found at a point t, idas computes g at t+ δ for a small
increment δ, slightly further in the direction of integration, and if any gi(t + δ) = 0 also, idas stops
and reports an error. This way, each time idas takes a time step, it is guaranteed that the values of
all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, idas has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that thi is
further ahead in the direction of integration, and all gi(tlo) 6= 0. The endpoint thi is either tn, the end
of the time step last taken, or the next requested output time tout if this comes sooner. The endpoint
tlo is either tn−1, or the last output time tout (if this occurred within the last step), or the last root
location (if a root was just located within this step), possibly adjusted slightly toward tn if an exact
zero was found. The algorithm checks g at thi for zeros and for sign changes in (tlo, thi). If no sign
changes are found, then either a root is reported (if some gi(thi) = 0) or we proceed to the next time
interval (starting at thi). If one or more sign changes were found, then a loop is entered to locate the
root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn|+ |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |gi(thi)|/|gi(thi)− gi(tlo)|, corresponding to the
closest to tlo of the secant method values. At each pass through the loop, a new value tmid is set,
strictly within the search interval, and the values of gi(tmid) are checked. Then either tlo or thi is reset
to tmid according to which subinterval is found to have the sign change. If there is none in (tlo, tmid)
but some gi(tmid) = 0, then that root is reported. The loop continues until |thi − tlo| < τ , and then
the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi)− αgi(tlo)] ,

where α a weight parameter. On the first two passes through the loop, α is set to 1, making tmid

the secant method value. Thereafter, α is reset according to the side of the subinterval (low vs high,
i.e. toward tlo vs toward thi) in which the sign change was found in the previous two passes. If the
two sides were opposite, α is set to 1. If the two sides were the same, α is halved (if on the low
side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1 and closer to thi

when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.
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2.4 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity
analysis run (see §2.6) it is of interest to compute integral quantities of the form

z(t) =
∫ t

t0

q(τ, y(τ), ẏ(τ), p) dτ . (2.10)

The most effective approach to compute z(t) is to extend the original problem with the additional
ODEs (obtained by applying Leibnitz’s differentiation rule):

ż = q(t, y, ẏ, p) , z(t0) = 0 . (2.11)

Note that this is equivalent to using a quadrature method based on the underlying linear multistep
polynomial representation for y(t).

This can be done at the “user level” by simply exposing to idas the extended DAE system
(2.2)+(2.10). However, in the context of an implicit integration solver, this approach is not desir-
able since the nonlinear solver module will require the Jacobian (or Jacobian-vector product) of this
extended DAE. Moreover, since the additional states, z, do not enter the right-hand side of the ODE
(2.10) and therefore the residual of the extended DAE system does not depend on z, it is much more
efficient to treat the ODE system (2.10) separately from the original DAE system (2.2) by “taking
out” the additional states z from the nonlinear system (2.4) that must be solved in the correction step
of the LMM. Instead, “corrected” values zn are computed explicitly as

zn =
1

αn,0

(
hnq(tn, yn, ẏn, p)−

q∑
i=1

αn,izn−i

)
,

once the new approximation yn is available.
The quadrature variables z can be optionally included in the error test, in which case corresponding

relative and absolute tolerances must be provided.

2.5 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (2.2). In
addition to numerically solving the DAEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter pi is defined as the vector si(t) =
∂y(t)/∂pi and satisfies the following forward sensitivity equations (or sensitivity equations for short):

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
= 0

si(t0) =
∂y0(p)
∂pi

, ṡi(t0) =
∂ẏ0(p)
∂pi

,

(2.12)

obtained by applying the chain rule of differentiation to the original DAEs (2.2).
When performing forward sensitivity analysis, idas carries out the time integration of the combined

system, (2.2) and (2.12), by viewing it as a DAE system of size N(Ns + 1), where Ns is the number
of model parameters pi, with respect to which sensitivities are desired (Ns ≤ Np). However, major
improvements in efficiency can be made by taking advantage of the special form of the sensitivity
equations as linearizations of the original DAEs. In particular, the original DAE system and all
sensitivity systems share the same Jacobian matrix J in (2.6).

The sensitivity equations are solved with the same linear multistep formula that was selected
for the original DAEs and the same linear solver is used in the correction phase for both state and
sensitivity variables. In addition, idas offers the option of including (full error control) or excluding
(partial error control) the sensitivity variables from the local error test.
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2.5.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined DAE and sensitivity system for the vector ŷ = [y, s1, . . . , sNs

].

• Staggered Direct In this approach [11], the nonlinear system (2.4) is first solved and, once an
acceptable numerical solution is obtained, the sensitivity variables at the new step are found
by directly solving (2.12) after the BDF discretization is used to eliminate ṡi. Although the
system matrix of the above linear system is based on exactly the same information as the
matrix J in (2.6), it must be updated and factored at every step of the integration, in contrast
to an evaluation of J which is updated only occasionally. For problems with many parameters
(relative to the problem size), the staggered direct method can outperform the methods described
below [27]. However, the computational cost associated with matrix updates and factorizations
makes this method unattractive for problems with many more states than parameters (such as
those arising from semidiscretization of PDEs) and is therefore not implemented in idas.

• Simultaneous Corrector In this method [29], the discretization is applied simultaneously to both
the original equations (2.2) and the sensitivity systems (2.12) resulting in an “extended” non-
linear system Ĝ(ŷn) = 0 where ŷn = [yn, . . . , si, . . .]. This combined nonlinear system can be
solved using a modified Newton method as in (2.5) by solving the corrector equation

Ĵ [ŷn(m+1) − ŷn(m)] = −Ĝ(ŷn(m)) (2.13)

at each iteration, where

Ĵ =


J
J1 J
J2 0 J
...

...
. . . . . .

JNs
0 . . . 0 J

 ,
J is defined as in (2.6), and Ji = (∂/∂y) [Fysi + Fẏ ṡi + Fpi

]. It can be shown that 2-step
quadratic convergence can be retained by using only the block-diagonal portion of Ĵ in the
corrector equation (2.13). This results in a decoupling that allows the reuse of J without
additional matrix factorizations. However, the sum Fysi + Fẏ ṡi + Fpi must still be reevaluated
at each step of the iterative process (2.13) to update the sensitivity portions of the residual Ĝ.

• Staggered corrector In this approach [16], as in the staggered direct method, the nonlinear system
(2.4) is solved first using the Newton iteration (2.5). Then, for each sensitivity vector ξ ≡ si, a
separate Newton iteration is used to solve the sensitivity system (2.12):

J [ξn(m+1) − ξn(m)] =

−

[
Fy(tn, yn, ẏn)ξn(m) + Fẏ(tn, yn, ẏn) · h−1

n

(
αn,0ξn(m) +

q∑
i=1

αn,iξn−i

)
+ Fpi(tn, yn, ẏn)

]
.

(2.14)

In other words, a modified Newton iteration is used to solve a linear system. In this approach,
the matrices ∂F/∂y, ∂F/∂ẏ and vectors ∂F/∂pi need be updated only once per integration step,
after the state correction phase (2.5) has converged.

idas implements both the simultaneous corrector method and the staggered corrector method.
An important observation is that the staggered corrector method, combined with a Krylov linear

solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix J on a vector, and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (2.14) will theoretically converge after one iteration.
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2.5.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, idas provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector si will have units of [y]/[pi]. With this, the absolute tolerance for the j-th
component of the sensitivity vector si is set to atolj/|p̄i|, where atolj are the absolute tolerances for
the state variables and p̄ is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
si with weights based on si be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities s̄i = |p̄i|si with weights based on the state variables (the scaled sensitivities s̄i being
dimensionally consistent with the state variables). However, this choice of tolerances for the si may
be a poor one, and the user of idas can provide different values as an option.

2.5.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the residual functions in the sensitivity systems (2.12):
analytic evaluation, automatic differentiation, complex-step approximation, and finite differences (or
directional derivatives). idas provides all the software hooks for implementing interfaces to automatic
differentiation (AD) or complex-step approximation; future versions will include a generic interface
to AD-generated functions. At the present time, besides the option for analytical sensitivity right-
hand sides (user-provided), idas can evaluate these quantities using various finite difference-based
approximations to evaluate the terms (∂F/∂y)si + (∂F/∂ẏ)ṡi and (∂F/∂pi), or using directional
derivatives to evaluate [(∂F/∂y)si + (∂F/∂ẏ)ṡi + (∂F/∂pi)]. As is typical for finite differences, the
proper choice of perturbations is a delicate matter. idas takes into account several problem-related
features: the relative DAE error tolerance rtol, the machine unit roundoff U , the scale factor p̄i, and
the weighted root-mean-square norm of the sensitivity vector si.

Using central finite differences as an example, the two terms (∂F/∂y)si + (∂F/∂ẏ)ṡi and ∂F/∂pi

in (2.12) can be evaluated either separately:

∂F

∂y
si +

∂F

∂ẏ
ṡi ≈

F (t, y + σysi, ẏ + σy ṡi, p)− F (t, y − σysi, ẏ − σy ṡi, p)
2σy

, (2.15)

∂F

∂pi
≈ F (t, y, ẏ, p+ σiei)− F (t, y, ẏ, p− σiei)

2σi
, (2.15’)

σi = |p̄i|
√

max(rtol, U) , σy =
1

max(1/σi, ‖si‖WRMS/|p̄i|)
,

or simultaneously:

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
≈ F (t, y + σsi, ẏ + σṡi, p+ σei)− F (t, y − σsi, ẏ − σṡi, p− σei)

2σ
, (2.16)

σ = min(σi, σy) ,

or by adaptively switching between (2.15)+(2.15’) and (2.16), depending on the relative size of the
two finite difference increments σi and σy. In the adaptive scheme, if ρ = max(σi/σy, σy/σi), we use
separate evaluations if ρ > ρmax (an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (σi, σy, σ) and switching between derivative
formulas have also been implemented for one-sided difference formulas. Forward finite differences can
be applied to (∂F/∂y)si + (∂F/∂ẏ)ṡi and ∂F

∂pi
separately, or the single directional derivative formula

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
≈ F (t, y + σsi, ẏ + σṡi, p+ σei)− F (t, y, ẏ, p)

σ
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can be used. In idas, the default value of ρmax = 0 indicates the use of the second-order centered
directional derivative formula (2.16) exclusively. Otherwise, the magnitude of ρmax and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

2.5.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.4), idas does not carry
their sensitivities automatically. Instead, we provide a more general feature through which integrals
depending on both the states y of (2.2) and the state sensitivities si of (2.12) can be evaluated. In
other words, idas provides support for computing integrals of the form:

z̄(t) =
∫ t

t0

q̄(τ, y(τ), ẏ(τ), s1(τ), . . . , sNp
(τ), p) dτ .

If the sensitivities of the quadrature variables z of (2.10) are desired, these can then be computed
by using:

q̄i = qysi + qẏ ṡi + qpi
, i = 1, . . . , Np ,

as integrands for z̄, where qy, qẏ, and qp are the partial derivatives of the integrand function q of
(2.10).

As with the quadrature variables z, the new variables z̄ are also excluded from any nonlinear solver
phase and “corrected” values z̄n are obtained through explicit formulas.

2.6 Adjoint sensitivity analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with
respect to Ns parameters is roughly equivalent to solving an DAE system of size (1 + Ns)N . This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities si, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

G(p) =
∫ T

t0

g(t, y, p)dt , (2.17)

or, alternatively, the gradient dg/dp of the function g(t, y, p) at the final time t = T . The function g
must be smooth enough that ∂g/∂y and ∂g/∂p exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [10].

2.6.1 Sensitivity of G(p)

We focus first on solving the sensitivity problem for G(p) defined by (2.17). Introducing a Lagrange
multiplier λ, we form the augmented objective function

I(p) = G(p)−
∫ T

t0

λ∗F (t, y, ẏ, p)dt.

Since F (t, y, ẏ, p) = 0, the sensitivity of G with respect to p is

dG

dp
=
dI

dp
=
∫ T

t0

(gp + gyyp)dt−
∫ T

t0

λ∗(Fp + Fyyp + Fẏ ẏp)dt, (2.18)
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where subscripts on functions such as F or g are used to denote partial derivatives. By integration
by parts, we have ∫ T

t0

λ∗Fẏ ẏpdt = (λ∗Fẏyp)|Tt0 −
∫ T

t0

(λ∗Fẏ)′ypdt,

where (· · · )′ denotes the t−derivative. Thus equation (2.18) becomes

dG

dp
=
∫ T

t0

(gp − λ∗Fp) dt−
∫ T

t0

[−gy + λ∗Fy − (λ∗Fẏ)′] ypdt− (λ∗Fẏyp)|Tt0 . (2.19)

Now by requiring λ to satisfy
(λ∗Fẏ)′ − λ∗Fy = −gy, (2.20)

we obtain
dG

dp
=
∫ T

t0

(gp − λ∗Fp) dt− (λ∗Fẏyp)|Tt0 . (2.21)

Note that yp at t = t0 is the sensitivity of the initial conditions with respect to p, which is easily ob-
tained. To find the initial conditions (at t = T ) for the adjoint system, we must take into consideration
the structure of the DAE system.

For index-0 and index-1 DAE systems, we can simply take

λ∗Fẏ|t=T = 0, (2.22)

yielding the sensitivity equation for dG/dp

dG

dp
=
∫ T

t0

(gp − λ∗Fp) dt+ (λ∗Fẏyp)|t=t0 . (2.23)

This choice will not suffice for a Hessenberg index-2 DAE system. For a derivation of proper final
conditions in such cases, see [10].

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification
of the parameters p; this implies that, once the solution λ is found, the formula (2.21) can then be
used to find the gradient of G with respect to any of the parameters p. The second important remark
is that the adjoint system (2.20) is a terminal value problem which depends on the solution y(t) of
the original IVP (2.2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (2.2) to idas during the backward integration phase of (2.20). The
approach adopted in idas, based on checkpointing, is described in §2.6.3 below.

2.6.2 Sensitivity of g(T, p)

Now let us consider the computation of dg/dp(T ). From dg/dp(T ) = (d/dT )(dG/dp) and equation
(2.21), we have

dg

dp
= (gp − λ∗Fp)(T )−

∫ T

t0

λ∗TFpdt+ (λ∗TFẏyp)|t=t0 −
d(λ∗Fẏyp)

dT
(2.24)

where λT denotes ∂λ/∂T . For index-0 and index-1 DAEs, we obtain

d(λ∗Fẏyp)|t=T

dT
= 0,

while for a Hessenberg index-2 DAE system we have

d(λ∗Fẏyp)|t=T

dT
= −

d(gya(CB)−1f2
p )

dt

∣∣∣∣∣
t=T

.
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The corresponding adjoint equations are

(λ∗TFẏ)′ − λ∗TFy = 0. (2.25)

For index-0 and index-1 DAEs (as shown above, the index-2 case is different), to find the boundary
condition for this equation we write λ as λ(t, T ) because it depends on both t and T . Then

λ∗(T, T )Fẏ|t=T = 0.

Taking the total derivative, we obtain

(λt + λT )∗(T, T )Fẏ|t=T + λ∗(T, T )
dFẏ

dt
|t=T = 0.

Since λt is just λ̇, we have the boundary condition

(λ∗TFẏ)|t=T = −
[
λ∗(T, T )

dFẏ

dt
+ λ̇∗Fẏ

]
|t=T .

For the index-one DAE case, the above relation and (2.20) yield

(λ∗TFẏ)|t=T = [gy − λ∗Fy] |t=T . (2.26)

For the regular implicit ODE case, Fẏ is invertible; thus we have λ(T, T ) = 0, which leads to λT (T ) =
−λ̇(T ). As with the final conditions for λ(T ) in (2.20), the above selection for λT (T ) is not sufficient
for index-two Hessenberg DAEs (see [10] for details).

2.6.3 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires,
at the current time, the states y which were computed during the forward integration phase. Since
idas implements variable-step integration formulas, it is unlikely that the states will be available at
the desired time and so some form of interpolation is needed. The idas implementation being also
variable-order, it is possible that during the forward integration phase the order may be reduced as
low as first order, which means that there may be points in time where only y and ẏ are available.
These requirements therefore limit the choices for possible interpolation schemes. idas implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial
interpolation method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size
of the vectors y and ẏ that would need to be stored make this approach computationally intractable.
Thus, idas settles for a compromise between storage space and execution time by implementing a so-
called checkpointing scheme. At the cost of at most one additional forward integration, this approach
offers the best possible estimate of memory requirements for adjoint sensitivity analysis. To begin
with, based on the problem size N and the available memory, the user decides on the number Nd

of data pairs (y, ẏ) if cubic Hermite interpolation is selected, or on the number Nd of y vectors in
the case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of
interpolation. Then, during the first forward integration stage, after every Nd integration steps a
checkpoint is formed by saving enough information (either in memory or on disk) to allow for a hot
restart, that is a restart which will exactly reproduce the forward integration. In order to avoid storing
Jacobian-related data at each checkpoint, a reevaluation of the iteration matrix is forced before each
checkpoint. At the end of this stage, we are left with Nc checkpoints, including one at t0. During the
backward integration stage, the adjoint variables are integrated backwards from T to t0, going from
one checkpoint to the previous one. The backward integration from checkpoint i+ 1 to checkpoint i
is preceded by a forward integration from i to i+ 1 during which the Nd vectors y (and, if necessary
ẏ) are generated and stored in memory for interpolation1

1The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation at
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Figure 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during
the integration of the adjoint system.

This approach transfers the uncertainty in the number of integration steps in the forward inte-
gration phase to uncertainty in the final number of checkpoints. However, Nc is much smaller than
the number of steps taken during the forward integration, and there is no major penalty for writ-
ing/reading the checkpoint data to/from a temporary file. Note that, at the end of the first forward
integration stage, interpolation data are available from the last checkpoint to the end of the interval
of integration. If no checkpoints are necessary (Nd is larger than the number of integration steps
taken in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as
one forward plus one backward integration. In addition, idas provides the capability of reusing a set
of checkpoints for multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (2.17).

Finally, we note that the adjoint sensitivity module in idas provides the necessary infrastructure
to integrate backwards in time any DAE terminal value problem dependent on the solution of the
IVP (2.2), including adjoint systems (2.20) or (2.25), as well as any other quadrature ODEs that may
be needed in evaluating the integrals in (2.21). In particular, for DAE systems arising from semi-
discretization of time-dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

2.7 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute
second-order derivative information. Considering the DAE problem (2.2) and some model output
functional2 g(y), the Hessian d2g/dp2 can be obtained in a forward sensitivity analysis setting as

d2g

dp2
=
(
gy ⊗ INp

)
ypp + yT

p gyyyp ,

where ⊗ is the Kronecker product. The second-order sensitivities are solution of the matrix DAE
system:(
Fẏ ⊗ INp

)
· ẏpp +

(
Fy ⊗ INp

)
· ypp +

(
IN ⊗ ẏT

p

)
· (Fẏẏ ẏp + Fyẏyp) +

(
IN ⊗ yT

p

)
· (Fyẏ ẏp + Fyyyp) = 0

ypp(t0) =
∂2y0
∂p2

, ẏpp(t0) =
∂2ẏ0
∂p2

,

the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint, in
which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §2.1), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. daspkadjoint). The variable-degree polynomial is more memory-efficient (it requires only
half of the memory storage of the cubic Hermite interpolation) and is more accurate.

2For the sake of simplifity in presentation, we do not include explicit dependencies of g on time t or parameters p.
Moreover, we only consider the case in which the dependency of the original DAE (2.2) on the parameters p is through
its initial conditions only. For details on the derivation in the general case, see [30].



22 Mathematical Considerations

where yp denotes the first-order sensitivity matrix, the solution of Np systems (2.12), and ypp is a
third-order tensor. It is easy to see that, except for situations in which the number of parameters Np

is very small, the computational cost of this so-called forward-over-forward approach is exorbitant as
it requires the solution of Np +N2

p additional DAE systems of the same dimension as (2.2).
A much more efficient alternative is to compute Hessian-vector products using a so-called forward-

over-adjoint approach. This method is based on using the same “trick” as the one used in computing
gradients of pointwise functionals with the adjoint method, namely applying a formal directional for-
ward derivation to the gradient of (2.21) (or the equivalent one for a pointwise functional g(T, y(T ))).
With that, the cost of computing a full Hessian is roughly equivalent to the cost of computing the gra-
dient with forward sensitivity analysis. However, Hessian-vector products can be cheaply computed
with one additional adjoint solve.

As an illustration3, consider the ODE problem

ẏ = f(t, y) , y(t0) = y0(p) ,

depending on some parameters p through the initial conditions only and consider the model functional
output G(p) =

∫ tf

t0
g(t, y) dt. It can be shown that the product between the Hessian of G (with respect

to the parameters p) and some vector u can be computed as

∂2G

∂p2
u =

[(
λT ⊗ INp

)
yppu+ yT

p µ
]
t=t0

,

where λ and µ are solutions of

− µ̇ = fT
y µ+

(
λT ⊗ In

)
fyys ; µ(tf ) = 0

− λ̇ = fT
y λ+ gT

y ; λ(tf ) = 0

ṡ = fys ; s(t0) = y0pu.

(2.27)

In the above equation, s = ypu is a linear combination of the columns of the sensitivity matrix yp.
The forward-over-adjoint approach hinges crucially on the fact that s can be computed at the cost of
a forward sensitivity analysis with respect to a single parameter (the last ODE problem above) which
is possible due to the linearity of the forward sensitivity equations (2.12).

Therefore (and this is also valid for the DAE case), the cost of computing the Hessian-vector
product is roughly that of two forward and two backward integrations of a system of DAEs of size
N . For more details, including the corresponding formulas for a pointwise model functional output,
see the work by Ozyurt and Barton [30] who discuss this problem for ODE initial value problems. As
far as we know, there is no published equivalent work on DAE problems. However, the derivations
given in [30] for ODE problems can be extended to DAEs with some careful consideration given to
the derivation of proper final conditions on the adjoint systems, following the ideas presented in [10].

To allow the foward-over-adjoint approach described above, idas provides support for:

• the integration of multiple backward problems depending on the same underlying forward prob-
lem (2.2), and

• the integration of backward problems and computation of backward quadratures depending on
both the states y and forward sensitivities (for this particular application, s) of the original
problem (2.2).

3The derivation for the general DAE case is too involved for the purposes of this discussion.



Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode and arkode (for ODE
systems), kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In
addition, sundials also includes variants of cvode and ida with sensitivity analysis capabilities
(using either forward or adjoint methods), called cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 3.1). The following is a list
of the solver packages presently available, and the basic functionality of each:

• cvode, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y) based on Adams and BDF
methods;

• cvodes, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

• arkode, a solver for ODE systems Mdy/dt = fE(t, y)+fI(t, y) based on additive Runge-Kutta
methods;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0 based on BDF methods;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

3.2 IDAS organization

The idas package is written in the ANSI C language. The following summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the idas package is shown in Figure 3.2. The central integration
module, implemented in the files idas.h, idas impl.h, and idas.c, deals with the evaluation of
integration coefficients, the Newton iteration process, estimation of local error, selection of stepsize
and order, and interpolation to user output points, among other issues. Although this module contains
logic for the basic Newton iteration algorithm, it has no knowledge of the method being used to solve
the linear systems that arise. For any given user problem, one of the linear system solver interfaces is
specified, and is then invoked as needed during the integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward
sensitivity equations simultaneously with the original IVP. The sensitivity variables may be included
in the local error control mechanism of the main integrator. idas provides two different strategies
for dealing with the correction stage for the sensitivity variables: IDA SIMULTANEOUS IDA STAGGERED
(see §2.5). The idas package includes an algorithm for the approximation of the sensitivity equations
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Figure 3.1: Organization of the SUNDIALS suite
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Figure 3.2: Overall structure diagram of the ida package. Modules specific to ida begin with “IDA”
(idadls, idaspils, and idabbdpre), all other items correspond to generic solver and auxiliary mod-
ules. Note also that the LAPACK, klu and superlumt support is through interfaces to external
packages. Users will need to download and compile those packages independently.
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residuals by difference quotients, but the user has the option of supplying these residual functions
directly.

The adjoint sensitivity module (file idaa.c) provides the infrastructure needed for the backward
integration of any system of DAEs which depends on the solution of the original IVP, in particular the
adjoint system and any quadratures required in evaluating the gradient of the objective functional.
This module deals with the setup of the checkpoints, the interpolation of the forward solution during
the backward integration, and the backward integration of the adjoint equations.

At present, the package includes two linear solver interfaces. The direct linear solver interface,
idadls, supports sunlinsol implementations with type SUNLINSOL DIRECT (see Chapter 9). These
linear solvers utilize direct methods for the solution of linear systems stored using one of the sun-
dials generic sunmatrix implementations (dense, banded, or sparse; see Chapter 8). The spils lin-
ear solver interface, idaspils, supports sunlinsol implementations with type SUNLINSOL ITERATIVE
(see Chapter 9). These linear solvers utilize scaled preconditioned iterative methods. It is assumed
that these methods are implemented in a “matrix-free” manner, wherein only the action of the
matrix-vector product is required. Since idas can operate on any valid sunlinsol implementation of
SUNLINSOL DIRECT or SUNLINSOL ITERATIVE types, the set of linear solver modules available to idas
will expand as new sunlinsol modules are developed.

Within the idadls interface, the package includes algorithms for the approximation of dense
or banded Jacobians through difference quotients, but the user also has the option of supplying the
Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse
Jacobian matrices, since standard difference quotient approximations do not leverage the inherent
sparsity of the problem.

Within the idaspils interface, the package includes an algorithm for the approximation by dif-
ference quotients of the product between the Jacobian matrix and a vector. Again, the user has the
option of providing routines for this operation, in two phases: setup (preprocessing of Jacobian data)
and multiplication. For preconditioned iterative methods, the preconditioning must be supplied by
the user, again in two phases: setup and solve. While there is no default choice of preconditioner
analogous to the difference-quotient approximation in the direct case, the references [4, 7], together
with the example and demonstration programs included with idas, offer considerable assistance in
building preconditioners.

Each idas linear solver interface consists of four routines, devoted to (1) memory allocation and
initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing of
memory. The setup and solution phases are separate because the evaluation of Jacobians and pre-
conditioners is done only periodically during the integration, as required to achieve convergence. The
call list within the central idas module to each of the four associated functions is fixed, thus allowing
the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. Each of the modules (idadense etc.) consists
of an interface built on top of a generic linear system solver (dense etc.). The interface deals with
the use of the particular method in the idas context, whereas the generic solver is independent of
the context. While some of the generic linear system solvers (dense, band, spgmr, spbcgs, and
sptfqmr) were written with sundials in mind, they are intended to be usable anywhere as general-
purpose solvers. This separation also allows for any generic solver to be replaced by an improved
version, with no necessity to revise the idas package elsewhere.

idas also provides a preconditioner module, idabbdpre, that works in conjunction with nvec-
tor parallel and generates a preconditioner that is a block-diagonal matrix with each block being
a banded matrix.

All state information used by idas to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the idas package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the idas memory structure. The reentrancy of idas was motivated by
the situation where two or more problems are solved by intermixed calls to the package from one user
program.
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Using IDAS for IVP Solution

This chapter is concerned with the use of idas for the integration of DAEs. The following sections
treat the header files, the layout of the user’s main program, description of the idas user-callable
functions, and description of user-supplied functions. This usage is essentially equivalent to using
ida [24].

The sample programs described in the companion document [35] may also be helpful. Those codes
may be used as templates (with the removal of some lines involved in testing), and are included in
the idas package.

The user should be aware that not all sunlinsol and sunmatrix modules are compatible with
all nvector implementations. Details on compatability are given in the documentation for each
sunmatrix module (Chapter 8) and each sunlinsol module (Chapter 9). For example, nvec-
tor parallel is not compatible with the dense, banded, or sparse sunmatrix types, or with the
corresponding dense, banded, or sparse sunlinsol modules. Please check Chapters 8 and 9 to verify
compatability between these modules. In addition to that documentation, we note that the precon-
ditioner module idabbdpre can only be used with nvector parallel. It is not recommended to
use a threaded vector module with SuperLU MT unless it is the nvector openmp module, and
SuperLU MT is also compiled with openMP.

idas uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of idas, following the procedure described in Appendix
A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by idas. The relevant library files are

• libdir/libsundials idas.lib,

• libdir/libsundials nvec*.lib (one to four files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include/idas

• incdir/include/sundials

• incdir/include/nvector

• incdir/include/sunmatrix
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• incdir/include/sunlinsol

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/lib and instdir/include, respectively, where instdir is the
directory where sundials was installed (see Appendix A).

Note that an application cannot link to both the ida and idas libraries because both contain
user-callable functions with the same names (to ensure that idas is backward compatible with ida).
Therefore, applications that contain both DAE problems and DAEs with sensitivity analysis, should
use idas.

4.2 Data types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
sundials.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the sundials solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials
uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use sundials without modifying
the code to use realtype, so long as the sundials libraries use the correct precision (for details see
§A.1.2).

4.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable
int64 t type, and the user can change it to int32 t at the configuration stage. The configuration
system will detect if the compiler does not support portable types, and will replace int32 t and
int64 t with int and long int, respectively, to ensure use of the desired sizes on Linux, Mac OS X,
and Windows platforms. sundials currently does not support unsigned integer types for vector and
matrix indices, although these could be added in the future if there is sufficient demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both
index storage types except for any calls to index storage-specific external libraries. (Our C and C++
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example programs use sunindextype.) Users can, however, use any one of int, long int, int32 t,
int64 t or long long int in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture). Thus, a previously existing piece of ANSI C code can use
sundials without modifying the code to use sunindextype, so long as the sundials libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• idas.h, the header file for idas, which defines the several types and various constants, and
includes function prototypes.

Note that idas.h includes sundials types.h, which defines the types realtype, sunindextype, and
booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an nvector implementation header file, of the form
nvector/nvector ***.h. See Chapter 7 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N Vector data type.

Finally, a linear solver module header file is required. The header files corresponding to the various
linear solver interfaces and linear solver modules available for use with idas are:

• idas/idas direct.h, which is used with the idadls direct linear solver interface to access direct
solvers with the following header files:

– sunlinsol/sunlinsol dense.h, which is used with the dense linear solver module, sun-
linsol dense;

– sunlinsol/sunlinsol band.h, which is used with the banded linear solver module, sun-
linsol band;

– sunlinsol/sunlinsol lapackdense.h, which is used with the LAPACK dense linear solver
interface module, sunlinsol lapackdense;

– sunlinsol/sunlinsol lapackband.h, which is used with the LAPACK banded linear
solver interface module, sunlinsol lapackband;

– sunlinsol/sunlinsol klu.h, which is used with the klu sparse linear solver interface
module, sunlinsol klu;

– sunlinsol/sunlinsol superlumt.h, which is used with the superlumt sparse linear
solver interface module, sunlinsol superlumt;

• idas/idas spils.h, which is used with the idaspils iterative linear solver interface to access
iterative solvers with the following header files:

– sunlinsol/sunlinsol spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, sunlinsol spgmr;

– sunlinsol/sunlinsol spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, sunlinsol spfgmr;

– sunlinsol/sunlinsol spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, sunlinsol spbcgs;

– sunlinsol/sunlinsol sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, sunlinsol sptfqmr;

– sunlinsol/sunlinsol pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, sunlinsol pcg;
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The header files for the sunlinsol dense and sunlinsol lapackdense linear solver modules
include the file sunmatrix/sunmatrix dense.h, which defines the sunmatrix dense matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the sunlinsol band and sunlinsol lapackband linear solver modules in-
clude the file sunmatrix/sunmatrix band.h, which defines the sunmatrix band matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the sunlinsol klu and sunlinsol superlumt sparse linear solvers include
the file sunmatrix/sunmatrix sparse.h, which defines the sunmatrix sparse matrix module, as
well as various functions and macros acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials iterative.h,
which enumerates the kind of preconditioning, and (for the spgmr and spfgmr solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
idasFoodWeb kry p example (see [35]), preconditioning is done with a block-diagonal matrix. For this,
even though the sunlinsol spgmr linear solver is used, the header sundials/sundials dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of a DAE
IVP. Most of the steps are independent of the nvector, sunmatrix, and sunlinsol implementations
used. For the steps that are not, refer to Chapter 7, 8, and 9 for the specific name of the function to
be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate

For example, call MPI Init to initialize MPI if used, or set num threads, the number of threads
to use within the threaded vector functions, if used.

2. Set problem dimensions etc.

This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vectors of initial values

To set the vectors y0 and yp0 to initial values for y and ẏ, use the appropriate functions defined
by the particular nvector implementation.

For native sundials vector implementations (except the cuda and raja-based ones), use a call
of the form y0 = N VMake ***(..., ydata) if the realtype array ydata containing the initial
values of y already exists. Otherwise, create a new vector by making a call of the form y0 =
N VNew ***(...), and then set its elements by accessing the underlying data with a call of the
form ydata = N VGetArrayPointer(y0). See §7.1-7.4 for details.

For the hypre and petsc vector wrappers, first create and initialize the underlying vector and
then create an nvector wrapper with a call of the form y0 = N VMake ***(yvec), where yvec
is a hypre or petsc vector. Note that calls like N VNew ***(...) and N VGetArrayPointer(...)
are not available for these vector wrappers. See §7.5 and §7.6 for details.

If using either the cuda- or raja-based vector implementations use a call of the form y0 =
N VMake ***(..., c) where c is a pointer to a suncudavec or sunrajavec vector class if this class
already exists. Otherwise, create a new vector by making a call of the form y0 = N VNew ***(...),
and then set its elements by accessing the underlying data where it is located with a call of the
form N VGetDeviceArrayPointer *** or N VGetHostArrayPointer ***. Note that the vector
class will allocate memory on both the host and device when instantiated. See §7.7-7.8 for details.

Set the vector yp0 of initial conditions for ẏ similarly.
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4. Create idas object

Call ida mem = IDACreate() to create the idas memory block. IDACreate returns a pointer to
the idas memory structure. See §4.5.1 for details. This void * pointer must then be passed as
the first argument to all subsequent idas function calls.

5. Initialize idas solver

Call IDAInit(...) to provide required problem specifications (residual function, initial time, and
initial conditions), allocate internal memory for idas, and initialize idas. IDAInit returns an
error flag to indicate success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call IDASStolerances(...) or IDASVtolerances(...) to specify, respectively, a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances. Alternatively, call IDAWFtolerances to specify a function which sets directly the
weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Set optional inputs

Optionally, call IDASet* functions to change from their default values any optional inputs that
control the behavior of idas. See §4.5.7.1 for details.

8. Create matrix object

If a direct linear solver is to be used within a Newton iteration then a template Jacobian ma-
trix must be created by using the appropriate functions defined by the particular sunmatrix
implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

9. Create linear solver object

If a Newton iteration is chosen, then the desired linear solver object must be created by using the
appropriate functions defined by the particular sunlinsol implementation.

10. Set linear solver optional inputs

Optionally, call IDA*Set* functions from the selected linear solver module to change optional
inputs specific to that linear solver. See §4.5.7.2 and §4.5.7.3 for details.

11. Attach linear solver module

If a Newton iteration is chosen, initialize the idadls or idaspils linear solver interface by attaching
the linear solver object (and matrix object, if applicable) with one of the following calls (for details
see §4.5.3):

ier = IDADlsSetLinearSolver(...);

ier = IDASpilsSetLinearSolver(...);

12. Set linear solver interface optional inputs

Call IDADlsSet* or IDASpilsSet* functions to change optional inputs specific to that linear solver
interface. See §4.5.7 for details.

13. Correct initial values

Optionally, call IDACalcIC to correct the initial values y0 and yp0 passed to IDAInit. See §4.5.4.
Also see §4.5.7.4 for relevant optional input calls.

14. Specify rootfinding problem
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Optionally, call IDARootInit to initialize a rootfinding problem to be solved during the integration
of the DAE system. See §4.5.5 for details, and see §4.5.7.5 for relevant optional input calls.

15. Advance solution in time

For each point at which output is desired, call flag = IDASolve(ida mem, tout, &tret, yret,
ypret, itask). Here itask specifies the return mode. The vector yret (which can be the same
as the vector y0 above) will contain y(t), while the vector ypret (which can be the same as the
vector yp0 above) will contain ẏ(t). See §4.5.6 for details.

16. Get optional outputs

Call IDA*Get* functions to obtain optional output. See §4.5.9 for details.

17. Deallocate memory for solution vectors

Upon completion of the integration, deallocate memory for the vectors yret and ypret (or y and
yp) by calling the appropriate destructor function defined by the nvector implementation:

N VDestroy(yret);

and similarly for ypret.

18. Free solver memory

IDAFree(&ida mem) to free the memory allocated for idas.

19. Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

20. Finalize MPI, if used

Call MPI Finalize() to terminate MPI.

sundials provides some linear solvers only as a means for users to get problems running and not as
highly efficient solvers. For example, if solving a dense system, we suggest using the Lapack solvers if
the size of the linear system is > 50, 000. (Thanks to A. Nicolai for his testing and recommendation.)
Table 4.1 shows the linear solver interfaces available as sunlinsol modules and the vector imple-
mentations required for use. As an example, one cannot use the dense direct solver interfaces with
the MPI-based vector implementation. However, as discussed in Chapter 9 the sundials packages
operate on generic sunlinsol objects, allowing a user to develop their own solvers should they so
desire.

4.5 User-callable functions

This section describes the idas functions that are called by the user to set up and solve a DAE. Some of
these are required. However, starting with §4.5.7, the functions listed involve optional inputs/outputs
or restarting, and those paragraphs can be skipped for a casual use of idas. In any case, refer to §4.4
for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.7.1).

4.5.1 IDAS initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the DAE solution is complete, as it frees the idas memory block created and allocated by the first
two calls.
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Table 4.1: sundials linear solver interfaces and vector implementations that can be used for each.
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Dense X X X X
Band X X X X

LapackDense X X X X
LapackBand X X X X

klu X X X X
superlumt X X X X

spgmr X X X X X X X X X
spfgmr X X X X X X X X X
spbcgs X X X X X X X X X

sptfqmr X X X X X X X X X
pcg X X X X X X X X X

User Supp. X X X X X X X X X

IDACreate

Call ida mem = IDACreate();

Description The function IDACreate instantiates an idas solver object.

Arguments IDACreate has no arguments.

Return value If successful, IDACreate returns a pointer to the newly created idas memory block (of
type void *). Otherwise it returns NULL.

IDAInit

Call flag = IDAInit(ida mem, res, t0, y0, yp0);

Description The function IDAInit provides required problem and solution specifications, allocates
internal memory, and initializes idas.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
res (IDAResFn) is the C function which computes the residual function F in the

DAE. This function has the form res(t, yy, yp, resval, user data). For
full details see §4.6.1.

t0 (realtype) is the initial value of t.
y0 (N Vector) is the initial value of y.
yp0 (N Vector) is the initial value of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAInit was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA MEM FAIL A memory allocation request has failed.
IDA ILL INPUT An input argument to IDAInit has an illegal value.

Notes If an error occurred, IDAInit also sends an error message to the error handler function.
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IDAFree

Call IDAFree(&ida mem);

Description The function IDAFree frees the pointer allocated by a previous call to IDACreate.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDAFree has no return value.

4.5.2 IDAS tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to IDAInit.

IDASStolerances

Call flag = IDASStolerances(ida mem, reltol, abstol);

Description The function IDASStolerances specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
reltol (realtype) is the scalar relative error tolerance.
abstol (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASStolerances was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA NO MALLOC The allocation function IDAInit has not been called.
IDA ILL INPUT One of the input tolerances was negative.

IDASVtolerances

Call flag = IDASVtolerances(ida mem, reltol, abstol);

Description The function IDASVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
reltol (realtype) is the scalar relative error tolerance.
abstol (N Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASVtolerances was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA NO MALLOC The allocation function IDAInit has not been called.
IDA ILL INPUT The relative error tolerance was negative or the absolute tolerance had

a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.
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IDAWFtolerances

Call flag = IDAWFtolerances(ida mem, efun);

Description The function IDAWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights Wi for use in the weighted RMS norm, which are normally
defined by Eq. (2.7).

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
efun (IDAEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAWFtolerances was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA NO MALLOC The allocation function IDAInit has not been called.

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol=10−4

means that errors are controlled to .01%. We do not recommend using reltol larger than 10−3.
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 10−15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
idasRoberts dns in the idas package, and the discussion of it in the idas Examples document [35].
In that problem, the three components vary between 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the
error committed on each individual time step. The final (global) errors are a sort of accumulation of
those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from the actual
desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol= 10−6. But
in any case, it is a good idea to do a few experiments with the tolerances to see how the computed
solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried by
the solver are unaffected. Remember that a small negative value in yret returned by idas, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s residual routine res should never change a negative value in the solution vector yy
to a non-negative value, as a ”solution” to this problem. This can cause instability. If the res routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
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offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input yy vector) for the purposes of computing F (t, y, ẏ).

(4) idas provides the option of enforcing positivity or non-negativity on components. Also, such
constraints can be enforced by use of the recoverable error return feature in the user-supplied residual
function. However, because these options involve some extra overhead cost, they should only be
exercised if the use of absolute tolerances to control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, a Newton iteration requires the solution of linear systems of the form (2.5).
There are two idas linear solvers currently available for this task: idadls and idaspils.

The first corresponds to the use of Direct Linear Solvers, and utilizes sunmatrix objects to store
the Jacobian J = ∂F/∂y + α∂F/∂ẏ and factorizations used throughout the solution process.

The second corresponds to the use of Scaled, Preconditioned, Iterative Linear Solvers, utilizing
matrix-free Krylov methods to solve the Newton linear systems of equations. With most of these
methods, preconditioning can be done on the left only, on the right only, on both the left and the
right, or not at all. The exceptions to this rule are spfgmr that supports right preconditioning only
and pcg that performs symmetric preconditioning. For the specification of a preconditioner, see the
iterative linear solver sections in §4.5.7 and §4.6. A preconditioner matrix P must approximate the
Jacobian J , at least crudely.

To specify a generic linear solver to idas, after the call to IDACreate but before any calls to
IDASolve, the user’s program must create the appropriate sunlinsol object and call either of the
functions IDADlsSetLinearSolver or IDASpilsSetLinearSolver, as documented below. The first
argument passed to these functions is the idas memory pointer returned by IDACreate; the second
argument passed to these functions is the desired sunlinsol object to use for solving Newton systems.
A call to one of these functions initializes the appropriate idas linear solver interface, linking this to
the main idas integrator, and allows the user to specify parameters which are specific to a particular
solver interface. The use of each of the generic linear solvers involves certain constants and possibly
some macros, that are likely to be needed in the user code. These are available in the corresponding
header file associated with the specific sunmatrix or sunlinsol module in question, as described in
Chapters 8 and 9.

IDADlsSetLinearSolver

Call flag = IDADlsSetLinearSolver(ida mem, LS, J);

Description The function IDADlsSetLinearSolver attaches a direct sunlinsol object LS and corre-
sponding template Jacobian sunmatrix object J to idas, initializing the idadls direct
linear solver interface.

The user’s main program must include the idas direct.h header file.

Arguments ida mem (void *) pointer to the idas memory block.
LS (SUNLinearSolver) sunlinsol object to use for solving Newton linear sys-

tems.
J (SUNMatrix) sunmatrix object for used as a template for the Jacobian (must

have a type compatible with the linear solver object).

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The idadls initialization was successful.
IDADLS MEM NULL The ida mem pointer is NULL.
IDADLS ILL INPUT The idadls solver is not compatible with the current nvector

module.
IDADLS MEM FAIL A memory allocation request failed.

Notes The idadls linear solver is not compatible with all implementations of the sunlinsol
and nvector modules. Specifically, idadls requires use of a direct sunlinsol object
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and a serial or theaded nvector module. Additional compatibility limitations for each
sunlinsol object (i.e. sunmatrix and nvector object compatibility) are described
in Chapter 9.

IDASpilsSetLinearSolver

Call flag = IDASpilsSetLinearSolver(ida mem, LS);

Description The function IDASpilsSetLinearSolver attaches an iterative sunlinsol object LS to
idas, initializing the idaspils scaled, preconditioned, iterative linear solver interface.

The user’s main program must include the idas spils.h header file.

Arguments ida mem (void *) pointer to the idas memory block.
LS (SUNLinearSolver) sunlinsol object to use for solving Newton linear sys-

tems.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The idaspils initialization was successful.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS ILL INPUT The idaspils solver is not compatible with the LS object or is

incompatible with the current nvector module.
IDASPILS MEM FAIL A memory allocation request failed.
IDASPILS SUNLS FAIL A call to the LS object failed.

Notes The idaspils linear solver interface is not compatible with all implementations of the
sunlinsol and nvector modules. Specifically, idaspils requires use of an itera-
tive sunlinsol object. Additional compatibility limitations for each sunlinsol object
(i.e. required nvector routines) are described in Chapter 9.

4.5.4 Initial condition calculation function

IDACalcIC calculates corrected initial conditions for the DAE system for certain index-one problems
including a class of systems of semi-implicit form. (See §2.1 and Ref. [6].) It uses Newton iteration
combined with a linesearch algorithm. Calling IDACalcIC is optional. It is only necessary when
the initial conditions do not satisfy the given system. Thus if y0 and yp0 are known to satisfy
F (t0, y0, ẏ0) = 0, then a call to IDACalcIC is generally not necessary.

A call to the function IDACalcIC must be preceded by successful calls to IDACreate and IDAInit
(or IDAReInit), and by a successful call to the linear system solver specification function. The call to
IDACalcIC should precede the call(s) to IDASolve for the given problem.

IDACalcIC

Call flag = IDACalcIC(ida mem, icopt, tout1);

Description The function IDACalcIC corrects the initial values y0 and yp0 at time t0.

Arguments ida mem (void *) pointer to the idas memory block.
icopt (int) is one of the following two options for the initial condition calculation.

icopt=IDA YA YDP INIT directs IDACalcIC to compute the algebraic compo-
nents of y and differential components of ẏ, given the differential components
of y. This option requires that the N Vector id was set through IDASetId,
specifying the differential and algebraic components.
icopt=IDA Y INIT directs IDACalcIC to compute all components of y, given
ẏ. In this case, id is not required.

tout1 (realtype) is the first value of t at which a solution will be requested (from
IDASolve). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable t.
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Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS IDASolve succeeded.
IDA MEM NULL The argument ida mem was NULL.
IDA NO MALLOC The allocation function IDAInit has not been called.
IDA ILL INPUT One of the input arguments was illegal.
IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-

ner.
IDA LINIT FAIL The linear solver’s initialization function failed.
IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable man-

ner.
IDA BAD EWT Some component of the error weight vector is zero (illegal), either

for the input value of y0 or a corrected value.
IDA FIRST RES FAIL The user’s residual function returned a recoverable error flag on

the first call, but IDACalcIC was unable to recover.
IDA RES FAIL The user’s residual function returned a nonrecoverable error flag.
IDA NO RECOVERY The user’s residual function, or the linear solver’s setup or solve

function had a recoverable error, but IDACalcIC was unable to
recover.

IDA CONSTR FAIL IDACalcIC was unable to find a solution satisfying the inequality
constraints.

IDA LINESEARCH FAIL The linesearch algorithm failed to find a solution with a step
larger than steptol in weighted RMS norm, and within the
allowed number of backtracks.

IDA CONV FAIL IDACalcIC failed to get convergence of the Newton iterations.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcIC failures.

Note that IDACalcIC will correct the values of y(t0) and ẏ(t0) which were specified
in the previous call to IDAInit or IDAReInit. To obtain the corrected values, call
IDAGetconsistentIC (see §4.5.9.3).

4.5.5 Rootfinding initialization function

While integrating the IVP, idas has the capability of finding the roots of a set of user-defined functions.
To activate the rootfinding algorithm, call the following function. This is normally called only once,
prior to the first call to IDASolve, but if the rootfinding problem is to be changed during the solution,
IDARootInit can also be called prior to a continuation call to IDASolve.

IDARootInit

Call flag = IDARootInit(ida mem, nrtfn, g);

Description The function IDARootInit specifies that the roots of a set of functions gi(t, y, ẏ) are to
be found while the IVP is being solved.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
nrtfn (int) is the number of root functions gi.
g (IDARootFn) is the C function which defines the nrtfn functions gi(t, y, ẏ)

whose roots are sought. See §4.6.4 for details.

Return value The return value flag (of type int) is one of

IDA SUCCESS The call to IDARootInit was successful.
IDA MEM NULL The ida mem argument was NULL.
IDA MEM FAIL A memory allocation failed.
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IDA ILL INPUT The function g is NULL, but nrtfn> 0.

Notes If a new IVP is to be solved with a call to IDAReInit, where the new IVP has no
rootfinding problem but the prior one did, then call IDARootInit with nrtfn= 0.

4.5.6 IDAS solver function

This is the central step in the solution process, the call to perform the integration of the DAE. One
of the input arguments (itask) specifies one of two modes as to where idas is to return a solution.
But these modes are modified if the user has set a stop time (with IDASetStopTime) or requested
rootfinding.

IDASolve

Call flag = IDASolve(ida mem, tout, &tret, yret, ypret, itask);

Description The function IDASolve integrates the DAE over an interval in t.

Arguments ida mem (void *) pointer to the idas memory block.
tout (realtype) the next time at which a computed solution is desired.
tret (realtype) the time reached by the solver (output).
yret (N Vector) the computed solution vector y.
ypret (N Vector) the computed solution vector ẏ.
itask (int) a flag indicating the job of the solver for the next user step. The

IDA NORMAL task is to have the solver take internal steps until it has reached or
just passed the user specified tout parameter. The solver then interpolates in
order to return approximate values of y(tout) and ẏ(tout). The IDA ONE STEP
option tells the solver to just take one internal step and return the solution at
the point reached by that step.

Return value IDASolve returns vectors yret and ypret and a corresponding independent variable
value t = tret, such that (yret, ypret) are the computed values of (y(t), ẏ(t)).

In IDA NORMAL mode with no errors, tret will be equal to tout and yret = y(tout),
ypret = ẏ(tout).

The return value flag (of type int) will be one of the following:

IDA SUCCESS IDASolve succeeded.
IDA TSTOP RETURN IDASolve succeeded by reaching the stop point specified through

the optional input function IDASetStopTime.
IDA ROOT RETURN IDASolve succeeded and found one or more roots. In this case,

tret is the location of the root. If nrtfn > 1, call IDAGetRootInfo
to see which gi were found to have a root. See §4.5.9.4 for more
information.

IDA MEM NULL The ida mem argument was NULL.
IDA ILL INPUT One of the inputs to IDASolve was illegal, or some other input

to the solver was either illegal or missing. The latter category
includes the following situations: (a) The tolerances have not been
set. (b) A component of the error weight vector became zero during
internal time-stepping. (c) The linear solver initialization function
(called by the user after calling IDACreate) failed to set the linear
solver-specific lsolve field in ida mem. (d) A root of one of the
root functions was found both at a point t and also very near t. In
any case, the user should see the printed error message for details.

IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.
The default value for mxstep is MXSTEP DEFAULT = 500.
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IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA ERR FAIL Error test failures occurred too many times (MXNEF = 10) during
one internal time step or occurred with |h| = hmin.

IDA CONV FAIL Convergence test failures occurred too many times (MXNCF = 10)
during one internal time step or occurred with |h| = hmin.

IDA LINIT FAIL The linear solver’s initialization function failed.
IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-

ner.
IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.
IDA CONSTR FAIL The inequality constraints were violated and the solver was unable

to recover.
IDA REP RES ERR The user’s residual function repeatedly returned a recoverable error

flag, but the solver was unable to recover.
IDA RES FAIL The user’s residual function returned a nonrecoverable error flag.
IDA RTFUNC FAIL The rootfinding function failed.

Notes The vector yret can occupy the same space as the vector y0 of initial conditions that
was passed to IDAInit, and the vector ypret can occupy the same space as yp0.

In the IDA ONE STEP mode, tout is used on the first call only, and only to get the
direction and rough scale of the independent variable.

All failure return values are negative and therefore a test flag < 0 will trap all IDASolve
failures.

On any error return in which one or more internal steps were taken by IDASolve, the
returned values of tret, yret, and ypret correspond to the farthest point reached in
the integration. On all other error returns, these values are left unchanged from the
previous IDASolve return.

4.5.7 Optional input functions

There are numerous optional input parameters that control the behavior of the idas solver. idas
provides functions that can be used to change these optional input parameters from their default
values. Table 4.2 lists all optional input functions in idas which are then described in detail in the
remainder of this section. For the most casual use of idas, the reader can skip to §4.6.

We note that, on an error return, all these functions also send an error message to the error handler
function. We also note that all error return values are negative, so a test flag < 0 will catch any
error.

4.5.7.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if the user’s program calls either
IDASetErrFile or IDASetErrHandlerFn, then that call should appear first, in order to take effect for
any later error message.

IDASetErrFile

Call flag = IDASetErrFile(ida mem, errfp);

Description The function IDASetErrFile specifies the pointer to the file where all idas messages
should be directed when the default idas error handler function is used.

Arguments ida mem (void *) pointer to the idas memory block.
errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of
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Table 4.2: Optional inputs for idas, idadls, and idaspils

Optional input Function name Default
IDAS main solver

Pointer to an error file IDASetErrFile stderr
Error handler function IDASetErrHandlerFn internal fn.
User data IDASetUserData NULL
Maximum order for BDF method IDASetMaxOrd 5
Maximum no. of internal steps before tout IDASetMaxNumSteps 500
Initial step size IDASetInitStep estimated
Maximum absolute step size IDASetMaxStep ∞
Value of tstop IDASetStopTime ∞
Maximum no. of error test failures IDASetMaxErrTestFails 10
Maximum no. of nonlinear iterations IDASetMaxNonlinIters 4
Maximum no. of convergence failures IDASetMaxConvFails 10
Maximum no. of error test failures IDASetMaxErrTestFails 7
Coeff. in the nonlinear convergence test IDASetNonlinConvCoef 0.33
Suppress alg. vars. from error test IDASetSuppressAlg SUNFALSE
Variable types (differential/algebraic) IDASetId NULL
Inequality constraints on solution IDASetConstraints NULL
Direction of zero-crossing IDASetRootDirection both
Disable rootfinding warnings IDASetNoInactiveRootWarn none

IDAS initial conditions calculation
Coeff. in the nonlinear convergence test IDASetNonlinConvCoefIC 0.0033
Maximum no. of steps IDASetMaxNumStepsIC 5
Maximum no. of Jacobian/precond. evals. IDASetMaxNumJacsIC 4
Maximum no. of Newton iterations IDASetMaxNumItersIC 10
Max. linesearch backtracks per Newton iter. IDASetMaxBacksIC 100
Turn off linesearch IDASetLineSearchOffIC SUNFALSE
Lower bound on Newton step IDASetStepToleranceIC uround2/3

IDADLS linear solver interface
Jacobian function IDADlsSetJacFn DQ

IDASPILS linear solver interface
Preconditioner functions IDASpilsSetPreconditioner NULL, NULL
Jacobian-times-vector function IDASpilsSetJacTimes NULL, DQ
Ratio between linear and nonlinear tolerances IDASpilsSetEpsLin 0.05
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IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value NULL disables all future error message output (except for the case in
which the idas memory pointer is NULL). This use of IDASetErrFile is strongly dis-
couraged.

If IDASetErrFile is to be called, it should be called before any other optional input!

functions, in order to take effect for any later error message.

IDASetErrHandlerFn

Call flag = IDASetErrHandlerFn(ida mem, ehfun, eh data);

Description The function IDASetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments ida mem (void *) pointer to the idas memory block.
ehfun (IDAErrHandlerFn) is the user’s C error handler function (see §4.6.2).
eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of

IDA SUCCESS The function ehfun and data pointer eh data have been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes Error messages indicating that the idas solver memory is NULL will always be directed
to stderr.

IDASetUserData

Call flag = IDASetUserData(ida mem, user data);

Description The function IDASetUserData specifies the user data block user data and attaches it
to the main idas memory block.

Arguments ida mem (void *) pointer to the idas memory block.
user data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user linear solver or preconditioner functions, the call to!

IDASetUserData must be made before the call to specify the linear solver.

IDASetMaxOrd

Call flag = IDASetMaxOrd(ida mem, maxord);

Description The function IDASetMaxOrd specifies the maximum order of the linear multistep method.

Arguments ida mem (void *) pointer to the idas memory block.
maxord (int) value of the maximum method order. This must be positive.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
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IDA ILL INPUT The input value maxord is ≤ 0, or larger than its previous value.

Notes The default value is 5. If the input value exceeds 5, the value 5 will be used. Since
maxord affects the memory requirements for the internal idas memory block, its value
cannot be increased past its previous value.

IDASetMaxNumSteps

Call flag = IDASetMaxNumSteps(ida mem, mxsteps);

Description The function IDASetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments ida mem (void *) pointer to the idas memory block.
mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes Passing mxsteps = 0 results in idas using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

IDASetInitStep

Call flag = IDASetInitStep(ida mem, hin);

Description The function IDASetInitStep specifies the initial step size.

Arguments ida mem (void *) pointer to the idas memory block.
hin (realtype) value of the initial step size to be attempted. Pass 0.0 to have

idas use the default value.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes By default, idas estimates the initial step as the solution of ‖hẏ‖WRMS = 1/2, with an
added restriction that |h| ≤ .001|tout - t0|.

IDASetMaxStep

Call flag = IDASetMaxStep(ida mem, hmax);

Description The function IDASetMaxStep specifies the maximum absolute value of the step size.

Arguments ida mem (void *) pointer to the idas memory block.
hmax (realtype) maximum absolute value of the step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT Either hmax is not positive or it is smaller than the minimum allowable

step.

Notes Pass hmax= 0 to obtain the default value ∞.
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IDASetStopTime

Call flag = IDASetStopTime(ida mem, tstop);

Description The function IDASetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments ida mem (void *) pointer to the idas memory block.
tstop (realtype) value of the independent variable past which the solution should

not proceed.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT The value of tstop is not beyond the current t value, tn.

Notes The default, if this routine is not called, is that no stop time is imposed.

IDASetMaxErrTestFails

Call flag = IDASetMaxErrTestFails(ida mem, maxnef);

Description The function IDASetMaxErrTestFails specifies the maximum number of error test
failures in attempting one step.

Arguments ida mem (void *) pointer to the idas memory block.
maxnef (int) maximum number of error test failures allowed on one step (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 7.

IDASetMaxNonlinIters

Call flag = IDASetMaxNonlinIters(ida mem, maxcor);

Description The function IDASetMaxNonlinIters specifies the maximum number of nonlinear solver
iterations at one step.

Arguments ida mem (void *) pointer to the idas memory block.
maxcor (int) maximum number of nonlinear solver iterations allowed on one step

(> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 3.

IDASetMaxConvFails

Call flag = IDASetMaxConvFails(ida mem, maxncf);

Description The function IDASetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures at one step.

Arguments ida mem (void *) pointer to the idas memory block.
maxncf (int) maximum number of allowable nonlinear solver convergence failures on

one step (> 0).

Return value The return value flag (of type int) is one of
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IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 10.

IDASetNonlinConvCoef

Call flag = IDASetNonlinConvCoef(ida mem, nlscoef);

Description The function IDASetNonlinConvCoef specifies the safety factor in the nonlinear con-
vergence test; see Chapter 2, Eq. (2.8).

Arguments ida mem (void *) pointer to the idas memory block.
nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT The value of nlscoef is <= 0.0.

Notes The default value is 0.33.

IDASetSuppressAlg

Call flag = IDASetSuppressAlg(ida mem, suppressalg);

Description The function IDASetSuppressAlg indicates whether or not to suppress algebraic vari-
ables in the local error test.

Arguments ida mem (void *) pointer to the idas memory block.
suppressalg (booleantype) indicates whether to suppress (SUNTRUE) or not (SUNFALSE)

the algebraic variables in the local error test.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is SUNFALSE.

If suppressalg=SUNTRUE is selected, then the id vector must be set (through IDASetId)
to specify the algebraic components.

In general, the use of this option (with suppressalg = SUNTRUE) is discouraged when
solving DAE systems of index 1, whereas it is generally encouraged for systems of index
2 or more. See pp. 146-147 of Ref. [3] for more on this issue.

IDASetId

Call flag = IDASetId(ida mem, id);

Description The function IDASetId specifies algebraic/differential components in the y vector.

Arguments ida mem (void *) pointer to the idas memory block.
id (N Vector) state vector. A value of 1.0 indicates a differential variable, while

0.0 indicates an algebraic variable.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The vector id is required if the algebraic variables are to be suppressed from the lo-
cal error test (see IDASetSuppressAlg) or if IDACalcIC is to be called with icopt =
IDA YA YDP INIT (see §4.5.4).
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IDASetConstraints

Call flag = IDASetConstraints(ida mem, constraints);

Description The function IDASetConstraints specifies a vector defining inequality constraints for
each component of the solution vector y.

Arguments ida mem (void *) pointer to the idas memory block.
constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on yi.
1.0 then yi will be constrained to be yi ≥ 0.0.
−1.0 then yi will be constrained to be yi ≤ 0.0.

2.0 then yi will be constrained to be yi > 0.0.
−2.0 then yi will be constrained to be yi < 0.0.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT The constraints vector contains illegal values.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed. However, a call with 0.0 in all components
of constraints will result in an illegal input return.

4.5.7.2 Direct linear solver interface optional input functions

The idadls solver interface needs a function to compute an approximation to the Jacobian matrix
J(t, y, ẏ). This function must be of type IDADlsJacFn. The user can supply a Jacobian function, or
if using a dense or banded matrix J can use the default internal difference quotient approximation
that comes with the idadls solver. To specify a user-supplied Jacobian function jac, idadls provides
the function IDADlsSetJacFn. The idadls interface passes the pointer user data to the Jacobian
function. This allows the user to create an arbitrary structure with relevant problem data and access it
during the execution of the user-supplied Jacobian function, without using global data in the program.
The pointer user data may be specified through IDASetUserData.

IDADlsSetJacFn

Call flag = IDADlsSetJacFn(ida mem, jac);

Description The function IDADlsSetJacFn specifies the Jacobian approximation function to be used.

Arguments ida mem (void *) pointer to the idas memory block.
jac (IDADlsJacFn) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional value has been successfully set.
IDADLS MEM NULL The ida mem pointer is NULL.
IDADLS LMEM NULL The idadls linear solver interface has not been initialized.

Notes By default, idadls uses an internal difference quotient function for dense and band
matrices. If NULL is passed to jac, this default function is used. An error will occur if
no jac is supplied when using a sparse matrix.

The function type IDADlsJacFn is described in §4.6.5.
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4.5.7.3 Iterative linear solver interface optional input functions

If the user will be doing preconditioning with the idaspils linear solver interface, then the user
must supply a preconditioner solve function psolve and specify its name through a call to the routine
IDASpilsSetPreconditioner. The evaluation and preprocessing of any Jacobian-related data needed
by the user’s preconditioner solve function is done in the optional user-supplied function psetup.
Both of these functions are fully specified in §4.6. If used, the name of the psetup function should be
specified in the call to IDASpilsSetPreconditioner.

The pointer user data received through IDASetUserData (or a pointer to NULL if user data was
not specified) is passed to the preconditioner psetup and psolve functions. This allows the user to
create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied preconditioner functions without using global data in the program.

The idaspils solver interface requires a function to compute an approximation to the product
between the Jacobian matrix J(t, y) and a vector v. The user can supply his/her own Jacobian-
times-vector approximation function, or use the default internal difference quotient function that
comes with the idaspils solver interface. A user-defined Jacobian-vector function must be of type
IDASpilsJacTimesVecFn and can be specified through a call to IDASpilsSetJacTimes (see §4.6.6
for specification details). As with the user-supplied preconditioner functions, the evaluation and
processing of any Jacobian-related data needed by the user’s Jacobian-times-vector function is done
in the optional user-supplied function jtsetup (see §4.6.7 for specification details). As with the
preconditioner functions, a pointer to the user-defined data structure, user data, specified through
IDASetUserData (or a NULL pointer otherwise) is passed to the Jacobian-times-vector setup and
product functions, jtsetup and jtimes, each time they are called.

Finally, as described in Section 2.1, the idaspils interface requires that iterative linear solvers stop
when the norm of the preconditioned residual is less than 0.05 · (0.1ε), where ε is the nonlinear solver
tolerance. The user may adjust this linear solver tolerance by calling the function IDASpilsSetEpsLin.

IDASpilsSetPreconditioner

Call flag = IDASpilsSetPreconditioner(ida mem, psetup, psolve);

Description The function IDASpilsSetPreconditioner specifies the preconditioner setup and solve
functions.

Arguments ida mem (void *) pointer to the idas memory block.
psetup (IDASpilsPrecSetupFn) user-defined function to set up the preconditioner.

Pass NULL if no setup is necessary.
psolve (IDASpilsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional values have been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.
IDASPILS SUNLS FAIL An error occurred when setting up preconditioning in the sun-

linsol object used by the idaspils interface.

Notes The function type IDASpilsPrecSolveFn is described in §4.6.8. The function type
IDASpilsPrecSetupFn is described in §4.6.9.

IDASpilsSetJacTimes

Call flag = IDASpilsSetJacTimes(ida mem, jsetup, jtimes);

Description The function IDASpilsSetJacTimes specifies the Jacobian-vector setup and product.

Arguments ida mem (void *) pointer to the idas memory block.
jtsetup (IDASpilsJacTimesSetupFn) user-defined function to set up the Jacobian-

vector product. Pass NULL if no setup is necessary.
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jtimes (IDASpilsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.
IDASPILS SUNLS FAIL An error occurred when setting up the system matrix-times-

vector routines in the sunlinsol object used by the idaspils
interface.

Notes By default, the idaspils solvers use the difference quotient function. If NULL is passed
to jtimes, this default function is used.

The function type IDASpilsJacTimesSetupFn is described in §4.6.7.

The function type IDASpilsJacTimesVecFn is described in §4.6.6.

IDASpilsSetEpsLin

Call flag = IDASpilsSetEpsLin(ida mem, eplifac);

Description The function IDASpilsSetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant.

Arguments ida mem (void *) pointer to the idas memory block.
eplifac (realtype) linear convergence safety factor (≥ 0.0).

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.
IDASPILS ILL INPUT The factor eplifac is negative.

Notes The default value is 0.05.

If eplifac= 0.0 is passed, the default value is used.

4.5.7.4 Initial condition calculation optional input functions

The following functions can be called just prior to calling IDACalcIC to set optional inputs controlling
the initial condition calculation.

IDASetNonlinConvCoefIC

Call flag = IDASetNonlinConvCoefIC(ida mem, epiccon);

Description The function IDASetNonlinConvCoefIC specifies the positive constant in the Newton
iteration convergence test within the initial condition calculation.

Arguments ida mem (void *) pointer to the idas memory block.
epiccon (realtype) coefficient in the Newton convergence test (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT The epiccon factor is <= 0.0.

Notes The default value is 0.01 · 0.33.

This test uses a weighted RMS norm (with weights defined by the tolerances). For
new initial value vectors y and ẏ to be accepted, the norm of J−1F (t0, y, ẏ) must be ≤
epiccon, where J is the system Jacobian.
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IDASetMaxNumStepsIC

Call flag = IDASetMaxNumStepsIC(ida mem, maxnh);

Description The function IDASetMaxNumStepsIC specifies the maximum number of steps allowed
when icopt=IDA YA YDP INIT in IDACalcIC, where h appears in the system Jacobian,
J = ∂F/∂y + (1/h)∂F/∂ẏ.

Arguments ida mem (void *) pointer to the idas memory block.
maxnh (int) maximum allowed number of values for h.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT maxnh is non-positive.

Notes The default value is 5.

IDASetMaxNumJacsIC

Call flag = IDASetMaxNumJacsIC(ida mem, maxnj);

Description The function IDASetMaxNumJacsIC specifies the maximum number of the approximate
Jacobian or preconditioner evaluations allowed when the Newton iteration appears to
be slowly converging.

Arguments ida mem (void *) pointer to the idas memory block.
maxnj (int) maximum allowed number of Jacobian or preconditioner evaluations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT maxnj is non-positive.

Notes The default value is 4.

IDASetMaxNumItersIC

Call flag = IDASetMaxNumItersIC(ida mem, maxnit);

Description The function IDASetMaxNumItersIC specifies the maximum number of Newton itera-
tions allowed in any one attempt to solve the initial conditions calculation problem.

Arguments ida mem (void *) pointer to the idas memory block.
maxnit (int) maximum number of Newton iterations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT maxnit is non-positive.

Notes The default value is 10.

IDASetMaxBacksIC

Call flag = IDASetMaxBacksIC(ida mem, maxbacks);

Description The function IDASetMaxBacksIC specifies the maximum number of linesearch back-
tracks allowed in any Newton iteration, when solving the initial conditions calculation
problem.

Arguments ida mem (void *) pointer to the idas memory block.
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maxbacks (int) maximum number of linesearch backtracks per Newton step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT maxbacks is non-positive.

Notes The default value is 100.

If IDASetMaxBacksIC is called in a Forward Sensitivity Analysis, the the limit maxbacks
applies in the calculation of both the initial state values and the initial sensititivies.

IDASetLineSearchOffIC

Call flag = IDASetLineSearchOffIC(ida mem, lsoff);

Description The function IDASetLineSearchOffIC specifies whether to turn on or off the linesearch
algorithm.

Arguments ida mem (void *) pointer to the idas memory block.
lsoff (booleantype) a flag to turn off (SUNTRUE) or keep (SUNFALSE) the linesearch

algorithm.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is SUNFALSE.

IDASetStepToleranceIC

Call flag = IDASetStepToleranceIC(ida mem, steptol);

Description The function IDASetStepToleranceIC specifies a positive lower bound on the Newton
step.

Arguments ida mem (void *) pointer to the idas memory block.
steptol (int) Minimum allowed WRMS-norm of the Newton step (> 0.0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT The steptol tolerance is <= 0.0.

Notes The default value is (unit roundoff)2/3.

4.5.7.5 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

IDASetRootDirection

Call flag = IDASetRootDirection(ida mem, rootdir);

Description The function IDASetRootDirection specifies the direction of zero-crossings to be lo-
cated and returned to the user.

Arguments ida mem (void *) pointer to the idas memory block.
rootdir (int *) state array of length nrtfn, the number of root functions gi, as spec-

ified in the call to the function IDARootInit. A value of 0 for rootdir[i]
indicates that crossing in either direction should be reported for gi. A value
of +1 or −1 indicates that the solver should report only zero-crossings where
gi is increasing or decreasing, respectively.
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Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT rootfinding has not been activated through a call to IDARootInit.

Notes The default behavior is to locate both zero-crossing directions.

IDASetNoInactiveRootWarn

Call flag = IDASetNoInactiveRootWarn(ida mem);

Description The function IDASetNoInactiveRootWarn disables issuing a warning if some root func-
tion appears to be identically zero at the beginning of the integration.

Arguments ida mem (void *) pointer to the idas memory block.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes idas will not report the initial conditions as a possible zero-crossing (assuming that one
or more components gi are zero at the initial time). However, if it appears that some gi

is identically zero at the initial time (i.e., gi is zero at the initial time and after the first
step), idas will issue a warning which can be disabled with this optional input function.

4.5.8 Interpolated output function

An optional function IDAGetDky is available to obtain additional output values. This function must be
called after a successful return from IDASolve and provides interpolated values of y or its derivatives
of order up to the last internal order used for any value of t in the last internal step taken by idas.

The call to the IDAGetDky function has the following form:

IDAGetDky

Call flag = IDAGetDky(ida mem, t, k, dky);

Description The function IDAGetDky computes the interpolated values of the kth derivative of y for
any value of t in the last internal step taken by idas. The value of k must be non-
negative and smaller than the last internal order used. A value of 0 for k means that
the y is interpolated. The value of t must satisfy tn − hu ≤ t ≤ tn, where tn denotes
the current internal time reached, and hu is the last internal step size used successfully.

Arguments ida mem (void *) pointer to the idas memory block.
t (realtype) time at which to interpolate.
k (int) integer specifying the order of the derivative of y wanted.
dky (N Vector) vector containing the interpolated kth derivative of y(t).

Return value The return value flag (of type int) is one of

IDA SUCCESS IDAGetDky succeeded.
IDA MEM NULL The ida mem argument was NULL.
IDA BAD T t is not in the interval [tn − hu, tn].
IDA BAD K k is not one of {0, 1, . . . , klast}.
IDA BAD DKY dky is NULL.

Notes It is only legal to call the function IDAGetDky after a successful return from IDASolve.
Functions IDAGetCurrentTime, IDAGetLastStep and IDAGetLastOrder (see §4.5.9.2)
can be used to access tn, hu and klast.
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4.5.9 Optional output functions

idas provides an extensive list of functions that can be used to obtain solver performance information.
Table 4.3 lists all optional output functions in idas, which are then described in detail in the remainder
of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the idas solver is in doing its job. For example, the counters nsteps and nrevals
provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps
measures the performance of the Newton iteration in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a direct
linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.9.1 SUNDIALS version information

The following functions provide a way to get sundials version information at runtime.

SUNDIALSGetVersion

Call flag = SUNDIALSGetVersion(version, len);

Description The function SUNDIALSGetVersion fills a character array with sundials version infor-
mation.

Arguments version (char *) character array to hold the sundials version information.
len (int) allocated length of the version character array.

Return value If successful, SUNDIALSGetVersion returns 0 and version contains the sundials ver-
sion information. Otherwise, it returns −1 and version is not set (the input character
array is too short).

Notes A string of 25 characters should be sufficient to hold the version information. Any
trailing characters in the version array are removed.

SUNDIALSGetVersionNumber

Call flag = SUNDIALSGetVersionNumber(&major, &minor, &patch, label, len);

Description The function SUNDIALSGetVersionNumber set integers for the sundials major, minor,
and patch release numbers and fills a character array with the release label if applicable.

Arguments major (int) sundials release major version number.
minor (int) sundials release minor version number.
patch (int) sundials release patch version number.
label (char *) character array to hold the sundials release label.
len (int) allocated length of the label character array.

Return value If successful, SUNDIALSGetVersionNumber returns 0 and the major, minor, patch, and
label values are set. Otherwise, it returns −1 and the values are not set (the input
character array is too short).

Notes A string of 10 characters should be sufficient to hold the label information. If a label
is not used in the release version, no information is copied to label. Any trailing
characters in the label array are removed.
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Table 4.3: Optional outputs from idas, idadls, and idaspils

Optional output Function name
IDAS main solver

Size of idas real and integer workspace IDAGetWorkSpace
Cumulative number of internal steps IDAGetNumSteps
No. of calls to residual function IDAGetNumResEvals
No. of calls to linear solver setup function IDAGetNumLinSolvSetups
No. of local error test failures that have occurred IDAGetNumErrTestFails
Order used during the last step IDAGetLastOrder
Order to be attempted on the next step IDAGetCurrentOrder
Order reductions due to stability limit detection IDAGetNumStabLimOrderReds
Actual initial step size used IDAGetActualInitStep
Step size used for the last step IDAGetLastStep
Step size to be attempted on the next step IDAGetCurrentStep
Current internal time reached by the solver IDAGetCurrentTime
Suggested factor for tolerance scaling IDAGetTolScaleFactor
Error weight vector for state variables IDAGetErrWeights
Estimated local errors IDAGetEstLocalErrors
No. of nonlinear solver iterations IDAGetNumNonlinSolvIters
No. of nonlinear convergence failures IDAGetNumNonlinSolvConvFails
Array showing roots found IDAGetRootInfo
No. of calls to user root function IDAGetNumGEvals
Name of constant associated with a return flag IDAGetReturnFlagName

IDAS initial conditions calculation
Number of backtrack operations IDAGetNumBacktrackops
Corrected initial conditions IDAGetConsistentIC

IDADLS linear solver interface
Size of real and integer workspace IDADlsGetWorkSpace
No. of Jacobian evaluations IDADlsGetNumJacEvals
No. of residual calls for finite diff. Jacobian evals. IDADlsGetNumResEvals
Last return from a linear solver function IDADlsGetLastFlag
Name of constant associated with a return flag IDADlsGetReturnFlagName

IDASPILS linear solver interface
Size of real and integer workspace IDASpilsGetWorkSpace
No. of linear iterations IDASpilsGetNumLinIters
No. of linear convergence failures IDASpilsGetNumConvFails
No. of preconditioner evaluations IDASpilsGetNumPrecEvals
No. of preconditioner solves IDASpilsGetNumPrecSolves
No. of Jacobian-vector setup evaluations IDASpilsGetNumJTSetupEvals
No. of Jacobian-vector product evaluations IDASpilsGetNumJtimesEvals
No. of residual calls for finite diff. Jacobian-vector evals. IDASpilsGetNumResEvals
Last return from a linear solver function IDASpilsGetLastFlag
Name of constant associated with a return flag IDASpilsGetReturnFlagName
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4.5.9.2 Main solver optional output functions

idas provides several user-callable functions that can be used to obtain different quantities that may
be of interest to the user, such as solver workspace requirements, solver performance statistics, as well
as additional data from the idas memory block (a suggested tolerance scaling factor, the error weight
vector, and the vector of estimated local errors). Also provided are functions to extract statistics
related to the performance of the idas nonlinear solver being used. As a convenience, additional
extraction functions provide the optional outputs in groups. These optional output functions are
described next.

IDAGetWorkSpace

Call flag = IDAGetWorkSpace(ida mem, &lenrw, &leniw);

Description The function IDAGetWorkSpace returns the idas real and integer workspace sizes.

Arguments ida mem (void *) pointer to the idas memory block.

lenrw (long int) number of real values in the idas workspace.

leniw (long int) number of integer values in the idas workspace.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes In terms of the problem size N , the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.5), the actual size of the real workspace, in realtype
words, is given by the following:

• base value: lenrw = 55 + (m+ 6) ∗Nr + 3∗nrtfn;

• with IDASVtolerances: lenrw = lenrw +Nr;

• with constraint checking (see IDASetConstraints): lenrw = lenrw +Nr;

• with id specified (see IDASetId): lenrw = lenrw +Nr;

where m = max(maxord, 3), and Nr is the number of real words in one N Vector (≈ N).

The size of the integer workspace (without distinction between int and long int words)
is given by:

• base value: leniw = 38 + (m+ 6) ∗Ni + nrtfn;

• with IDASVtolerances: leniw = leniw +Ni;

• with constraint checking: lenrw = lenrw +Ni;

• with id specified: lenrw = lenrw +Ni;

where Ni is the number of integer words in one N Vector (= 1 for nvector serial
and 2*npes for nvector parallel on npes processors).

For the default value of maxord, with no rootfinding, no id, no constraints, and with
no call to IDASVtolerances, these lengths are given roughly by: lenrw = 55 + 11N ,
leniw = 49.

Note that additional memory is allocated if quadratures and/or forward sensitivity
integration is enabled. See §4.7.1 and §5.2.1 for more details.
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IDAGetNumSteps

Call flag = IDAGetNumSteps(ida mem, &nsteps);

Description The function IDAGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments ida mem (void *) pointer to the idas memory block.
nsteps (long int) number of steps taken by idas.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDAGetNumResEvals

Call flag = IDAGetNumResEvals(ida mem, &nrevals);

Description The function IDAGetNumResEvals returns the number of calls to the user’s residual
evaluation function.

Arguments ida mem (void *) pointer to the idas memory block.
nrevals (long int) number of calls to the user’s res function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The nrevals value returned by IDAGetNumResEvals does not account for calls made to
res from a linear solver or preconditioner module.

IDAGetNumLinSolvSetups

Call flag = IDAGetNumLinSolvSetups(ida mem, &nlinsetups);

Description The function IDAGetNumLinSolvSetups returns the cumulative number of calls made
to the linear solver’s setup function (total so far).

Arguments ida mem (void *) pointer to the idas memory block.
nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDAGetNumErrTestFails

Call flag = IDAGetNumErrTestFails(ida mem, &netfails);

Description The function IDAGetNumErrTestFails returns the cumulative number of local error
test failures that have occurred (total so far).

Arguments ida mem (void *) pointer to the idas memory block.
netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
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IDAGetLastOrder

Call flag = IDAGetLastOrder(ida mem, &klast);

Description The function IDAGetLastOrder returns the integration method order used during the
last internal step.

Arguments ida mem (void *) pointer to the idas memory block.
klast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDAGetCurrentOrder

Call flag = IDAGetCurrentOrder(ida mem, &kcur);

Description The function IDAGetCurrentOrder returns the integration method order to be used on
the next internal step.

Arguments ida mem (void *) pointer to the idas memory block.
kcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDAGetLastStep

Call flag = IDAGetLastStep(ida mem, &hlast);

Description The function IDAGetLastStep returns the integration step size taken on the last internal
step.

Arguments ida mem (void *) pointer to the idas memory block.
hlast (realtype) step size taken on the last internal step by idas, or last artificial

step size used in IDACalcIC, whichever was called last.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDAGetCurrentStep

Call flag = IDAGetCurrentStep(ida mem, &hcur);

Description The function IDAGetCurrentStep returns the integration step size to be attempted on
the next internal step.

Arguments ida mem (void *) pointer to the idas memory block.
hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
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IDAGetActualInitStep

Call flag = IDAGetActualInitStep(ida mem, &hinused);

Description The function IDAGetActualInitStep returns the value of the integration step size used
on the first step.

Arguments ida mem (void *) pointer to the idas memory block.
hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to IDASetInitStep, this value might have been changed by idas to ensure that
the step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to meet the local
error test.

IDAGetCurrentTime

Call flag = IDAGetCurrentTime(ida mem, &tcur);

Description The function IDAGetCurrentTime returns the current internal time reached by the
solver.

Arguments ida mem (void *) pointer to the idas memory block.
tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDAGetTolScaleFactor

Call flag = IDAGetTolScaleFactor(ida mem, &tolsfac);

Description The function IDAGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments ida mem (void *) pointer to the idas memory block.
tolsfac (realtype) suggested scaling factor for user tolerances.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDAGetErrWeights

Call flag = IDAGetErrWeights(ida mem, eweight);

Description The function IDAGetErrWeights returns the solution error weights at the current time.
These are the Wi given by Eq. (2.7) (or by the user’s IDAEwtFn).

Arguments ida mem (void *) pointer to the idas memory block.
eweight (N Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The user must allocate space for eweight. !
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IDAGetEstLocalErrors

Call flag = IDAGetEstLocalErrors(ida mem, ele);

Description The function IDAGetEstLocalErrors returns the estimated local errors.
Arguments ida mem (void *) pointer to the idas memory block.

ele (N Vector) estimated local errors at the current time.
Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The user must allocate space for ele.!

The values returned in ele are only valid if IDASolve returned a non-negative value.
The ele vector, togther with the eweight vector from IDAGetErrWeights, can be used
to determine how the various components of the system contributed to the estimated
local error test. Specifically, that error test uses the RMS norm of a vector whose
components are the products of the components of these two vectors. Thus, for example,
if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight[i]*ele[i].

IDAGetIntegratorStats

Call flag = IDAGetIntegratorStats(ida mem, &nsteps, &nrevals, &nlinsetups,
&netfails, &klast, &kcur, &hinused,
&hlast, &hcur, &tcur);

Description The function IDAGetIntegratorStats returns the idas integrator statistics as a group.
Arguments ida mem (void *) pointer to the idas memory block.

nsteps (long int) cumulative number of steps taken by idas.
nrevals (long int) cumulative number of calls to the user’s res function.
nlinsetups (long int) cumulative number of calls made to the linear solver setup

function.
netfails (long int) cumulative number of error test failures.
klast (int) method order used on the last internal step.
kcur (int) method order to be used on the next internal step.
hinused (realtype) actual value of initial step size.
hlast (realtype) step size taken on the last internal step.
hcur (realtype) step size to be attempted on the next internal step.
tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of
IDA SUCCESS the optional output values have been successfully set.
IDA MEM NULL the ida mem pointer is NULL.

IDAGetNumNonlinSolvIters

Call flag = IDAGetNumNonlinSolvIters(ida mem, &nniters);

Description The function IDAGetNumNonlinSolvIters returns the cumulative number of nonlinear
(functional or Newton) iterations performed.

Arguments ida mem (void *) pointer to the idas memory block.
nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of
IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
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IDAGetNumNonlinSolvConvFails

Call flag = IDAGetNumNonlinSolvConvFails(ida mem, &nncfails);

Description The function IDAGetNumNonlinSolvConvFails returns the cumulative number of non-
linear convergence failures that have occurred.

Arguments ida mem (void *) pointer to the idas memory block.
nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDAGetNonlinSolvStats

Call flag = IDAGetNonlinSolvStats(ida mem, &nniters, &nncfails);

Description The function IDAGetNonlinSolvStats returns the idas nonlinear solver statistics as a
group.

Arguments ida mem (void *) pointer to the idas memory block.
nniters (long int) cumulative number of nonlinear iterations performed.
nncfails (long int) cumulative number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDAGetReturnFlagName

Call name = IDAGetReturnFlagName(flag);

Description The function IDAGetReturnFlagName returns the name of the idas constant correspond-
ing to flag.

Arguments The only argument, of type int, is a return flag from an idas function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.9.3 Initial condition calculation optional output functions

IDAGetNumBcktrackOps

Call flag = IDAGetNumBacktrackOps(ida mem, &nbacktr);

Description The function IDAGetNumBacktrackOps returns the number of backtrack operations done
in the linesearch algorithm in IDACalcIC.

Arguments ida mem (void *) pointer to the idas memory block.
nbacktr (long int) the cumulative number of backtrack operations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
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IDAGetConsistentIC

Call flag = IDAGetConsistentIC(ida mem, yy0 mod, yp0 mod);

Description The function IDAGetConsistentIC returns the corrected initial conditions calculated
by IDACalcIC.

Arguments ida mem (void *) pointer to the idas memory block.
yy0 mod (N Vector) consistent solution vector.
yp0 mod (N Vector) consistent derivative vector.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA ILL INPUT The function was not called before the first call to IDASolve.
IDA MEM NULL The ida mem pointer is NULL.

Notes If the consistent solution vector or consistent derivative vector is not desired, pass NULL
for the corresponding argument.

The user must allocate space for yy0 mod and yp0 mod (if not NULL).!

4.5.9.4 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

IDAGetRootInfo

Call flag = IDAGetRootInfo(ida mem, rootsfound);

Description The function IDAGetRootInfo returns an array showing which functions were found to
have a root.

Arguments ida mem (void *) pointer to the idas memory block.
rootsfound (int *) array of length nrtfn with the indices of the user functions gi

found to have a root. For i = 0, . . . ,nrtfn −1, rootsfound[i] 6= 0 if gi has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output values have been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes Note that, for the components gi for which a root was found, the sign of rootsfound[i]
indicates the direction of zero-crossing. A value of +1 indicates that gi is increasing,
while a value of −1 indicates a decreasing gi.

The user must allocate memory for the vector rootsfound.!

IDAGetNumGEvals

Call flag = IDAGetNumGEvals(ida mem, &ngevals);

Description The function IDAGetNumGEvals returns the cumulative number of calls to the user root
function g.

Arguments ida mem (void *) pointer to the idas memory block.
ngevals (long int) number of calls to the user’s function g so far.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
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4.5.9.5 Direct linear solver interface optional output functions

The following optional outputs are available from the idadls modules: workspace requirements,
number of calls to the Jacobian routine, number of calls to the residual routine for finite-difference
Jacobian approximation, and last return value from an idadls function. Note that, where the name
of an output would otherwise conflict with the name of an optional output from the main solver, a
suffix LS (for Linear Solver) has been added (e.g. lenrwLS).

IDADlsGetWorkSpace

Call flag = IDADlsGetWorkSpace(ida mem, &lenrwLS, &leniwLS);

Description The function IDADlsGetWorkSpace returns the sizes of the real and integer workspaces
used by the idadls linear solver interface.

Arguments ida mem (void *) pointer to the idas memory block.
lenrwLS (long int) the number of real values in the idadls workspace.
leniwLS (long int) the number of integer values in the idadls workspace.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.
IDADLS MEM NULL The ida mem pointer is NULL.
IDADLS LMEM NULL The idadls linear solver has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within this interface and to memory allocated by the sunlinsol object attached
to it. The template Jacobian matrix allocated by the user outside of idadls is not
included in this report.

IDADlsGetNumJacEvals

Call flag = IDADlsGetNumJacEvals(ida mem, &njevals);

Description The function IDADlsGetNumJacEvals returns the cumulative number of calls to the
idadls Jacobian approximation function.

Arguments ida mem (void *) pointer to the idas memory block.
njevals (long int) the cumulative number of calls to the Jacobian function (total so

far).

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.
IDADLS MEM NULL The ida mem pointer is NULL.
IDADLS LMEM NULL The idadense linear solver has not been initialized.

IDADlsGetNumResEvals

Call flag = IDADlsGetNumResEvals(ida mem, &nrevalsLS);

Description The function IDADlsGetNumResEvals returns the cumulative number of calls to the user
residual function due to the finite difference Jacobian approximation.

Arguments ida mem (void *) pointer to the idas memory block.
nrevalsLS (long int) the cumulative number of calls to the user residual function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.
IDADLS MEM NULL The ida mem pointer is NULL.
IDADLS LMEM NULL The idadense linear solver has not been initialized.
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Notes The value nrevalsLS is incremented only if one of the default internal difference quotient
functions (dense or banded) is used.

IDADlsGetLastFlag

Call flag = IDADlsGetLastFlag(ida mem, &lsflag);

Description The function IDADlsGetLastFlag returns the last return value from an idadls routine.

Arguments ida mem (void *) pointer to the idas memory block.
lsflag (long int) the value of the last return flag from an idadls function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.
IDADLS MEM NULL The ida mem pointer is NULL.
IDADLS LMEM NULL The idadense linear solver has not been initialized.

Notes If the sunlinsol dense or sunlinsol band setup function failed (IDASolve returned
IDA LSETUP FAIL), then the value of lsflag is equal to the column index (numbered
from one) at which a zero diagonal element was encountered during the LU factorization
of the (dense or banded) Jacobian matrix.

IDADlsGetReturnFlagName

Call name = IDADlsGetReturnFlagName(lsflag);

Description The function IDADlsGetReturnFlagName returns the name of the idadls constant cor-
responding to lsflag.

Arguments The only argument, of type long int, is a return flag from an idadls function.

Return value The return value is a string containing the name of the corresponding constant. If 1 ≤
lsflag ≤ N (LU factorization failed), this function returns “NONE”.

4.5.9.6 Iterative linear solver interface optional output functions

The following optional outputs are available from the idaspils modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector setup and product routines, number
of calls to the residual routine for finite-difference Jacobian-vector product approximation, and last
return value from a linear solver function. Note that, where the name of an output would otherwise
conflict with the name of an optional output from the main solver, a suffix LS (for Linear Solver) has
been added (e.g. lenrwLS).

IDASpilsGetWorkSpace

Call flag = IDASpilsGetWorkSpace(ida mem, &lenrwLS, &leniwLS);

Description The function IDASpilsGetWorkSpace returns the global sizes of the idaspils real and
integer workspaces.

Arguments ida mem (void *) pointer to the idas memory block.
lenrwLS (long int) the number of realtype values in the idaspils workspace.
leniwLS (long int) the number of integer values in the idaspils workspace.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.
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Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within this interface and to memory allocated by the sunlinsol object attached
to it.

In a parallel setting, the above values are global (i.e., summed over all processors).

IDASpilsGetNumLinIters

Call flag = IDASpilsGetNumLinIters(ida mem, &nliters);

Description The function IDASpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments ida mem (void *) pointer to the idas memory block.
nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumConvFails

Call flag = IDASpilsGetNumConvFails(ida mem, &nlcfails);

Description The function IDASpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments ida mem (void *) pointer to the idas memory block.
nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumPrecEvals

Call flag = IDASpilsGetNumPrecEvals(ida mem, &npevals);

Description The function IDASpilsGetNumPrecEvals returns the cumulative number of precondi-
tioner evaluations, i.e., the number of calls made to psetup.

Arguments ida mem (void *) pointer to the idas memory block.
npevals (long int) the cumulative number of calls to psetup.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumPrecSolves

Call flag = IDASpilsGetNumPrecSolves(ida mem, &npsolves);

Description The function IDASpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

Arguments ida mem (void *) pointer to the idas memory block.
npsolves (long int) the cumulative number of calls to psolve.
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Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumJTSetupEvals

Call flag = IDASpilsGetNumJTSetupEvals(ida mem, &njtsetup);

Description The function IDASpilsGetNumJTSetupEvals returns the cumulative number of calls
made to the Jacobian-vector setup function jtsetup.

Arguments ida mem (void *) pointer to the idas memory block.
njtsetup (long int) the current number of calls to jtsetup.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumJtimesEvals

Call flag = IDASpilsGetNumJtimesEvals(ida mem, &njvevals);

Description The function IDASpilsGetNumJtimesEvals returns the cumulative number of calls
made to the Jacobian-vector function, jtimes.

Arguments ida mem (void *) pointer to the idas memory block.
njvevals (long int) the cumulative number of calls to jtimes.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumResEvals

Call flag = IDASpilsGetNumResEvals(ida mem, &nrevalsLS);

Description The function IDASpilsGetNumResEvals returns the cumulative number of calls to the
user residual function for finite difference Jacobian-vector product approximation.

Arguments ida mem (void *) pointer to the idas memory block.
nrevalsLS (long int) the cumulative number of calls to the user residual function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes The value nrevalsLS is incremented only if the default IDASpilsDQJtimes difference
quotient function is used.
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IDASpilsGetLastFlag

Call flag = IDASpilsGetLastFlag(ida mem, &lsflag);

Description The function IDASpilsGetLastFlag returns the last return value from an idaspils
routine.

Arguments ida mem (void *) pointer to the idas memory block.
lsflag (long int) the value of the last return flag from an idaspils function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes If the idaspils setup function failed (IDASolve returned IDA LSETUP FAIL), lsflag will
be SUNLS PSET FAIL UNREC, SUNLS ASET FAIL UNREC, or SUNLS PACKAGE FAIL UNREC.

If the idaspils solve function failed (IDA returned IDA LSOLVE FAIL), lsflag contains
the error return flag from the sunlinsol object, which will be one of: SUNLS MEM NULL,
indicating that the sunlinsol memory is NULL; SUNLS ATIMES FAIL UNREC, indicating
an unrecoverable failure in the J∗v function; SUNLS PSOLVE FAIL UNREC, indicating that
the preconditioner solve function psolve failed unrecoverably; SUNLS GS FAIL, indicat-
ing a failure in the Gram-Schmidt procedure (generated only in spgmr or spfgmr);
SUNLS QRSOL FAIL, indicating that the matrix R was found to be singular during the
QR solve phase (spgmr and spfgmr only); or SUNLS PACKAGE FAIL UNREC, indicating
an unrecoverable failure in an external iterative linear solver package.

IDASpilsGetReturnFlagName

Call name = IDASpilsGetReturnFlagName(lsflag);

Description The function IDASpilsGetReturnFlagName returns the name of the idaspils constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from an idaspils function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.10 IDAS reinitialization function

The function IDAReInit reinitializes the main idas solver for the solution of a new problem, where
a prior call to IDAInit has been made. The new problem must have the same size as the previous
one. IDAReInit performs the same input checking and initializations that IDAInit does, but does
no memory allocation, as it assumes that the existing internal memory is sufficient for the new prob-
lem. A call to IDAReInit deletes the solution history that was stored internally during the previous
integration. Following a successful call to IDAReInit, call IDASolve again for the solution of the new
problem.

The use of IDAReInit requires that the maximum method order, maxord, is no larger for the new
problem than for the problem specified in the last call to IDAInit. In addition, the same nvector
module set for the previous problem will be reused for the new problem.

If there are changes to the linear solver specifications, make the appropriate calls to either the linear
solver objects themselves, or to the idadls or idaspils interface routines, as described in §4.5.3.

If there are changes to any optional inputs, make the appropriate IDASet*** calls, as described in
§4.5.7. Otherwise, all solver inputs set previously remain in effect.

One important use of the IDAReInit function is in the treating of jump discontinuities in the
residual function. Except in cases of fairly small jumps, it is usually more efficient to stop at each point
of discontinuity and restart the integrator with a readjusted DAE model, using a call to IDAReInit.
To stop when the location of the discontinuity is known, simply make that location a value of tout. To
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stop when the location of the discontinuity is determined by the solution, use the rootfinding feature.
In either case, it is critical that the residual function not incorporate the discontinuity, but rather have
a smooth extention over the discontinuity, so that the step across it (and subsequent rootfinding, if
used) can be done efficiently. Then use a switch within the residual function (communicated through
user data) that can be flipped between the stopping of the integration and the restart, so that the
restarted problem uses the new values (which have jumped). Similar comments apply if there is to be
a jump in the dependent variable vector.

IDAReInit

Call flag = IDAReInit(ida mem, t0, y0, yp0);

Description The function IDAReInit provides required problem specifications and reinitializes idas.

Arguments ida mem (void *) pointer to the idas memory block.
t0 (realtype) is the initial value of t.
y0 (N Vector) is the initial value of y.
yp0 (N Vector) is the initial value of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA NO MALLOC Memory space for the idas memory block was not allocated through a

previous call to IDAInit.
IDA ILL INPUT An input argument to IDAReInit has an illegal value.

Notes If an error occurred, IDAReInit also sends an error message to the error handler func-
tion.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the DAE residual, (optionally) a function
that handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) one or two functions that provide Jacobian-related information for the linear solver (if
Newton iteration is chosen), and (optionally) one or two functions that define the preconditioner for
use in any of the Krylov iteration algorithms.

4.6.1 Residual function

The user must provide a function of type IDAResFn defined as follows:

IDAResFn

Definition typedef int (*IDAResFn)(realtype tt, N Vector yy, N Vector yp,
N Vector rr, void *user data);

Purpose This function computes the problem residual for given values of the independent variable
t, state vector y, and derivative ẏ.

Arguments tt is the current value of the independent variable.
yy is the current value of the dependent variable vector, y(t).
yp is the current value of ẏ(t).
rr is the output residual vector F (t, y, ẏ).
user data is a pointer to user data, the same as the user data parameter passed to

IDASetUserData.
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Return value An IDAResFn function type should return a value of 0 if successful, a positive value
if a recoverable error occurred (e.g. yy has an illegal value), or a negative value if a
nonrecoverable error occurred. In the last case, the integrator halts. If a recoverable
error occurred, the integrator will attempt to correct and retry.

Notes A recoverable failure error return from the IDAResFn is typically used to flag a value
of the dependent variable y that is “illegal” in some way (e.g., negative where only a
non-negative value is physically meaningful). If such a return is made, idas will attempt
to recover (possibly repeating the Newton iteration, or reducing the step size) in order
to avoid this recoverable error return.

For efficiency reasons, the DAE residual function is not evaluated at the converged solu-
tion of the nonlinear solver. Therefore, in general, a recoverable error in that converged
value cannot be corrected. (It may be detected when the right-hand side function is
called the first time during the following integration step, but a successful step cannot
be undone.) However, if the user program also includes quadrature integration, the
state variables can be checked for legality in the call to IDAQuadRhsFn, which is called
at the converged solution of the nonlinear system, and therefore idas can be flagged to
attempt to recover from such a situation. Also, if sensitivity analysis is performed with
the staggered method, the DAE residual function is called at the converged solution of
the nonlinear system, and a recoverable error at that point can be flagged, and idas
will then try to correct it.

Allocation of memory for yp is handled within idas.

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to
by errfp (see IDASetErrFile), the user may provide a function of type IDAErrHandlerFn to process
any such messages. The function type IDAErrHandlerFn is defined as follows:

IDAErrHandlerFn

Definition typedef void (*IDAErrHandlerFn)(int error code, const char *module,
const char *function, char *msg,
void *eh data);

Purpose This function processes error and warning messages from idas and its sub-modules.

Arguments error code is the error code.
module is the name of the idas module reporting the error.
function is the name of the function in which the error occurred.
msg is the error message.
eh data is a pointer to user data, the same as the eh data parameter passed to

IDASetErrHandlerFn.

Return value A IDAErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (IDA WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of
type IDAEwtFn to compute a vector ewt containing the multiplicative weights Wi used in the WRMS

norm ‖ v‖WRMS =
√

(1/N)
∑N

1 (Wi · vi)2. These weights will used in place of those defined by Eq.
(2.7). The function type IDAEwtFn is defined as follows:
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IDAEwtFn

Definition typedef int (*IDAEwtFn)(N Vector y, N Vector ewt, void *user data);

Purpose This function computes the WRMS error weights for the vector y.

Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.

ewt is the output vector containing the error weights.
user data is a pointer to user data, the same as the user data parameter passed to

IDASetUserData.

Return value An IDAEwtFn function type must return 0 if it successfully set the error weights and −1
otherwise.

Notes Allocation of memory for ewt is handled within idas.

The error weight vector must have all components positive. It is the user’s responsiblity!

to perform this test and return −1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the DAE system, the user must
supply a C function of type IDARootFn, defined as follows:

IDARootFn

Definition typedef int (*IDARootFn)(realtype t, N Vector y, N Vector yp,
realtype *gout, void *user data);

Purpose This function computes a vector-valued function g(t, y, ẏ) such that the roots of the
nrtfn components gi(t, y, ẏ) are to be found during the integration.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, y(t).
yp is the current value of ẏ(t), the t−derivative of y.
gout is the output array, of length nrtfn, with components gi(t, y, ẏ).
user data is a pointer to user data, the same as the user data parameter passed to

IDASetUserData.

Return value An IDARootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and IDASolve returns IDA RTFUNC FAIL).

Notes Allocation of memory for gout is handled within idas.

4.6.5 Jacobian information (direct method Jacobian)

If the direct linear solver interface is used (i.e. IDADlsSetLinearSolver is called in the step described
in §4.4), the user may provide a function of type IDADlsJacFn defined as follows:

IDADlsJacFn

Definition typedef int (*IDADlsJacFn)(realtype tt, realtype cj,
N Vector yy, N Vector yp, N Vector rr,
SUNMatrix Jac, void *user data,
N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the Jacobian matrix J of the DAE system (or an approximation
to it), defined by Eq. (2.6).

Arguments tt is the current value of the independent variable t.
cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
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yy is the current value of the dependent variable vector, y(t).
yp is the current value of ẏ(t).
rr is the current value of the residual vector F (t, y, ẏ).
Jac is the output (approximate) Jacobian matrix (of type SUNMatrix), J =

∂F/∂y + cj ∂F/∂ẏ.
user data is a pointer to user data, the same as the user data parameter passed to

IDASetUserData.
tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDADlsJacFn function as temporary storage or work space.

Return value An IDADlsJacFn should return 0 if successful, a positive value if a recoverable error
occurred, or a negative value if a nonrecoverable error occurred.

In the case of a recoverable eror return, the integrator will attempt to recover by reducing
the stepsize, and hence changing α in (2.6).

Notes Information regarding the structure of the specific sunmatrix structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific sunmatrix interface functions (see Chapter 8 for details).

Prior to calling the user-supplied Jacobian function, the Jacobian matrix J(t, y) is zeroed
out, so only nonzero elements need to be loaded into Jac.

If the user’s IDADlsJacFn function uses difference quotient approximations, it may need
to access quantities not in the call list. These quantities may include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida mem to
user data and then use the IDAGet* functions described in §4.5.9.2. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

dense:
A user-supplied dense Jacobian function must load the Neq × Neq dense matrix Jac
with an approximation to the Jacobian matrix J(t, y, ẏ) at the point (tt, yy, yp). The
accessor macros SM ELEMENT D and SM COLUMN D allow the user to read and write dense
matrix elements without making explicit references to the underlying representation of
the sunmatrix dense type. SM ELEMENT D(J, i, j) references the (i, j)-th element
of the dense matrix Jac (with i, j = 0 . . . N − 1). This macro is meant for small
problems for which efficiency of access is not a major concern. Thus, in terms of
the indices m and n ranging from 1 to N , the Jacobian element Jm,n can be set using
the statement SM ELEMENT D(J, m-1, n-1) = Jm,n. Alternatively, SM COLUMN D(J, j)
returns a pointer to the first element of the j-th column of Jac (with j = 0 . . . N− 1),
and the elements of the j-th column can then be accessed using ordinary array indexing.
Consequently, Jm,n can be loaded using the statements col n = SM COLUMN D(J, n-1);
col n[m-1] = Jm,n. For large problems, it is more efficient to use SM COLUMN D than to
use SM ELEMENT D. Note that both of these macros number rows and columns starting
from 0. The sunmatrix dense type and accessor macros are documented in §8.1.

banded:
A user-supplied banded Jacobian function must load the Neq × Neq banded matrix
Jac with an approximation to the Jacobian matrix J(t, y, ẏ) at the point (tt, yy, yp).
The accessor macros SM ELEMENT B, SM COLUMN B, and SM COLUMN ELEMENT B allow the
user to read and write banded matrix elements without making specific references to
the underlying representation of the sunmatrix band type. SM ELEMENT B(J, i, j)
references the (i, j)-th element of the banded matrix Jac, counting from 0. This
macro is meant for use in small problems for which efficiency of access is not a major
concern. Thus, in terms of the indices m and n ranging from 1 to N with (m,n)
within the band defined by mupper and mlower, the Jacobian element Jm,n can be
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loaded using the statement SM ELEMENT B(J, m-1, n-1) = Jm,n. The elements within
the band are those with -mupper ≤ m-n ≤ mlower. Alternatively, SM COLUMN B(J,
j) returns a pointer to the diagonal element of the j-th column of Jac, and if we
assign this address to realtype *col j, then the i-th element of the j-th column
is given by SM COLUMN ELEMENT B(col j, i, j), counting from 0. Thus, for (m,n)
within the band, Jm,n can be loaded by setting col n = SM COLUMN B(J, n-1); and
SM COLUMN ELEMENT B(col n, m-1, n-1) = Jm,n. The elements of the j-th column
can also be accessed via ordinary array indexing, but this approach requires knowledge
of the underlying storage for a band matrix of type sunmatrix band. The array col n
can be indexed from −mupper to mlower. For large problems, it is more efficient to
use SM COLUMN B and SM COLUMN ELEMENT B than to use the SM ELEMENT B macro. As
in the dense case, these macros all number rows and columns starting from 0. The
sunmatrix band type and accessor macros are documented in §8.2.

sparse:
A user-supplied sparse Jacobian function must load the Neq × Neq compressed-sparse-
column or compressed-sparse-row matrix Jac with an approximation to the Jacobian
matrix J(t, y, ẏ) at the point (tt, yy, yp). Storage for Jac already exists on entry to
this function, although the user should ensure that sufficient space is allocated in Jac
to hold the nonzero values to be set; if the existing space is insufficient the user may
reallocate the data and index arrays as needed. The amount of allocated space in a
sunmatrix sparse object may be accessed using the macro SM NNZ S or the routine
SUNSparseMatrix NNZ. The sunmatrix sparse type and accessor macros are docu-
mented in §8.3.

4.6.6 Jacobian information (matrix-vector product)

If the idaspils solver interface is selected (i.e., IDASpilsSetLinearSolver is called in the steps
described in §4.4), the user may provide a function of type IDASpilsJacTimesVecFn in the following
form, to compute matrix-vector products Jv. If such a function is not supplied, the default is a
difference quotient approximation to these products.

IDASpilsJacTimesVecFn

Definition typedef int (*IDASpilsJacTimesVecFn)(realtype tt, N Vector yy,
N Vector yp, N Vector rr,
N Vector v, N Vector Jv,
realtype cj, void *user data,
N Vector tmp1, N Vector tmp2);

Purpose This function computes the product Jv of the DAE system Jacobian J (or an approxi-
mation to it) and a given vector v, where J is defined by Eq. (2.6).

Arguments tt is the current value of the independent variable.
yy is the current value of the dependent variable vector, y(t).
yp is the current value of ẏ(t).
rr is the current value of the residual vector F (t, y, ẏ).
v is the vector by which the Jacobian must be multiplied to the right.
Jv is the computed output vector.
cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
user data is a pointer to user data, the same as the user data parameter passed to

IDASetUserData.
tmp1
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tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by IDASpilsJacTimesVecFn as temporary storage or work space.

Return value The value returned by the Jacobian-times-vector function should be 0 if successful. A
nonzero value indicates that a nonrecoverable error occurred.

If the user’s IDASpilsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida mem to
user data and then use the IDAGet* functions described in §4.5.9.2. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.6.7 Jacobian information (matrix-vector setup)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or eval-
uated, then this needs to be done in a user-supplied function of type IDASpilsJacTimesSetupFn,
defined as follows:

IDASpilsJacTimesSetupFn

Definition typedef int (*IDASpilsJacTimesSetupFn)(realtype tt, N Vector yy,
N Vector yp, N Vector rr,
realtype cj, void *user data);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine.

Arguments tt is the current value of the independent variable.
yy is the current value of the dependent variable vector, y(t).
yp is the current value of ẏ(t).
rr is the current value of the residual vector F (t, y, ẏ).
cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
user data is a pointer to user data, the same as the user data parameter passed to

IDASetUserData.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the IDARhsFn
user function with the same (t,y, yp) arguments. Thus, the setup function can use any
auxiliary data that is computed and saved during the evaluation of the DAE residual.

If the user’s IDASpilsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida mem to
user data and then use the IDAGet* functions described in §4.5.9.2. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.6.8 Preconditioning (linear system solution)

If preconditioning is used, then the user must provide a function to solve the linear system Pz = r
where P is a left preconditioner matrix which approximates (at least crudely) the Jacobian matrix
J = ∂F/∂y + cj ∂F/∂ẏ. This function must be of type IDASpilsPrecSolveFn, defined as follows:
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IDASpilsPrecSolveFn

Definition typedef int (*IDASpilsPrecSolveFn)(realtype tt, N Vector yy,
N Vector yp, N Vector rr,
N Vector rvec, N Vector zvec,
realtype cj, realtype delta,
void *user data);

Purpose This function solves the preconditioning system Pz = r.

Arguments tt is the current value of the independent variable.
yy is the current value of the dependent variable vector, y(t).
yp is the current value of ẏ(t).
rr is the current value of the residual vector F (t, y, ẏ).
rvec is the right-hand side vector r of the linear system to be solved.
zvec is the computed output vector.
cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
delta is an input tolerance to be used if an iterative method is employed in the

solution. In that case, the residual vector Res = r−Pz of the system should
be made less than delta in weighted l2 norm, i.e.,

√∑
i(Resi · ewti)2 <

delta. To obtain the N Vector ewt, call IDAGetErrWeights (see §4.5.9.2).
user data is a pointer to user data, the same as the user data parameter passed to

the function IDASetUserData.

Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), negative for an unrecoverable error (in which
case the integration is halted).

4.6.9 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then
this needs to be done in a user-supplied function of type IDASpilsPrecSetupFn, defined as follows:

IDASpilsPrecSetupFn

Definition typedef int (*IDASpilsPrecSetupFn)(realtype tt, N Vector yy,
N Vector yp, N Vector rr,
realtype cj, void *user data);

Purpose This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner.

Arguments tt is the current value of the independent variable.
yy is the current value of the dependent variable vector, y(t).
yp is the current value of ẏ(t).
rr is the current value of the residual vector F (t, y, ẏ).
cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
user data is a pointer to user data, the same as the user data parameter passed to

the function IDASetUserData.

Return value The value returned by the preconditioner setup function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), negative for an unrecoverable error (in which case
the integration is halted).
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Notes The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization on the resulting approximation.

Each call to the preconditioner setup function is preceded by a call to the IDAResFn
user function with the same (tt, yy, yp) arguments. Thus the preconditioner setup
function can use any auxiliary data that is computed and saved during the evaluation
of the DAE residual.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the Newton
iteration.

If the user’s IDASpilsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add a pointer to ida mem to
user data and then use the IDAGet* functions described in §4.5.9.2. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.7 Integration of pure quadrature equations

idas allows the DAE system to include pure quadratures. In this case, it is more efficient to treat
the quadratures separately by excluding them from the nonlinear solution stage. To do this, begin
by excluding the quadrature variables from the vectors yy and yp and the quadrature equations from
within res. Thus a separate vector yQ of quadrature variables is to satisfy (d/dt)yQ = fQ(t, y, ẏ). The
following is an overview of the sequence of calls in a user’s main program in this situation. Steps that
are unchanged from the skeleton program presented in §4.4 are grayed out.

1. Initialize parallel or multi-threaded environment, if appropriate

2. Set problem dimensions, etc.

This generally includes N, the problem size N (excluding quadrature variables), Nq, the number
of quadrature variables, and may include the local vector length Nlocal (excluding quadrature
variables), and local number of quadrature variables Nqlocal.

3. Set vectors of initial values

4. Create idas object

5. Allocate internal memory

6. Set optional inputs

7. Attach linear solver module

8. Set linear solver optional inputs

9. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

10. Initialize quadrature integration

Call IDAQuadInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §4.7.1 for details.

11. Set optional inputs for quadrature integration

Call IDASetQuadErrCon to indicate whether or not quadrature variables should be used in the
step size control mechanism. If so, one of the IDAQuad*tolerances functions must be called to
specify the integration tolerances for quadrature variables. See §4.7.4 for details.
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12. Advance solution in time

13. Extract quadrature variables

Call IDAGetQuad or IDAGetQuadDky to obtain the values of the quadrature variables or their
derivatives at the current time. See §4.7.3 for details.

14. Get optional outputs

15. Get quadrature optional outputs

Call IDAGetQuad* functions to obtain optional output related to the integration of quadratures.
See §4.7.5 for details.

16. Deallocate memory for solution vectors and for the vector of quadrature variables

17. Free solver memory

18. Finalize MPI, if used

IDAQuadInit can be called and quadrature-related optional inputs (step 11 above) can be set, any-
where between steps 4 and 12.

4.7.1 Quadrature initialization and deallocation functions

The function IDAQuadInit activates integration of quadrature equations and allocates internal mem-
ory related to these calculations. The form of the call to this function is as follows:

IDAQuadInit

Call flag = IDAQuadInit(ida mem, rhsQ, yQ0);

Description The function IDAQuadInit provides required problem specifications, allocates internal
memory, and initializes quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
rhsQ (IDAQuadRhsFn) is the C function which computes fQ, the right-hand side of

the quadrature equations. This function has the form fQ(t, yy, yp, rhsQ,
user data) (for full details see §4.7.6).

yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadInit was successful.
IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.
IDA MEM FAIL A memory allocation request failed.

Notes If an error occurred, IDAQuadInit also sends an error message to the error handler
function.

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)Nq

• If IDAQuadSVtolerances is called: lenrw = lenrw +Nq

and the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)Nq

• If IDAQuadSVtolerances is called: leniw = leniw +Nq
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The function IDAQuadReInit, useful during the solution of a sequence of problems of same size,
reinitializes the quadrature-related internal memory and must follow a call to IDAQuadInit (and
maybe a call to IDAReInit). The number Nq of quadratures is assumed to be unchanged from the
prior call to IDAQuadInit. The call to the IDAQuadReInit function has the following form:

IDAQuadReInit

Call flag = IDAQuadReInit(ida mem, yQ0);

Description The function IDAQuadReInit provides required problem specifications and reinitializes
the quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.
yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.
IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.
IDA NO QUAD Memory space for the quadrature integration was not allocated by a prior

call to IDAQuadInit.

Notes If an error occurred, IDAQuadReInit also sends an error message to the error handler
function.

IDAQuadFree

Call IDAQuadFree(ida mem);

Description The function IDAQuadFree frees the memory allocated for quadrature integration.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDAQuadFree has no return value.

Notes In general, IDAQuadFree need not be called by the user as it is invoked automatically
by IDAFree.

4.7.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve is exactly the
same as in §4.5.6. However, in this case the return value flag can also be one of the following:
IDA QRHS FAIL The quadrature right-hand side function failed in an unrecoverable man-

ner.

IDA FIRST QRHS ERR The quadrature right-hand side function failed at the first call.

IDA REP QRHS ERR Convergence test failures occurred too many times due to repeated recov-
erable errors in the quadrature right-hand side function. This value will
also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming
the quadrature variables are included in the error tests).

4.7.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to IDAQuadInit, or reinitialized by a call to
IDAQuadReInit, then idas computes both a solution and quadratures at time t. However, IDASolve
will still return only the solution y in y. Solution quadratures can be obtained using the following
function:
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IDAGetQuad

Call flag = IDAGetQuad(ida mem, &tret, yQ);

Description The function IDAGetQuad returns the quadrature solution vector after a successful return
from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
tret (realtype) the time reached by the solver (output).
yQ (N Vector) the computed quadrature vector.

Return value The return value flag of IDAGetQuad is one of:

IDA SUCCESS IDAGetQuad was successful.
IDA MEM NULL ida mem was NULL.
IDA NO QUAD Quadrature integration was not initialized.
IDA BAD DKY yQ is NULL.

The function IDAGetQuadDky computes the k-th derivatives of the interpolating polynomials for the
quadrature variables at time t. This function is called by IDAGetQuad with k = 0 and with the current
time at which IDASolve has returned, but may also be called directly by the user.

IDAGetQuadDky

Call flag = IDAGetQuadDky(ida mem, t, k, dkyQ);

Description The function IDAGetQuadDky returns derivatives of the quadrature solution vector after
a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
t (realtype) the time at which quadrature information is requested. The time

t must fall within the interval defined by the last successful step taken by idas.
k (int) order of the requested derivative. This must be ≤ klast.
dkyQ (N Vector) the vector containing the derivative. This vector must be allocated

by the user.

Return value The return value flag of IDAGetQuadDky is one of:

IDA SUCCESS IDAGetQuadDky succeeded.
IDA MEM NULL The pointer to ida mem was NULL.
IDA NO QUAD Quadrature integration was not initialized.
IDA BAD DKY The vector dkyQ is NULL.
IDA BAD K k is not in the range 0, 1, ..., klast.
IDA BAD T The time t is not in the allowed range.

4.7.4 Optional inputs for quadrature integration

idas provides the following optional input functions to control the integration of quadrature equa-
tions.

IDASetQuadErrCon

Call flag = IDASetQuadErrCon(ida mem, errconQ);

Description The function IDASetQuadErrCon specifies whether or not the quadrature variables are
to be used in the step size control mechanism within idas. If they are, the user must
call either IDAQuadSStolerances or IDAQuadSVtolerances to specify the integration
tolerances for the quadrature variables.

Arguments ida mem (void *) pointer to the idas memory block.
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errconQ (booleantype) specifies whether quadrature variables are included (SUNTRUE)
or not (SUNFALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL

IDA NO QUAD Quadrature integration has not been initialized.

Notes By default, errconQ is set to SUNFALSE.

It is illegal to call IDASetQuadErrCon before a call to IDAQuadInit. !

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

IDAQuadSStolerances

Call flag = IDAQuadSVtolerances(ida mem, reltolQ, abstolQ);

Description The function IDAQuadSStolerances specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block.

reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA NO QUAD Quadrature integration was not initialized.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT One of the input tolerances was negative.

IDAQuadSVtolerances

Call flag = IDAQuadSVtolerances(ida mem, reltolQ, abstolQ);

Description The function IDAQuadSVtolerances specifies scalar relative and vector absolute toler-
ances.

Arguments ida mem (void *) pointer to the idas memory block.

reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (N Vector) is the vector absolute error tolerance.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA NO QUAD Quadrature integration was not initialized.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT One of the input tolerances was negative.

4.7.5 Optional outputs for quadrature integration

idas provides the following functions that can be used to obtain solver performance information
related to quadrature integration.
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IDAGetQuadNumRhsEvals

Call flag = IDAGetQuadNumRhsEvals(ida mem, &nrhsQevals);

Description The function IDAGetQuadNumRhsEvals returns the number of calls made to the user’s
quadrature right-hand side function.

Arguments ida mem (void *) pointer to the idas memory block.
nrhsQevals (long int) number of calls made to the user’s rhsQ function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO QUAD Quadrature integration has not been initialized.

IDAGetQuadNumErrTestFails

Call flag = IDAGetQuadNumErrTestFails(ida mem, &nQetfails);

Description The function IDAGetQuadNumErrTestFails returns the number of local error test fail-
ures due to quadrature variables.

Arguments ida mem (void *) pointer to the idas memory block.
nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO QUAD Quadrature integration has not been initialized.

IDAGetQuadErrWeights

Call flag = IDAGetQuadErrWeights(ida mem, eQweight);

Description The function IDAGetQuadErrWeights returns the quadrature error weights at the cur-
rent time.

Arguments ida mem (void *) pointer to the idas memory block.
eQweight (N Vector) quadrature error weights at the current time.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO QUAD Quadrature integration has not been initialized.

Notes The user must allocate memory for eQweight.!

If quadratures were not included in the error control mechanism (through a call to
IDASetQuadErrCon with errconQ = SUNTRUE), IDAGetQuadErrWeights does not set
the eQweight vector.

IDAGetQuadStats

Call flag = IDAGetQuadStats(ida mem, &nrhsQevals, &nQetfails);

Description The function IDAGetQuadStats returns the idas integrator statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.
nrhsQevals (long int) number of calls to the user’s rhsQ function.
nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of
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IDA SUCCESS the optional output values have been successfully set.
IDA MEM NULL the ida mem pointer is NULL.
IDA NO QUAD Quadrature integration has not been initialized.

4.7.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand
side of the quadrature equations (in other words, the integrand function of the integral that must be
evaluated). This function must be of type IDAQuadRhsFn defined as follows:

IDAQuadRhsFn

Definition typedef int (*IDAQuadRhsFn)(realtype t, N Vector yy, N Vector yp,
N Vector rhsQ, void *user data);

Purpose This function computes the quadrature equation right-hand side for a given value of the
independent variable t and state vectors y and ẏ.

Arguments t is the current value of the independent variable.
yy is the current value of the dependent variable vector, y(t).
yp is the current value of the dependent variable derivative vector, ẏ(t).
rhsQ is the output vector fQ(t, y, ẏ).
user data is the user data pointer passed to IDASetUserData.

Return value A IDAQuadRhsFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA QRHS FAIL is returned).

Notes Allocation of memory for rhsQ is automatically handled within idas.

Both y and rhsQ are of type N Vector, but they typically have different internal repre-
sentations. It is the user’s responsibility to access the vector data consistently (including
the use of the correct accessor macros from each nvector implementation). For the
sake of computational efficiency, the vector functions in the two nvector implementa-
tions provided with idas do not perform any consistency checks with respect to their
N Vector arguments (see §7.1 and §7.2).

There is one situation in which recovery is not possible even if IDAQuadRhsFn function
returns a recoverable error flag. This is when this occurs at the very first call to the
IDAQuadRhsFn (in which case idas returns IDA FIRST QRHS ERR).

4.8 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel DAE solver such as idas lies in the solution of partial differential
equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many such
problems is motivated by the nature of the underlying linear system of equations (2.5) that must be
solved at each time step. The linear algebraic system is large, sparse, and structured. However, if a
Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to be
used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably slow.
Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [26] and is
included in a software module within the idas package. This module works with the parallel vector
module nvector parallel and generates a preconditioner that is a block-diagonal matrix with each
block being a band matrix. The blocks need not have the same number of super- and sub-diagonals,
and these numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module
is called idabbdpre.
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One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping sub-domains. Each of these sub-domains is then
assigned to one of the M processors to be used to solve the DAE system. The basic idea is to isolate the
preconditioning so that it is local to each processor, and also to use a (possibly cheaper) approximate
residual function. This requires the definition of a new function G(t, y, ẏ) which approximates the
function F (t, y, ẏ) in the definition of the DAE system (2.1). However, the user may set G = F .
Corresponding to the domain decomposition, there is a decomposition of the solution vectors y and ẏ
into M disjoint blocks ym and ẏm, and a decomposition of G into blocks Gm. The block Gm depends
on ym and ẏm, and also on components of ym′ and ẏm′ associated with neighboring sub-domains
(so-called ghost-cell data). Let ȳm and ¯̇ym denote ym and ẏm (respectively) augmented with those
other components on which Gm depends. Then we have

G(t, y, ẏ) = [G1(t, ȳ1, ¯̇y1), G2(t, ȳ2, ¯̇y2), . . . , GM (t, ȳM , ¯̇yM )]T , (4.1)

and each of the blocks Gm(t, ȳm, ¯̇ym) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM ] (4.2)

where
Pm ≈ ∂Gm/∂ym + α∂Gm/∂ẏm (4.3)

This matrix is taken to be banded, with upper and lower half-bandwidths mudq and mldq defined as
the number of non-zero diagonals above and below the main diagonal, respectively. The difference
quotient approximation is computed using mudq + mldq +2 evaluations of Gm, but only a matrix of
bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobians of the local block of
G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the DAE system outside a certain bandwidth are considerably weaker than those within
the band. Reducing mukeep and mlkeep while keeping mudq and mldq at their true values, discards
the elements outside the narrower band. Reducing both pairs has the additional effect of lumping the
outer Jacobian elements into the computed elements within the band, and requires more caution and
experimentation.

The solution of the complete linear system

Px = b (4.4)

reduces to solving each of the equations
Pmxm = bm (4.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
Similar block-diagonal preconditioners could be considered with different treatment of the blocks

Pm. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The idabbdpre module calls two user-provided functions to construct P : a required function
Gres (of type IDABBDLocalFn) which approximates the residual function G(t, y, ẏ) ≈ F (t, y, ẏ) and
which is computed locally, and an optional function Gcomm (of type IDABBDCommFn) which performs
all inter-process communication necessary to evaluate the approximate residual G. These are in
addition to the user-supplied residual function res. Both functions take as input the same pointer
user data as passed by the user to IDASetUserData and passed to the user’s function res. The user
is responsible for providing space (presumably within user data) for components of yy and yp that
are communicated by Gcomm from the other processors, and that are then used by Gres, which should
not do any communication.

IDABBDLocalFn
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Definition typedef int (*IDABBDLocalFn)(sunindextype Nlocal, realtype tt,
N Vector yy, N Vector yp, N Vector gval,
void *user data);

Purpose This Gres function computes G(t, y, ẏ). It loads the vector gval as a function of tt,
yy, and yp.

Arguments Nlocal is the local vector length.
tt is the value of the independent variable.
yy is the dependent variable.
yp is the derivative of the dependent variable.
gval is the output vector.
user data is a pointer to user data, the same as the user data parameter passed to

IDASetUserData.

Return value An IDABBDLocalFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes This function must assume that all inter-processor communication of data needed to
calculate gval has already been done, and this data is accessible within user data.

The case where G is mathematically identical to F is allowed.

IDABBDCommFn

Definition typedef int (*IDABBDCommFn)(sunindextype Nlocal, realtype tt,
N Vector yy, N Vector yp, void *user data);

Purpose This Gcomm function performs all inter-processor communications necessary for the ex-
ecution of the Gres function above, using the input vectors yy and yp.

Arguments Nlocal is the local vector length.
tt is the value of the independent variable.
yy is the dependent variable.
yp is the derivative of the dependent variable.
user data is a pointer to user data, the same as the user data parameter passed to

IDASetUserData.

Return value An IDABBDCommFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes The Gcomm function is expected to save communicated data in space defined within the
structure user data.

Each call to the Gcomm function is preceded by a call to the residual function res with
the same (tt, yy, yp) arguments. Thus Gcomm can omit any communications done by
res if relevant to the evaluation of Gres. If all necessary communication was done in
res, then Gcomm = NULL can be passed in the call to IDABBDPrecInit (see below).

Besides the header files required for the integration of the DAE problem (see §4.3), to use the
idabbdpre module, the main program must include the header file idas bbdpre.h which declares
the needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §4.4 are
grayed-out.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values
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4. Create idas object

5. Allocate internal memory

6. Set optional inputs

7. Attach iterative linear solver, one of:

(a) flag = IDASpgmr(ida mem, maxl);

(b) flag = IDASpbcg(ida mem, maxl);

(c) flag = IDASptfqmr(ida mem, maxl);

8. Initialize the idabbdpre preconditioner module

Specify the upper and lower bandwidths mudq, mldq and mukeep, mlkeep and call

flag = IDABBDPrecInit(ida mem, Nlocal, mudq, mldq,
mukeep, mlkeep, dq rel yy, Gres, Gcomm);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
IDABBDPrecInit are the two user-supplied functions described above.

9. Set linear solver interface optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to idIDASpilsSetPreconditioner optional input function.

10. Correct initial values

11. Specify rootfinding problem

12. Advance solution in time

13. Get optional outputs

Additional optional outputs associated with idabbdpre are available by way of two routines
described below, IDABBDPrecGetWorkSpace and IDABBDPrecGetNumGfnEvals.

14. Deallocate memory for solution vector

15. Free solver memory

16. Free linear solver memory

17. Finalize MPI

The user-callable functions that initialize (step 8 above) or re-initialize the idabbdpre preconditioner
module are described next.

IDABBDPrecInit

Call flag = IDABBDPrecInit(ida mem, Nlocal, mudq, mldq,
mukeep, mlkeep, dq rel yy, Gres, Gcomm);

Description The function IDABBDPrecInit initializes and allocates (internal) memory for the id-
abbdpre preconditioner.

Arguments ida mem (void *) pointer to the idas memory block.
Nlocal (sunindextype) local vector dimension.
mudq (sunindextype) upper half-bandwidth to be used in the difference-quotient

Jacobian approximation.
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mldq (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mukeep (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.

mlkeep (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dq rel yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dq rel yy=

√
unit roundoff, which

can be specified by passing dq rel yy= 0.0.
Gres (IDABBDLocalFn) the C function which computes the local residual approx-

imation G(t, y, ẏ).
Gcomm (IDABBDCommFn) the optional C function which performs all inter-process

communication required for the computation of G(t, y, ẏ).

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The call to IDABBDPrecInit was successful.
IDASPILS MEM NULL The ida mem pointer was NULL.
IDASPILS MEM FAIL A memory allocation request has failed.
IDASPILS LMEM NULL An idaspils linear solver memory was not attached.
IDASPILS ILL INPUT The supplied vector implementation was not compatible with the

block band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal−1, it is
replaced by 0 or Nlocal−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of G, when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The idabbdpre module also provides a reinitialization function to allow for a sequence of prob-
lems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling IDAReInit to re-initialize idas for
a subsequent problem, a call to IDABBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and mldq used in the difference-quotient Jacobian approximations, the relative
increment dq rel yy, or one of the user-supplied functions Gres and Gcomm. If there is a change in
any of the linear solver inputs, an additional call to the “Set” routines provided by the sunlinsol
module, and/or one or more of the corresponding IDASpilsSet*** functions, must also be made (in
the proper order).

IDABBDPrecReInit

Call flag = IDABBDPrecReInit(ida mem, mudq, mldq, dq rel yy);

Description The function IDABBDPrecReInit reinitializes the idabbdpre preconditioner.

Arguments ida mem (void *) pointer to the idas memory block.
mudq (sunindextype) upper half-bandwidth to be used in the difference-quotient

Jacobian approximation.
mldq (sunindextype) lower half-bandwidth to be used in the difference-quotient

Jacobian approximation.
dq rel yy (realtype) the relative increment in components of y used in the difference

quotient approximations. The default is dq rel yy =
√

unit roundoff, which
can be specified by passing dq rel yy = 0.0.



84 Using IDAS for IVP Solution

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The call to IDABBDPrecReInit was successful.
IDASPILS MEM NULL The ida mem pointer was NULL.
IDASPILS LMEM NULL An idaspils linear solver memory was not attached.
IDASPILS PMEM NULL The function IDABBDPrecInit was not previously called.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal−1,
it is replaced by 0 or Nlocal−1, accordingly.

The following two optional output functions are available for use with the idabbdpre module:

IDABBDPrecGetWorkSpace

Call flag = IDABBDPrecGetWorkSpace(ida mem, &lenrwBBDP, &leniwBBDP);

Description The function IDABBDPrecGetWorkSpace returns the local sizes of the idabbdpre real
and integer workspaces.

Arguments ida mem (void *) pointer to the idas memory block.
lenrwBBDP (long int) local number of real values in the idabbdpre workspace.
leniwBBDP (long int) local number of integer values in the idabbdpre workspace.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer was NULL.
IDASPILS PMEM NULL The idabbdpre preconditioner has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within the idabbdpre module (the banded matrix approximation, banded sun-
linsol object, temporary vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding
function IDASpilsGetWorkSpace.

IDABBDPrecGetNumGfnEvals

Call flag = IDABBDPrecGetNumGfnEvals(ida mem, &ngevalsBBDP);

Description The function IDABBDPrecGetNumGfnEvals returns the cumulative number of calls to
the user Gres function due to the finite difference approximation of the Jacobian blocks
used within idabbdpre’s preconditioner setup function.

Arguments ida mem (void *) pointer to the idas memory block.
ngevalsBBDP (long int) the cumulative number of calls to the user Gres function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.
IDASPILS MEM NULL The ida mem pointer was NULL.
IDASPILS PMEM NULL The idabbdpre preconditioner has not been initialized.

In addition to the ngevalsBBDP Gres evaluations, the costs associated with idabbdpre also include
nlinsetups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and
nrevalsLS residual function evaluations, where nlinsetups is an optional idas output (see §4.5.9.2),
and npsolves and nrevalsLS are linear solver optional outputs (see §4.5.9.6).



Chapter 5

Using IDAS for Forward Sensitivity
Analysis

This chapter describes the use of idas to compute solution sensitivities using forward sensitivity anal-
ysis. One of our main guiding principles was to design the idas user interface for forward sensitivity
analysis as an extension of that for IVP integration. Assuming a user main program and user-defined
support routines for IVP integration have already been defined, in order to perform forward sensitivity
analysis the user only has to insert a few more calls into the main program and (optionally) define
an additional routine which computes the residuals for sensitivity systems (2.12). The only departure
from this philosophy is due to the IDAResFn type definition (§4.6.1). Without changing the definition
of this type, the only way to pass values of the problem parameters to the DAE residual function is
to require the user data structure user data to contain a pointer to the array of real parameters p.

idas uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable routines and of the user-supplied routines that
were not already described in Chapter 4.

5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of idas.
The user program is to have these steps in the order indicated, unless otherwise noted. For the sake
of brevity, we defer many of the details to the later sections. As in §4.4, most steps are independent
of the nvector implementation used. For the steps that are not, refer to Chapter 7 for the specific
names. Differences between the user main program in §4.4 and the one below start only at step (13).
Steps that are unchanged from the skeleton program presented in §4.4 are grayed out.

First, note that no additional header files need be included for forward sensitivity analysis beyond
those for IVP solution (§4.4).

1. Initialize parallel or multi-threaded environment, if appropriate

2. Set problem dimensions etc.

3. Set vectors of initial values

4. Create idas object

5. Initialize idas

6. Specify integration tolerances
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7. Set optional inputs

8. Create matrix object

9. Create linear solver object

10. Set linear solver optional inputs

11. Attach linear solver module

12. Initialize quadrature problem, if not sensitivity-dependent

13. Define the sensitivity problem

•Number of sensitivities (required)
Set Ns = Ns, the number of parameters with respect to which sensitivities are to be computed.

•Problem parameters (optional)
If idas is to evaluate the residuals of the sensitivity systems, set p, an array of Np real
parameters upon which the IVP depends. Only parameters with respect to which sensitivities
are (potentially) desired need to be included. Attach p to the user data structure user data.
For example, user data->p = p;

If the user provides a function to evaluate the sensitivity residuals, p need not be specified.

•Parameter list (optional)
If idas is to evaluate the sensitivity residuals, set plist, an array of Ns integers to specify the
parameters p with respect to which solution sensitivities are to be computed. If sensitivities
with respect to the j-th parameter p[j] (0 ≤ j < Np) are desired, set plisti = j, for some
i = 0, . . . , Ns − 1.
If plist is not specified, idas will compute sensitivities with respect to the first Ns parame-
ters; i.e., plisti = i (i = 0, . . . , Ns − 1).
If the user provides a function to evaluate the sensitivity residuals, plist need not be spec-
ified.

•Parameter scaling factors (optional)
If idas is to estimate tolerances for the sensitivity solution vectors (based on tolerances for
the state solution vector) or if idas is to evaluate the residuals of the sensitivity systems
using the internal difference-quotient function, the results will be more accurate if order of
magnitude information is provided.
Set pbar, an array of Ns positive scaling factors. Typically, if pi 6= 0, the value p̄i = |pplisti

|
can be used.
If pbar is not specified, idas will use p̄i = 1.0.
If the user provides a function to evaluate the sensitivity residual and specifies tolerances for
the sensitivity variables, pbar need not be specified.

Note that the names for p, pbar, plist, as well as the field p of user data are arbitrary, but they
must agree with the arguments passed to IDASetSensParams below.

14. Set sensitivity initial conditions

Set the Ns vectors yS0[i] and ypS0[i] of initial values for sensitivities (for i = 0, . . . , Ns −1),
using the appropriate functions defined by the particular nvector implementation chosen.

First, create an array of Ns vectors by making the appropriate call

yS0 = N VCloneVectorArray ***(Ns, y0);

or

yS0 = N VCloneVectorArrayEmpty ***(Ns, y0);
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Here the argument y0 serves only to provide the N Vector type for cloning.

Then, for each i = 0, . . . ,Ns −1, load initial values for the i-th sensitivity vector yS0[i].

Set the initial conditions for the Ns sensitivity derivative vectors ypS0 of ẏ similarly.

15. Activate sensitivity calculations

Call flag = IDASensInit(...); to activate forward sensitivity computations and allocate inter-
nal memory for idas related to sensitivity calculations (see §5.2.1).

16. Set sensitivity tolerances

Call IDASensSStolerances, IDASensSVtolerances, or IDASensEEtolerances. See §5.2.2.

17. Set sensitivity analysis optional inputs

Call IDASetSens* routines to change from their default values any optional inputs that control
the behavior of idas in computing forward sensitivities. See §5.2.6.

18. Correct initial values

19. Specify rootfinding problem

20. Advance solution in time

21. Extract sensitivity solution

After each successful return from IDASolve, the solution of the original IVP is available in the y
argument of IDASolve, while the sensitivity solution can be extracted into yS and ypS (which can
be the same as yS0 and ypS0, respectively) by calling one of the following routines: IDAGetSens,
IDAGetSens1, IDAGetSensDky or IDAGetSensDky1 (see §5.2.5).

22. Get optional outputs

23. Deallocate memory for solution vector

24. Deallocate memory for sensitivity vectors

Upon completion of the integration, deallocate memory for the vectors contained in yS0 and ypS0:

N VDestroyVectorArray ***(yS0, Ns);

If yS was created from realtype arrays yS i, it is the user’s responsibility to also free the space
for the arrays yS i, and likewise for ypS.

25. Free user data structure

26. Free solver memory

27. Free vector specification memory

28. Free linear solver and matrix memory

29. Finalize MPI, if used

5.2 User-callable routines for forward sensitivity analysis

This section describes the idas functions, in addition to those presented in §4.5, that are called by
the user to set up and solve a forward sensitivity problem.
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5.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling IDASensInit. The form of the call
to this routine is as follows:

IDASensInit

Call flag = IDASensInit(ida mem, Ns, ism, resS, yS0, ypS0);

Description The routine IDASensInit activates forward sensitivity computations and allocates in-
ternal memory related to sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
Ns (int) the number of sensitivities to be computed.
ism (int) a flag used to select the sensitivity solution method. Its value can be

either IDA SIMULTANEOUS or IDA STAGGERED:
• In the IDA SIMULTANEOUS approach, the state and sensitivity variables are

corrected at the same time. If IDA NEWTON was selected as the nonlinear
system solution method, this amounts to performing a modified Newton
iteration on the combined nonlinear system;

• In the IDA STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the state
variables have passed the local error test;

resS (IDASensResFn) is the C function which computes the residual of the sensitiv-
ity DAE. For full details see §5.3.

yS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities of y.

ypS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities of ẏ.

Return value The return value flag (of type int) will be one of the following:
IDA SUCCESS The call to IDASensInit was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA MEM FAIL A memory allocation request has failed.
IDA ILL INPUT An input argument to IDASensInit has an illegal value.

Notes Passing resS=NULL indicates using the default internal difference quotient sensitivity
residual routine.
If an error occurred, IDASensInit also prints an error message to the file specified by
the optional input errfp.

In terms of the problem size N , number of sensitivity vectors Ns, and maximum method order maxord,
the size of the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)NsN

• With IDASensSVtolerances: lenrw = lenrw +NsN

the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)NsNi

• With IDASensSVtolerances: leniw = leniw +NsNi,

where Ni is the number of integer words in one N Vector.
The routine IDASensReInit, useful during the solution of a sequence of problems of same size,

reinitializes the sensitivity-related internal memory and must follow a call to IDASensInit (and maybe
a call to IDAReInit). The number Ns of sensitivities is assumed to be unchanged since the call to
IDASensInit. The call to the IDASensReInit function has the form:
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IDASensReInit

Call flag = IDASensReInit(ida mem, ism, yS0, ypS0);

Description The routine IDASensReInit reinitializes forward sensitivity computations.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
ism (int) a flag used to select the sensitivity solution method. Its value can be

either IDA SIMULTANEOUS or IDA STAGGERED.
yS0 (N Vector *) a pointer to an array of Ns variables of type N Vector containing

the initial values of the sensitivities of y.
ypS0 (N Vector *) a pointer to an array of Ns variables of type N Vector containing

the initial values of the sensitivities of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA NO SENS Memory space for sensitivity integration was not allocated through a

previous call to IDASensInit.
IDA ILL INPUT An input argument to IDASensReInit has an illegal value.
IDA MEM FAIL A memory allocation request has failed.

Notes All arguments of IDASensReInit are the same as those of IDASensInit.

If an error occurred, IDASensReInit also prints an error message to the file specified
by the optional input errfp.

To deallocate all forward sensitivity-related memory (allocated in a prior call to IDASensInit), the
user must call

IDASensFree

Call IDASensFree(ida mem);

Description The function IDASensFree frees the memory allocated for forward sensitivity compu-
tations by a previous call to IDASensInit.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDASensFree has no return value.

Notes In general, IDASensFree need not be called by the user as it is invoked automatically
by IDAFree.

After a call to IDASensFree, forward sensitivity computations can be reactivated only
by calling IDASensInit again.

To activate and deactivate forward sensitivity calculations for successive idas runs, without having
to allocate and deallocate memory, the following function is provided:

IDASensToggleOff

Call IDASensToggleOff(ida mem);

Description The function IDASensToggleOff deactivates forward sensitivity calculations. It does
not deallocate sensitivity-related memory.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

Return value The return value flag of IDASensToggle is one of:

IDA SUCCESS IDASensToggleOff was successful.
IDA MEM NULL ida mem was NULL.

Notes Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at
a later time (using IDASensReInit).
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5.2.2 Forward sensitivity tolerance specification functions

One of the following three functions must be called to specify the integration tolerances for sensitivities.
Note that this call must be made after the call to IDASensInit.

IDASensSStolerances

Call flag = IDASensSStolerances(ida mem, reltolS, abstolS);

Description The function IDASensSStolerances specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
reltolS (realtype) is the scalar relative error tolerance.
abstolS (realtype*) is a pointer to an array of length Ns containing the scalar absolute

error tolerances.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASStolerances was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA NO SENS The sensitivity allocation function IDASensInit has not been called.
IDA ILL INPUT One of the input tolerances was negative.

IDASensSVtolerances

Call flag = IDASensSVtolerances(ida mem, reltolS, abstolS);

Description The function IDASensSVtolerances specifies scalar relative tolerance and vector abso-
lute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
reltolS (realtype) is the scalar relative error tolerance.
abstolS (N Vector*) is an array of Ns variables of type N Vector. The N Vector from

abstolS[is] specifies the vector tolerances for is-th sensitivity.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASVtolerances was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA NO SENS The sensitivity allocation function IDASensInit has not been called.
IDA ILL INPUT The relative error tolerance was negative or one of the absolute tolerance

vectors had a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of any vector yS[i].

IDASensEEtolerances

Call flag = IDASensEEtolerances(ida mem);

Description When IDASensEEtolerances is called, idas will estimate tolerances for sensitivity vari-
ables based on the tolerances supplied for states variables and the scaling factors p̄.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASensEEtolerances was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA NO SENS The sensitivity allocation function IDASensInit has not been called.
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5.2.3 Forward sensitivity initial condition calculation function

IDACalcIC also calculates corrected initial conditions for sensitivity variables of a DAE system. When
used for initial conditions calculation of the forward sensitivities, IDACalcIC must be preceded by
successful calls to IDASensInit (or IDASensReInit) and should precede the call(s) to IDASolve. For
restrictions that apply for initial conditions calculation of the state variables, see §4.5.4.

Calling IDACalcIC is optional. It is only necessary when the initial conditions do not satisfy the
sensitivity systems. Even if forward sensitivity analysis was enabled, the call to the initial conditions
calculation function IDACalcIC is exactly the same as for state variables.

flag = IDACalcIC(ida_mem, icopt, tout1);

See §4.5.4 for a list of possible return values.

5.2.4 IDAS solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function IDASolve is
exactly the same as in §4.5.6. However, in this case the return value flag can also be one of the
following:
IDA SRES FAIL The sensitivity residual function failed in an unrecoverable manner.

IDA REP SRES ERR The user’s residual function repeatedly returned a recoverable error flag, but the
solver was unable to recover.

5.2.5 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to IDASensInit, or reinitialized by
a call to IDASensReInit, then idas computes both a solution and sensitivities at time t. However,
IDASolve will still return only the solutions y and ẏ in yret and ypret, respectively. Solution
sensitivities can be obtained through one of the following functions:

IDAGetSens

Call flag = IDAGetSens(ida mem, &tret, yS);

Description The function IDAGetSens returns the sensitivity solution vectors after a successful return
from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
tret (realtype) the time reached by the solver (output).
yS (N Vector *) the array of Ns computed forward sensitivity vectors.

Return value The return value flag of IDAGetSens is one of:

IDA SUCCESS IDAGetSens was successful.
IDA MEM NULL ida mem was NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.
IDA BAD DKY yS is NULL.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last IDASolve call.

The function IDAGetSensDky computes the k-th derivatives of the interpolating polynomials for the
sensitivity variables at time t. This function is called by IDAGetSens with k = 0, but may also be
called directly by the user.
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IDAGetSensDky

Call flag = IDAGetSensDky(ida mem, t, k, dkyS);

Description The function IDAGetSensDky returns derivatives of the sensitivity solution vectors after
a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
t (realtype) specifies the time at which sensitivity information is requested.

The time t must fall within the interval defined by the last successful step
taken by idas.

k (int) order of derivatives.
dkyS (N Vector *) array of Ns vectors containing the derivatives on output. The

space for dkyS must be allocated by the user.

Return value The return value flag of IDAGetSensDky is one of:

IDA SUCCESS IDAGetSensDky succeeded.
IDA MEM NULL ida mem was NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.
IDA BAD DKY dkyS or one of the vectors dkyS[i] is NULL.
IDA BAD K k is not in the range 0, 1, ..., klast.
IDA BAD T The time t is not in the allowed range.

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions IDAGetSens1 and IDAGetSensDky1, defined as follows:

IDAGetSens1

Call flag = IDAGetSens1(ida mem, &tret, is, yS);

Description The function IDAGetSens1 returns the is-th sensitivity solution vector after a successful
return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
tret (realtype *) the time reached by the solver (output).
is (int) specifies which sensitivity vector is to be returned (0 ≤is< Ns).
yS (N Vector) the computed forward sensitivity vector.

Return value The return value flag of IDAGetSens1 is one of:

IDA SUCCESS IDAGetSens1 was successful.
IDA MEM NULL ida mem was NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.
IDA BAD IS The index is is not in the allowed range.
IDA BAD DKY yS is NULL.
IDA BAD T The time t is not in the allowed range.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last IDASolve call.

IDAGetSensDky1

Call flag = IDAGetSensDky1(ida mem, t, k, is, dkyS);

Description The function IDAGetSensDky1 returns the k-th derivative of the is-th sensitivity solu-
tion vector after a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
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t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by idas.

k (int) order of derivative.
is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).
dkyS (N Vector) the vector containing the derivative on output. The space for dkyS

must be allocated by the user.

Return value The return value flag of IDAGetSensDky1 is one of:

IDA SUCCESS IDAGetQuadDky1 succeeded.
IDA MEM NULL ida mem was NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.
IDA BAD DKY dkyS is NULL.
IDA BAD IS The index is is not in the allowed range.
IDA BAD K k is not in the range 0, 1, ..., klast.
IDA BAD T The time t is not in the allowed range.

5.2.6 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default
values through calls to IDASetSens* functions. Table 5.1 lists all forward sensitivity optional input
functions in idas which are described in detail in the remainder of this section.

IDASetSensParams

Call flag = IDASetSensParams(ida mem, p, pbar, plist);

Description The function IDASetSensParams specifies problem parameter information for sensitivity
calculations.

Arguments ida mem (void *) pointer to the idas memory block.
p (realtype *) a pointer to the array of real problem parameters used to evalu-

ate F (t, y, ẏ, p). If non-NULL, p must point to a field in the user’s data structure
user data passed to the user’s residual function. (See §5.1).

pbar (realtype *) an array of Ns positive scaling factors. If non-NULL, pbar must
have all its components > 0.0. (See §5.1).

plist (int *) an array of Ns non-negative indices to specify which components of p
to use in estimating the sensitivity equations. If non-NULL, plist must have
all components ≥ 0. (See §5.1).

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.
IDA ILL INPUT An argument has an illegal value.

Notes This function must be preceded by a call to IDASensInit. !

Table 5.1: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity scaling factors IDASetSensParams NULL
DQ approximation method IDASetSensDQMethod centered,0.0
Error control strategy IDASetSensErrCon SUNFALSE
Maximum no. of nonlinear iterations IDASetSensMaxNonlinIters 3



94 Using IDAS for Forward Sensitivity Analysis

IDASetSensDQMethod

Call flag = IDASetSensDQMethod(ida mem, DQtype, DQrhomax);

Description The function IDASetSensDQMethod specifies the difference quotient strategy in the case
in which the residual of the sensitivity equations are to be computed by idas.

Arguments ida mem (void *) pointer to the idas memory block.
DQtype (int) specifies the difference quotient type and can be either IDA CENTERED or

IDA FORWARD.
DQrhomax (realtype) positive value of the selection parameter used in deciding switch-

ing between a simultaneous or separate approximation of the two terms in the
sensitivity residual.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA ILL INPUT An argument has an illegal value.

Notes If DQrhomax = 0.0, then no switching is performed. The approximation is done simul-
taneously using either centered or forward finite differences, depending on the value of
DQtype. For values of DQrhomax ≥ 1.0, the simultaneous approximation is used when-
ever the estimated finite difference perturbations for states and parameters are within
a factor of DQrhomax, and the separate approximation is used otherwise. Note that a
value DQrhomax < 1.0 will effectively disable switching. See §2.5 for more details.

The default value are DQtype=IDA CENTERED and DQrhomax= 0.0.

IDASetSensErrCon

Call flag = IDASetSensErrCon(ida mem, errconS);

Description The function IDASetSensErrCon specifies the error control strategy for sensitivity vari-
ables.

Arguments ida mem (void *) pointer to the idas memory block.
errconS (booleantype) specifies whether sensitivity variables are included (SUNTRUE)

or not (SUNFALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes By default, errconS is set to SUNFALSE. If errconS=SUNTRUE then both state variables
and sensitivity variables are included in the error tests. If errconS=SUNFALSE then
the sensitivity variables are excluded from the error tests. Note that, in any event, all
variables are considered in the convergence tests.

IDASetSensMaxNonlinIters

Call flag = IDASetSensMaxNonlinIters(ida mem, maxcorS);

Description The function IDASetSensMaxNonlinIters specifies the maximum number of nonlinear
solver iterations for sensitivity variables per step.

Arguments ida mem (void *) pointer to the idas memory block.
maxcorS (int) maximum number of nonlinear solver iterations allowed per step (> 0).

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 3.
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5.2.7 Optional outputs for forward sensitivity analysis

5.2.7.1 Main solver optional output functions

Optional output functions that return statistics and solver performance information related to forward
sensitivity computations are listed in Table 5.2 and described in detail in the remainder of this section.

IDAGetSensNumResEvals

Call flag = IDAGetSensNumResEvals(ida mem, &nfSevals);

Description The function IDAGetSensNumResEvals returns the number of calls to the sensitivity
residual function.

Arguments ida mem (void *) pointer to the idas memory block.
nfSevals (long int) number of calls to the sensitivity residual function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.

IDAGetNumResEvalsSens

Call flag = IDAGetNumResEvalsSens(ida mem, &nfevalsS);

Description The function IDAGetNumResEvalsSEns returns the number of calls to the user’s residual
function due to the internal finite difference approximation of the sensitivity residuals.

Arguments ida mem (void *) pointer to the idas memory block.
nfevalsS (long int) number of calls to the user residual function for sensitivity resid-

uals.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the internal finite difference approximation routines
are used for the evaluation of the sensitivity residuals.

Table 5.2: Forward sensitivity optional outputs

Optional output Routine name
No. of calls to sensitivity residual function IDAGetSensNumResEvals
No. of calls to residual function for sensitivity IDAGetNumResEvalsSens
No. of sensitivity local error test failures IDAGetSensNumErrTestFails
No. of calls to lin. solv. setup routine for sens. IDAGetSensNumLinSolvSetups
Sensitivity-related statistics as a group IDAGetSensStats
Error weight vector for sensitivity variables IDAGetSensErrWeights
No. of sens. nonlinear solver iterations IDAGetSensNumNonlinSolvIters
No. of sens. convergence failures IDAGetSensNumNonlinSolvConvFails
Sens. nonlinear solver statistics as a group IDAGetSensNonlinSolvStats
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IDAGetSensNumErrTestFails

Call flag = IDAGetSensNumErrTestFails(ida mem, &nSetfails);

Description The function IDAGetSensNumErrTestFails returns the number of local error test fail-
ures for the sensitivity variables that have occurred.

Arguments ida mem (void *) pointer to the idas memory block.
nSetfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the sensitivity variables have been included in the
error test (see IDASetSensErrCon in §5.2.6). Even in that case, this counter is not
incremented if the ism=IDA SIMULTANEOUS sensitivity solution method has been used.

IDAGetSensNumLinSolvSetups

Call flag = IDAGetSensNumLinSolvSetups(ida mem, &nlinsetupsS);

Description The function IDAGetSensNumLinSolvSetups returns the number of calls to the linear
solver setup function due to forward sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block.
nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if Newton iteration has been used and staggered sensi-
tivity solution method (ism=IDA STAGGERED) was specified in the call to IDASensInit
(see §5.2.1).

IDAGetSensStats

Call flag = IDAGetSensStats(ida mem, &nfSevals, &nfevalsS, &nSetfails,
&nlinsetupsS);

Description The function IDAGetSensStats returns all of the above sensitivity-related solver statis-
tics as a group.

Arguments ida mem (void *) pointer to the idas memory block.
nfSevals (long int) number of calls to the sensitivity residual function.
nfevalsS (long int) number of calls to the user-supplied residual function.
nSetfails (long int) number of error test failures.
nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output values have been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.
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IDAGetSensErrWeights

Call flag = IDAGetSensErrWeights(ida mem, eSweight);

Description The function IDAGetSensErrWeights returns the sensitivity error weight vectors at the
current time. These are the reciprocals of the Wi of (2.7) for the sensitivity variables.

Arguments ida mem (void *) pointer to the idas memory block.
eSweight (N Vector S) pointer to the array of error weight vectors.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate memory for eweightS.

IDAGetSensNumNonlinSolvIters

Call flag = IDAGetSensNumNonlinSolvIters(ida mem, &nSniters);

Description The function IDAGetSensNumNonlinSolvIters returns the number of nonlinear itera-
tions performed for sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block.
nSniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if ism was IDA STAGGERED in the call to IDASensInit
(see §5.2.1).

IDAGetSensNumNonlinSolvConvFails

Call flag = IDAGetSensNumNonlinSolvConvFails(ida mem, &nSncfails);

Description The function IDAGetSensNumNonlinSolvConvFails returns the number of nonlinear
convergence failures that have occurred for sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block.
nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if ism was IDA STAGGERED in the call to IDASensInit
(see §5.2.1).

IDAGetSensNonlinSolvStats

Call flag = IDAGetSensNonlinSolvStats(ida mem, &nSniters, &nSncfails);

Description The function IDAGetSensNonlinSolvStats returns the sensitivity-related nonlinear
solver statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.
nSniters (long int) number of nonlinear iterations performed.
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nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output values have been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.

5.2.7.2 Initial condition calculation optional output functions

The sensitivity consistent initial conditions found by idas (after a successful call to IDACalcIC) can
be obtained by calling the following function:

IDAGetSensConsistentIC

Call flag = IDAGetSensConsistentIC(ida mem, yyS0 mod, ypS0 mod);

Description The function IDAGetSensConsistentIC returns the corrected initial conditions calcu-
lated by IDACalcIC for sensitivities variables.

Arguments ida mem (void *) pointer to the idas memory block.
yyS0 mod (N Vector *) a pointer to an array of Ns vectors containing consistent sensi-

tivity vectors.
ypS0 mod (N Vector *) a pointer to an array of Ns vectors containing consistent sensi-

tivity derivative vectors.

Return value The return value flag (of type int) is one of

IDA SUCCESS IDAGetSensConsistentIC succeeded.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS The function IDASensInit has not been previously called.
IDA ILL INPUT IDASolve has been already called.

Notes If the consistent sensitivity vectors or consistent derivative vectors are not desired, pass
NULL for the corresponding argument.

The user must allocate space for yyS0 mod and ypS0 mod (if not NULL).!

5.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §4.6, when using idas for
forward sensitivity analysis, the user has the option of providing a routine that calculates the residual
of the sensitivity equations (2.12).

By default, idas uses difference quotient approximation routines for the residual of the sensitivity
equations. However, idas allows the option for user-defined sensitivity residual routines (which also
provides a mechanism for interfacing idas to routines generated by automatic differentiation).

The user may provide the residuals of the sensitivity equations (2.12), for all sensitivity parameters
at once, through a function of type IDASensResFn defined by:

IDASensResFn

Definition typedef int (*IDASensResFn)(int Ns, realtype t,
N Vector yy, N Vector yp, N Vector resval,
N Vector *yS, N Vector *ypS,
N Vector *resvalS, void *user data,
N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the sensitivity residual for all sensitivity equations. It must com-
pute the vectors (∂F/∂y)si(t)+(∂F/∂ẏ)ṡi(t)+(∂F/∂pi) and store them in resvalS[i].
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Arguments t is the current value of the independent variable.
yy is the current value of the state vector, y(t).
yp is the current value of ẏ(t).
resval contains the current value F of the original DAE residual.
yS contains the current values of the sensitivities si.
ypS contains the current values of the sensitivity derivatives ṡi.
resvalS contains the output sensitivity residual vectors.
user data is a pointer to user data.
tmp1

tmp2

tmp3 are N Vectors of length N which can be used as temporary storage.

Return value An IDASensResFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA SRES FAIL is returned).

Notes There is one situation in which recovery is not possible even if IDASensResFn function
returns a recoverable error flag. That is when this occurs at the very first call to the
IDASensResFn, in which case idas returns IDA FIRST RES FAIL.

5.4 Integration of quadrature equations depending on forward
sensitivities

idas provides support for integration of quadrature equations that depends not only on the state
variables but also on forward sensitivities.

The following is an overview of the sequence of calls in a user’s main program in this situation.
Steps that are unchanged from the skeleton program presented in §5.1 are grayed out. See also §4.7.

1. Initialize parallel or multi-threaded environment

2. Set problem dimensions, etc.

3. Set vectors of initial values

4. Create idas object

5. Initialize idas solver

6. Specify integration tolerances

7. Set optional inputs

8. Create matrix object

9. Create linear solver object

10. Set linear solver optional inputs

11. Initialize sensitivity-independent quadrature problem

12. Define the sensitivity problem

13. Set sensitivity initial conditions

14. Activate sensitivity calculations

15. Set sensitivity analysis optional inputs
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16. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

17. Initialize sensitivity-dependent quadrature integration

Call IDAQuadSensInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §5.4.1 for details.

18. Set optional inputs for sensitivity-dependent quadrature integration

Call IDASetQuadSensErrCon to indicate whether or not quadrature variables should be used in
the step size control mechanism. If so, one of the IDAQuadSens*tolerances functions must be
called to specify the integration tolerances for quadrature variables. See §5.4.4 for details.

19. Advance solution in time

20. Extract sensitivity-dependent quadrature variables

Call IDAGetQuadSens, IDAGetQuadSens1, IDAGetQuadSensDky or IDAGetQuadSensDky1 to obtain
the values of the quadrature variables or their derivatives at the current time. See §5.4.3 for details.

21. Get optional outputs

22. Extract sensitivity solution

23. Get sensitivity-dependent quadrature optional outputs

Call IDAGetQuadSens* functions to obtain optional output related to the integration of sensitivity-
dependent quadratures. See §5.4.5 for details.

24. Deallocate memory for solutions vector

25. Deallocate memory for sensitivity vectors

26. Deallocate memory for sensitivity-dependent quadrature variables

27. Free solver memory

28. Free vector specification memory

29. Free linear solver and matrix memory

30. Finalize MPI, if used

Note: IDAQuadSensInit (step 17 above) can be called and quadrature-related optional inputs (step
18 above) can be set, anywhere between steps 12 and 19.

5.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function IDAQuadSensInit activates integration of quadrature equations depending on sensitiv-
ities and allocates internal memory related to these calculations. If rhsQS is input as NULL, then
idas uses an internal function that computes difference quotient approximations to the functions
q̄i = (∂q/∂y)si + (∂q/∂ẏ)ṡi + ∂q/∂pi, in the notation of (2.10). The form of the call to this function
is as follows:

IDAQuadSensInit

Call flag = IDAQuadSensInit(ida mem, rhsQS, yQS0);

Description The function IDAQuadSensInit provides required problem specifications, allocates in-
ternal memory, and initializes quadrature integration.
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Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
rhsQS (IDAQuadSensRhsFn) is the C function which computes fQS , the right-hand

side of the sensitivity-dependent quadrature equations (for full details see
§5.4.6).

yQS0 (N Vector *) contains the initial values of sensitivity-dependent quadratures.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadSensInit was successful.
IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.
IDA MEM FAIL A memory allocation request failed.
IDA NO SENS The sensitivities were not initialized by a prior call to IDASensInit.
IDA ILL INPUT The parameter yQS0 is NULL.

Notes Before calling IDAQuadSensInit, the user must enable the sensitivites by calling !

IDASensInit.

If an error occurred, IDAQuadSensInit also sends an error message to the error handler
function.

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)Nq

• If IDAQuadSensSVtolerances is called: lenrw = lenrw +NqNs

and the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)Nq

• If IDAQuadSensSVtolerances is called: leniw = leniw +NqNs

The function IDAQuadSensReInit, useful during the solution of a sequence of problems of same
size, reinitializes the quadrature related internal memory and must follow a call to IDAQuadSensInit.
The number Nq of quadratures as well as the number Ns of sensitivities are assumed to be unchanged
from the prior call to IDAQuadSensInit. The call to the IDAQuadSensReInit function has the form:

IDAQuadSensReInit

Call flag = IDAQuadSensReInit(ida mem, yQS0);

Description The function IDAQuadSensReInit provides required problem specifications and reini-
tializes the sensitivity-dependent quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.
yQS0 (N Vector *) contains the initial values of sensitivity-dependent quadratures.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadSensReInit was successful.
IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.
IDA NO SENS Memory space for the sensitivity calculation was not allocated by a

prior call to IDASensInit.
IDA NO QUADSENS Memory space for the sensitivity quadratures integration was not

allocated by a prior call to IDAQuadSensInit.
IDA ILL INPUT The parameter yQS0 is NULL.

Notes If an error occurred, IDAQuadSensReInit also sends an error message to the error
handler function.
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IDAQuadSensFree

Call IDAQuadSensFree(ida mem);

Description The function IDAQuadSensFree frees the memory allocated for sensitivity quadrature
integration.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDAQuadSensFree has no return value.

Notes In general, IDAQuadSensFree need not be called by the user as it is called automatically
by IDAFree.

5.4.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve is exactly the
same as in §4.5.6. However, in this case the return value flag can also be one of the following:
IDA QSRHS FAIL The sensitivity quadrature right-hand side function failed in an unrecoverable

manner.

IDA FIRST QSRHS ERR The sensitivity quadrature right-hand side function failed at the first call.

IDA REP QSRHS ERR Convergence test failures occurred too many times due to repeated recover-
able errors in the quadrature right-hand side function. The IDA REP RES ERR
will also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming the
sensitivity quadrature variables are included in the error tests).

5.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to IDAQuadSensInit, or reinitial-
ized by a call to IDAQuadSensReInit, then idas computes a solution, sensitivities, and quadratures
depending on sensitivities at time t. However, IDASolve will still return only the solutions y and ẏ.
Sensitivity-dependent quadratures can be obtained using one of the following functions:

IDAGetQuadSens

Call flag = IDAGetQuadSens(ida mem, &tret, yQS);

Description The function IDAGetQuadSens returns the quadrature sensitivity solution vectors after
a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
tret (realtype) the time reached by the solver (output).
yQS (N Vector *) array of Ns computed sensitivity-dependent quadrature vectors.

Return value The return value flag of IDAGetQuadSens is one of:

IDA SUCCESS IDAGetQuadSens was successful.
IDA MEM NULL ida mem was NULL.
IDA NO SENS Sensitivities were not activated.
IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.
IDA BAD DKY yQS or one of the yQS[i] is NULL.

The function IDAGetQuadSensDky computes the k-th derivatives of the interpolating polynomials for
the sensitivity-dependent quadrature variables at time t. This function is called by IDAGetQuadSens
with k = 0, but may also be called directly by the user.
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IDAGetQuadSensDky

Call flag = IDAGetQuadSensDky(ida mem, t, k, dkyQS);

Description The function IDAGetQuadSensDky returns derivatives of the quadrature sensitivities
solution vectors after a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
t (realtype) the time at which information is requested. The time t must fall

within the interval defined by the last successful step taken by idas.
k (int) order of the requested derivative.
dkyQS (N Vector *) array of Ns vectors containing the derivatives. This vector array

must be allocated by the user.

Return value The return value flag of IDAGetQuadSensDky is one of:

IDA SUCCESS IDAGetQuadSensDky succeeded.
IDA MEM NULL ida mem was NULL.
IDA NO SENS Sensitivities were not activated.
IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.
IDA BAD DKY dkyQS or one of the vectors dkyQS[i] is NULL.
IDA BAD K k is not in the range 0, 1, ..., klast.
IDA BAD T The time t is not in the allowed range.

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions IDAGetQuadSens1 and IDAGetQuadSensDky1, defined as follows:

IDAGetQuadSens1

Call flag = IDAGetQuadSens1(ida mem, &tret, is, yQS);

Description The function IDAGetQuadSens1 returns the is-th sensitivity of quadratures after a
successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
tret (realtype) the time reached by the solver (output).
is (int) specifies which sensitivity vector is to be returned (0 ≤is< Ns).
yQS (N Vector) the computed sensitivity-dependent quadrature vector.

Return value The return value flag of IDAGetQuadSens1 is one of:

IDA SUCCESS IDAGetQuadSens1 was successful.
IDA MEM NULL ida mem was NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.
IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.
IDA BAD IS The index is is not in the allowed range.
IDA BAD DKY yQS is NULL.

IDAGetQuadSensDky1

Call flag = IDAGetQuadSensDky1(ida mem, t, k, is, dkyQS);

Description The function IDAGetQuadSensDky1 returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
t (realtype) specifies the time at which sensitivity information is requested.

The time t must fall within the interval defined by the last successful step
taken by idas.

k (int) order of derivative.
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is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).
dkyQS (N Vector) the vector containing the derivative. The space for dkyQS must be

allocated by the user.

Return value The return value flag of IDAGetQuadSensDky1 is one of:

IDA SUCCESS IDAGetQuadDky1 succeeded.
IDA MEM NULL ida mem was NULL.
IDA NO SENS Forward sensitivity analysis was not initialized.
IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.
IDA BAD DKY dkyQS is NULL.
IDA BAD IS The index is is not in the allowed range.
IDA BAD K k is not in the range 0, 1, ..., klast.
IDA BAD T The time t is not in the allowed range.

5.4.4 Optional inputs for sensitivity-dependent quadrature integration

idas provides the following optional input functions to control the integration of sensitivity-dependent
quadrature equations.

IDASetQuadSensErrCon

Call flag = IDASetQuadSensErrCon(ida mem, errconQS)

Description The function IDASetQuadSensErrCon specifies whether or not the quadrature variables
are to be used in the local error control mechanism. If they are, the user must specify
the error tolerances for the quadrature variables by calling IDAQuadSensSStolerances,
IDAQuadSensSVtolerances, or IDAQuadSensEEtolerances.

Arguments ida mem (void *) pointer to the idas memory block.
errconQS (booleantype) specifies whether sensitivity quadrature variables are included

(SUNTRUE) or not (SUNFALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Sensitivities were not activated.
IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

Notes By default, errconQS is set to SUNFALSE.

It is illegal to call IDASetQuadSensErrCon before a call to IDAQuadSensInit.!

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

IDAQuadSensSStolerances

Call flag = IDAQuadSensSVtolerances(ida mem, reltolQS, abstolQS);

Description The function IDAQuadSensSStolerances specifies scalar relative and absolute toler-
ances.

Arguments ida mem (void *) pointer to the idas memory block.
reltolQS (realtype) is the scalar relative error tolerance.
abstolQS (realtype*) is a pointer to an array containing the Ns scalar absolute error

tolerances.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.
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IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Sensitivities were not activated.
IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.
IDA ILL INPUT One of the input tolerances was negative.

IDAQuadSensSVtolerances

Call flag = IDAQuadSensSVtolerances(ida mem, reltolQS, abstolQS);

Description The function IDAQuadSensSVtolerances specifies scalar relative and vector absolute
tolerances.

Arguments ida mem (void *) pointer to the idas memory block.
reltolQS (realtype) is the scalar relative error tolerance.
abstolQS (N Vector*) is an array of Ns variables of type N Vector. The N Vector from

abstolS[is] specifies the vector tolerances for is-th quadrature sensitivity.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.
IDA NO QUAD Quadrature integration was not initialized.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Sensitivities were not activated.
IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.
IDA ILL INPUT One of the input tolerances was negative.

IDAQuadSensEEtolerances

Call flag = IDAQuadSensEEtolerances(ida mem);

Description The function IDAQuadSensEEtolerances specifies that the tolerances for the sensitivity-
dependent quadratures should be estimated from those provided for the pure quadrature
variables.

Arguments ida mem (void *) pointer to the idas memory block.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO SENS Sensitivities were not activated.
IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

Notes When IDAQuadSensEEtolerances is used, before calling IDASolve, integration of pure
quadratures must be initialized (see 4.7.1) and tolerances for pure quadratures must be
also specified (see 4.7.4).

5.4.5 Optional outputs for sensitivity-dependent quadrature integration

idas provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

IDAGetQuadSensNumRhsEvals

Call flag = IDAGetQuadSensNumRhsEvals(ida mem, &nrhsQSevals);

Description The function IDAGetQuadSensNumRhsEvals returns the number of calls made to the
user’s quadrature right-hand side function.

Arguments ida mem (void *) pointer to the idas memory block.
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nrhsQSevals (long int) number of calls made to the user’s rhsQS function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

IDAGetQuadSensNumErrTestFails

Call flag = IDAGetQuadSensNumErrTestFails(ida mem, &nQSetfails);

Description The function IDAGetQuadSensNumErrTestFails returns the number of local error test
failures due to quadrature variables.

Arguments ida mem (void *) pointer to the idas memory block.
nQSetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

IDAGetQuadSensErrWeights

Call flag = IDAGetQuadSensErrWeights(ida mem, eQSweight);

Description The function IDAGetQuadSensErrWeights returns the quadrature error weights at the
current time.

Arguments ida mem (void *) pointer to the idas memory block.
eQSweight (N Vector *) array of quadrature error weight vectors at the current time.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

Notes The user must allocate memory for eQSweight.!

If quadratures were not included in the error control mechanism (through a call to
IDASetQuadSensErrCon with errconQS=SUNTRUE), IDAGetQuadSensErrWeights does
not set the eQSweight vector.

IDAGetQuadSensStats

Call flag = IDAGetQuadSensStats(ida mem, &nrhsQSevals, &nQSetfails);

Description The function IDAGetQuadSensStats returns the idas integrator statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.
nrhsQSevals (long int) number of calls to the user’s rhsQS function.
nQSetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of

IDA SUCCESS the optional output values have been successfully set.
IDA MEM NULL the ida mem pointer is NULL.
IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.
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5.4.6 User-supplied function for sensitivity-dependent quadrature integra-
tion

For the integration of sensitivity-dependent quadrature equations, the user must provide a function
that defines the right-hand side of the sensitivity quadrature equations. For sensitivities of quadratures
(2.10) with integrands q, the appropriate right-hand side functions are given by q̄i = (∂q/∂y)si +
(∂q/∂ẏ)ṡi + ∂q/∂pi. This user function must be of type IDAQuadSensRhsFn, defined as follows:

IDAQuadSensRhsFn

Definition typedef int (*IDAQuadSensRhsFn)(int Ns, realtype t, N Vector yy,
N Vector yp, N Vector *yyS, N Vector *ypS,
N Vector rrQ, N Vector *rhsvalQS,
void *user data, N Vector tmp1,
N Vector tmp2, N Vector tmp3)

Purpose This function computes the sensitivity quadrature equation right-hand side for a given
value of the independent variable t and state vector y.

Arguments Ns is the number of sensitivity vectors.
t is the current value of the independent variable.
yy is the current value of the dependent variable vector, y(t).
yp is the current value of the dependent variable vector, ẏ(t).
yyS is an array of Ns variables of type N Vector containing the dependent sen-

sitivity vectors si.
ypS is an array of Ns variables of type N Vector containing the dependent sen-

sitivity derivatives ṡi.
rrQ is the current value of the quadrature right-hand side q.
rhsvalQS contains the Ns output vectors.
user data is the user data pointer passed to IDASetUserData.
tmp1

tmp2

tmp3 are N Vectors which can be used as temporary storage.

Return value An IDAQuadSensRhsFn should return 0 if successful, a positive value if a recoverable
error occurred (in which case idas will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA QRHS FAIL is returned).

Notes Allocation of memory for rhsvalQS is automatically handled within idas.

Both yy and yp are of type N Vector and both yyS and ypS are pointers to an array
containing Ns vectors of type N Vector. It is the user’s responsibility to access the vector
data consistently (including the use of the correct accessor macros from each nvector
implementation). For the sake of computational efficiency, the vector functions in the
two nvector implementations provided with idas do not perform any consistency
checks with respect to their N Vector arguments (see §7.1 and §7.2).

There is one situation in which recovery is not possible even if IDAQuadSensRhsFn
function returns a recoverable error flag. That is when this occurs at the very first call
to the IDAQuadSensRhsFn, in which case idas returns IDA FIRST QSRHS ERR).

5.5 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of idas
may appear at first glance to be erroneous. One would expect that, in such cases, the sensitivity
variables would not influence in any way the step size selection.



108 Using IDAS for Forward Sensitivity Analysis

The short explanation of this behavior is that the step size selection implemented by the error
control mechanism in idas is based on the magnitude of the correction calculated by the nonlinear
solver. As mentioned in §5.2.1, even with partial error control selected in the call to IDASensInit,
the sensitivity variables are included in the convergence tests of the nonlinear solver.

When using the simultaneous corrector method (§2.5), the nonlinear system that is solved at each
step involves both the state and sensitivity equations. In this case, it is easy to see how the sensitivity
variables may affect the convergence rate of the nonlinear solver and therefore the step size selection.
The case of the staggered corrector approach is more subtle. The sensitivity variables at a given
step are computed only once the solver for the nonlinear state equations has converged. However, if
the nonlinear system corresponding to the sensitivity equations has convergence problems, idas will
attempt to improve the initial guess by reducing the step size in order to provide a better prediction
of the sensitivity variables. Moreover, even if there are no convergence failures in the solution of the
sensitivity system, idas may trigger a call to the linear solver’s setup routine which typically involves
reevaluation of Jacobian information (Jacobian approximation in the case of idadense and idaband,
or preconditioner data in the case of the Krylov solvers). The new Jacobian information will be used
by subsequent calls to the nonlinear solver for the state equations and, in this way, potentially affect
the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver
convergence failures or calls to the linear solver setup routine have been triggered by convergence
problems due to the state or the sensitivity equations. When using one of the staggered corrector
methods, however, these situations can be identified by carefully monitoring the diagnostic information
provided through optional outputs. If there are no convergence failures in the sensitivity nonlinear
solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given system
of DAEs on the step size selection (through the mechanisms described above) is problem-dependent
and can therefore lead to either an increase or decrease of the total number of steps that idas takes to
complete the simulation. At first glance, one would expect that the impact of the sensitivity variables,
if any, would be in the direction of increasing the step size and therefore reducing the total number
of steps. The argument for this is that the presence of the sensitivity variables in the convergence
test of the nonlinear solver can only lead to additional iterations (and therefore a smaller iteration
error), or to additional calls to the linear solver setup routine (and therefore more up-to-date Jacobian
information), both of which will lead to larger steps being taken by idas. However, this is true only
locally. Overall, a larger integration step taken at a given time may lead to step size reductions at
later times, due to either nonlinear solver convergence failures or error test failures.



Chapter 6

Using IDAS for Adjoint Sensitivity
Analysis

This chapter describes the use of idas to compute sensitivities of derived functions using adjoint sensi-
tivity analysis. As mentioned before, the adjoint sensitivity module of idas provides the infrastructure
for integrating backward in time any system of DAEs that depends on the solution of the original IVP,
by providing various interfaces to the main idas integrator, as well as several supporting user-callable
functions. For this reason, in the following sections we refer to the backward problem and not to the
adjoint problem when discussing details relevant to the DAEs that are integrated backward in time.
The backward problem can be the adjoint problem (2.20) or (2.25), and can be augmented with some
quadrature differential equations.

idas uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable functions and of the user-supplied functions
that were not already described in Chapter 4.

6.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of idas. The user program
is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer
many of the details to the later sections. As in §4.4, most steps are independent of the nvector
implementation used. Where this is not the case, refer to Chapter 7 for specific names. Steps that
are unchanged from the skeleton programs presented in §4.4, §5.1, and §5.4, are grayed out.

1. Include necessary header files

The idas.h header file also defines additional types, constants, and function prototypes for the
adjoint sensitivity module user-callable functions. In addition, the main program should include
an nvector implementation header file (for the particular implementation used) and, if Newton
iteration was selected, the main header file of the desired linear solver module.

2. Initialize parallel or multi-threaded environment

Forward problem

3. Set problem dimensions etc. for the forward problem

4. Set initial conditions for the forward problem

5. Create idas object for the forward problem



110 Using IDAS for Adjoint Sensitivity Analysis

6. Initialize idas solver for the forward problem

7. Specify integration tolerances for forward problem

8. Set optional inputs for the forward problem

9. Create matrix object for the forward problem

10. Create linear solver object for the forward problem

11. Set linear solver optional inputs for the forward problem

12. Attach linear solver module for the forward problem

13. Initialize quadrature problem or problems for forward problems, using IDAQuadInit
and/or IDAQuadSensInit.

14. Initialize forward sensitivity problem

15. Specify rootfinding

16. Allocate space for the adjoint computation

Call IDAAdjInit() to allocate memory for the combined forward-backward problem (see §6.2.1
for details). This call requires Nd, the number of steps between two consecutive checkpoints.
IDAAdjInit also specifies the type of interpolation used (see §2.6.3).

17. Integrate forward problem

Call IDASolveF, a wrapper for the idas main integration function IDASolve, either in IDA NORMAL
mode to the time tout or in IDA ONE STEP mode inside a loop (if intermediate solutions of the
forward problem are desired (see §6.2.3)). The final value of tret is then the maximum allowable
value for the endpoint T of the backward problem.

Backward problem(s)

18. Set problem dimensions etc. for the backward problem

This generally includes NB, the number of variables in the backward problem and possibly the
local vector length NBlocal.

19. Set initial values for the backward problem

Set the endpoint time tB0 = T , and set the corresponding vectors yB0 and ypB0 at which the
backward problem starts.

20. Create the backward problem

Call IDACreateB, a wrapper for IDACreate, to create the idas memory block for the new backward
problem. Unlike IDACreate, the function IDACreateB does not return a pointer to the newly
created memory block (see §6.2.4). Instead, this pointer is attached to the internal adjoint memory
block (created by IDAAdjInit) and returns an identifier called which that the user must later
specify in any actions on the newly created backward problem.

21. Allocate memory for the backward problem

Call IDAInitB (or IDAInitBS, when the backward problem depends on the forward sensitivi-
ties). The two functions are actually wrappers for IDAInit and allocate internal memory, specify
problem data, and initialize idas at tB0 for the backward problem (see §6.2.4).

22. Specify integration tolerances for backward problem
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Call IDASStolerancesB(...) or IDASVtolerancesB(...) to specify a scalar relative tolerance
and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances,
respectively. The functions are wrappers for IDASStolerances(...) and IDASVtolerances(...)
but they require an extra argument which, the identifier of the backward problem returned by
IDACreateB. See §6.2.5 for more information.

23. Set optional inputs for the backward problem

Call IDASet*B functions to change from their default values any optional inputs that control the
behavior of idas. Unlike their counterparts for the forward problem, these functions take an extra
argument which, the identifier of the backward problem returned by IDACreateB (see §6.2.9).

24. Create matrix object for the backward problem

If a direct linear solver is to be used within a Newton iteration then a template Jacobian ma-
trix must be created by using the appropriate functions defined by the particular sunmatrix
implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

Note also that it is not required to use the same matrix type for both the forward and the backward
problems.

25. Create linear solver object for the backward problem

Create the linear solver object for the backward problem by using the appropriate functions defined
by the particular sunlinsol implementation desired.

Note that it is not required to use the same linear solver module for both the forward and the
backward problems; for example, the forward problem could be solved with the idadls linear
solver module and the backward problem with idaspils linear solver module.

26. Set linear solver interface optional inputs for the backward problem

Call IDADlsSet*B or IDASpilsSet*B functions to change optional inputs specific to that linear
solver interface. See §6.2.9 for details.

27. Initialize quadrature calculation

If additional quadrature equations must be evaluated, call IDAQuadInitB or IDAQuadInitBS (if
quadrature depends also on the forward sensitivities) as shown in §6.2.11.1. These functions are
wrappers around IDAQuadInit and can be used to initialize and allocate memory for quadrature
integration. Optionally, call IDASetQuad*B functions to change from their default values optional
inputs that control the integration of quadratures during the backward phase.

28. Integrate backward problem

Call IDASolveB, a second wrapper around the idas main integration function IDASolve, to inte-
grate the backward problem from tB0 (see §6.2.8). This function can be called either in IDA NORMAL
or IDA ONE STEP mode. Typically, IDASolveB will be called in IDA NORMAL mode with an end time
equal to the initial time t0 of the forward problem.

29. Extract quadrature variables

If applicable, call IDAGetQuadB, a wrapper around IDAGetQuad, to extract the values of the quadra-
ture variables at the time returned by the last call to IDASolveB. See §6.2.11.2.

30. Deallocate memory

Upon completion of the backward integration, call all necessary deallocation functions. These
include appropriate destructors for the vectors y and yB, a call to IDAFree to free the idas
memory block for the forward problem. If one or more additional adjoint sensitivity analyses are
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to be done for this problem, a call to IDAAdjFree (see §6.2.1) may be made to free and deallocate
the memory allocated for the backward problems, followed by a call to IDAAdjInit.

31. Free linear solver and matrix memory for the backward problem

32. Finalize MPI, if used

The above user interface to the adjoint sensitivity module in idas was motivated by the desire to
keep it as close as possible in look and feel to the one for DAE IVP integration. Note that if steps
(18)-(29) are not present, a program with the above structure will have the same functionality as one
described in §4.4 for integration of DAEs, albeit with some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps
(18)-(29) above for each successive backward problem. In the process, each call to IDACreateB creates
a new value of the identifier which.

6.2 User-callable functions for adjoint sensitivity analysis

6.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to IDASolveF, memory for the
combined forward-backward problem must be allocated by a call to the function IDAAdjInit. The
form of the call to this function is

IDAAdjInit

Call flag = IDAAdjInit(ida mem, Nd, interpType);

Description The function IDAAdjInit updates idas memory block by allocating the internal memory
needed for backward integration. Space is allocated for the Nd = Nd interpolation data
points, and a linked list of checkpoints is initialized.

Arguments ida mem (void *) is the pointer to the idas memory block returned by a previous
call to IDACreate.

Nd (long int) is the number of integration steps between two consecutive
checkpoints.

interpType (int) specifies the type of interpolation used and can be IDA POLYNOMIAL
or IDA HERMITE, indicating variable-degree polynomial and cubic Hermite
interpolation, respectively (see §2.6.3).

Return value The return value flag (of type int) is one of:

IDA SUCCESS IDAAdjInit was successful.
IDA MEM FAIL A memory allocation request has failed.
IDA MEM NULL ida mem was NULL.
IDA ILL INPUT One of the parameters was invalid: Nd was not positive or interpType

is not one of the IDA POLYNOMIAL or IDA HERMITE.

Notes The user must set Nd so that all data needed for interpolation of the forward problem
solution between two checkpoints fits in memory. IDAAdjInit attempts to allocate
space for (2Nd+3) variables of type N Vector.

If an error occurred, IDAAdjInit also sends a message to the error handler function.

IDAAdjReInit

Call flag = IDAAdjReInit(ida mem);

Description The function IDAAdjReInit reinitializes the idas memory block for ASA, assuming
that the number of steps between check points and the type of interpolation remain
unchanged.
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Arguments ida mem (void *) is the pointer to the idas memory block returned by a previous call
to IDACreate.

Return value The return value flag (of type int) is one of:

IDA SUCCESS IDAAdjReInit was successful.
IDA MEM NULL ida mem was NULL.
IDA NO ADJ The function IDAAdjInit was not previously called.

Notes The list of check points (and associated memory) is deleted.

The list of backward problems is kept. However, new backward problems can be added
to this list by calling IDACreateB. If a new list of backward problems is also needed, then
free the adjoint memory (by calling IDAAdjFree) and reinitialize ASA with IDAAdjInit.

The idas memory for the forward and backward problems can be reinitialized separately
by calling IDAReInit and IDAReInitB, respectively.

IDAAdjFree

Call IDAAdjFree(ida mem);

Description The function IDAAdjFree frees the memory related to backward integration allocated
by a previous call to IDAAdjInit.

Arguments The only argument is the idas memory block pointer returned by a previous call to
IDACreate.

Return value The function IDAAdjFree has no return value.

Notes This function frees all memory allocated by IDAAdjInit. This includes workspace
memory, the linked list of checkpoints, memory for the interpolation data, as well as
the idas memory for the backward integration phase.

Unless one or more further calls to IDAAdjInit are to be made, IDAAdjFree should not
be called by the user, as it is invoked automatically by IDAFree.

6.2.2 Adjoint sensitivity optional input

At any time during the integration of the forward problem, the user can disable the checkpointing of
the forward sensitivities by calling the following function:

IDAAdjSetNoSensi

Call flag = IDAAdjSetNoSensi(ida mem);

Description The function IDAAdjSetNoSensi instructs IDASolveF not to save checkpointing data
for forward sensitivities any more.

Arguments ida mem (void *) pointer to the idas memory block.

Return value The return flag (of type int) is one of:

IDA SUCCESS The call to IDACreateB was successful.
IDA MEM NULL The ida mem was NULL.
IDA NO ADJ The function IDAAdjInit has not been previously called.

6.2.3 Forward integration function

The function IDASolveF is very similar to the idas function IDASolve (see §4.5.6) in that it integrates
the solution of the forward problem and returns the solution (y, ẏ). At the same time, however,
IDASolveF stores checkpoint data every Nd integration steps. IDASolveF can be called repeatedly
by the user. Note that IDASolveF is used only for the forward integration pass within an Adjoint
Sensitivity Analysis. It is not for use in Forward Sensitivity Analysis; for that, see Chapter 5. The
call to this function has the form
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IDASolveF

Call flag = IDASolveF(ida mem, tout, &tret, yret, ypret, itask, &ncheck);

Description The function IDASolveF integrates the forward problem over an interval in t and saves
checkpointing data.

Arguments ida mem (void *) pointer to the idas memory block.
tout (realtype) the next time at which a computed solution is desired.
tret (realtype) the time reached by the solver (output).
yret (N Vector) the computed solution vector y.
ypret (N Vector) the computed solution vector ẏ.
itask (int) a flag indicating the job of the solver for the next step. The IDA NORMAL

task is to have the solver take internal steps until it has reached or just passed
the user-specified tout parameter. The solver then interpolates in order to
return an approximate value of y(tout) and ẏ(tout). The IDA ONE STEP option
tells the solver to take just one internal step and return the solution at the
point reached by that step.

ncheck (int) the number of (internal) checkpoints stored so far.

Return value On return, IDASolveF returns vectors yret, ypret and a corresponding independent
variable value t = tret, such that yret is the computed value of y(t) and ypret the
value of ẏ(t). Additionally, it returns in ncheck the number of internal checkpoints
saved; the total number of checkpoint intervals is ncheck+1. The return value flag (of
type int) will be one of the following. For more details see §4.5.6.

IDA SUCCESS IDASolveF succeeded.
IDA TSTOP RETURN IDASolveF succeeded by reaching the optional stopping point.
IDA ROOT RETURN IDASolveF succeeded and found one or more roots. In this case,

tret is the location of the root. If nrtfn > 1, call IDAGetRootInfo
to see which gi were found to have a root.

IDA NO MALLOC The function IDAInit has not been previously called.
IDA ILL INPUT One of the inputs to IDASolveF is illegal.
IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.
IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for

some internal step.
IDA ERR FAILURE Error test failures occurred too many times during one internal

time step or occurred with |h| = hmin.
IDA CONV FAILURE Convergence test failures occurred too many times during one in-

ternal time step or occurred with |h| = hmin.
IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-

ner.
IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.
IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA MEM FAIL A memory allocation request has failed (in an attempt to allocate

space for a new checkpoint).

Notes All failure return values are negative and therefore a test flag< 0 will trap all IDASolveF
failures.

At this time, IDASolveF stores checkpoint information in memory only. Future versions
will provide for a safeguard option of dumping checkpoint data into a temporary file as
needed. The data stored at each checkpoint is basically a snapshot of the idas internal
memory block and contains enough information to restart the integration from that
time and to proceed with the same step size and method order sequence as during the
forward integration.
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In addition, IDASolveF also stores interpolation data between consecutive checkpoints
so that, at the end of this first forward integration phase, interpolation information is
already available from the last checkpoint forward. In particular, if no checkpoints were
necessary, there is no need for the second forward integration phase.

It is illegal to change the integration tolerances between consecutive calls to IDASolveF, !

as this information is not captured in the checkpoint data.

6.2.4 Backward problem initialization functions

The functions IDACreateB and IDAInitB (or IDAInitBS) must be called in the order listed. They
instantiate an idas solver object, provide problem and solution specifications, and allocate internal
memory for the backward problem.

IDACreateB

Call flag = IDACreateB(ida mem, &which);

Description The function IDACreateB instantiates an idas solver object for the backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
which (int) contains the identifier assigned by idas for the newly created backward

problem. Any call to IDA*B functions requires such an identifier.

Return value The return flag (of type int) is one of:

IDA SUCCESS The call to IDACreateB was successful.
IDA MEM NULL The ida mem was NULL.
IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA MEM FAIL A memory allocation request has failed.

There are two initialization functions for the backward problem – one for the case when the
backward problem does not depend on the forward sensitivities, and one for the case when it does.
These two functions are described next.

The function IDAInitB initializes the backward problem when it does not depend on the for-
ward sensitivities. It is essentially wrapper for IDAInit with some particularization for backward
integration, as described below.

IDAInitB

Call flag = IDAInitB(ida mem, which, resB, tB0, yB0, ypB0);

Description The function IDAInitB provides problem specification, allocates internal memory, and
initializes the backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
which (int) represents the identifier of the backward problem.
resB (IDAResFnB) is the C function which computes fB, the residual of the back-

ward DAE problem. This function has the form resB(t, y, yp, yB, ypB,
resvalB, user dataB) (for full details see §6.3.1).

tB0 (realtype) specifies the endpoint T where final conditions are provided for the
backward problem, normally equal to the endpoint of the forward integration.

yB0 (N Vector) is the initial value (at t = tB0) of the backward solution.
ypB0 (N Vector) is the initial derivative value (at t = tB0) of the backward solution.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAInitB was successful.
IDA NO MALLOC The function IDAInit has not been previously called.
IDA MEM NULL The ida mem was NULL.
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IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA BAD TB0 The final time tB0 was outside the interval over which the forward

problem was solved.
IDA ILL INPUT The parameter which represented an invalid identifier, or one of yB0,

ypB0, resB was NULL.

Notes The memory allocated by IDAInitB is deallocated by the function IDAAdjFree.

For the case when backward problem also depends on the forward sensitivities, user must call
IDAInitBS instead of IDAInitB. Only the third argument of each function differs between these
functions.

IDAInitBS

Call flag = IDAInitBS(ida mem, which, resBS, tB0, yB0, ypB0);

Description The function IDAInitBS provides problem specification, allocates internal memory, and
initializes the backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
which (int) represents the identifier of the backward problem.
resBS (IDAResFnBS) is the C function which computes fB, the residual or the back-

ward DAE problem. This function has the form resBS(t, y, yp, yS, ypS,
yB, ypB, resvalB, user dataB) (for full details see §6.3.2).

tB0 (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yB0 (N Vector) is the initial value (at t = tB0) of the backward solution.
ypB0 (N Vector) is the initial derivative value (at t = tB0) of the backward solution.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAInitB was successful.
IDA NO MALLOC The function IDAInit has not been previously called.
IDA MEM NULL The ida mem was NULL.
IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA BAD TB0 The final time tB0 was outside the interval over which the forward

problem was solved.
IDA ILL INPUT The parameter which represented an invalid identifier, or one of yB0,

ypB0, resB was NULL, or sensitivities were not active during the forward
integration.

Notes The memory allocated by IDAInitBS is deallocated by the function IDAAdjFree.

The function IDAReInitB reinitializes idas for the solution of a series of backward problems, each
identified by a value of the parameter which. IDAReInitB is essentially a wrapper for IDAReInit, and
so all details given for IDAReInit in §4.5.10 apply here. Also, IDAReInitB can be called to reinitialize
a backward problem even if it has been initialized with the sensitivity-dependent version IDAInitBS.
Before calling IDAReInitB for a new backward problem, call any desired solution extraction functions
IDAGet** associated with the previous backward problem. The call to the IDAReInitB function has
the form

IDAReInitB

Call flag = IDAReInitB(ida mem, which, tB0, yB0, ypB0)

Description The function IDAReInitB reinitializes an idas backward problem.

Arguments ida mem (void *) pointer to idas memory block returned by IDACreate.
which (int) represents the identifier of the backward problem.
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tB0 (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yB0 (N Vector) is the initial value (at t = tB0) of the backward solution.
ypB0 (N Vector) is the initial derivative value (at t = tB0) of the backward solution.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInitB was successful.
IDA NO MALLOC The function IDAInit has not been previously called.
IDA MEM NULL The ida mem memory block pointer was NULL.
IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA BAD TB0 The final time tB0 is outside the interval over which the forward problem

was solved.
IDA ILL INPUT The parameter which represented an invalid identifier, or one of yB0,

ypB0 was NULL.

6.2.5 Tolerance specification functions for backward problem

One of the following two functions must be called to specify the integration tolerances for the backward
problem. Note that this call must be made after the call to IDAInitB or IDAInitBS.

IDASStolerancesB

Call flag = IDASStolerances(ida mem, which, reltolB, abstolB);

Description The function IDASStolerancesB specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
which (int) represents the identifier of the backward problem.
reltolB (realtype) is the scalar relative error tolerance.
abstolB (realtype) is the scalar absolute error tolerance.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASStolerancesB was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA NO MALLOC The allocation function IDAInit has not been called.
IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA ILL INPUT One of the input tolerances was negative.

IDASVtolerancesB

Call flag = IDASVtolerancesB(ida mem, which, reltolB, abstolB);

Description The function IDASVtolerancesB specifies scalar relative tolerance and vector absolute
tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
which (int) represents the identifier of the backward problem.
reltol (realtype) is the scalar relative error tolerance.
abstol (N Vector) is the vector of absolute error tolerances.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASVtolerancesB was successful.
IDA MEM NULL The idas memory block was not initialized through a previous call to

IDACreate.
IDA NO MALLOC The allocation function IDAInit has not been called.
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IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA ILL INPUT The relative error tolerance was negative or the absolute tolerance had

a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the DAE state vector y.

6.2.6 Linear solver initialization functions for backward problem

All idas linear solver modules available for forward problems are available for the backward problem.
They should be created as for the forward problem then attached to the memory structure for the
backward problem using one of the following functions.

IDADlsSetLinearSolverB

Call flag = IDADlsSetLinearSolverB(ida mem, which, LS, A);

Description The function IDADlsSetLinearSolverB attaches a direct sunlinsol object LS and
corresponding template Jacobian sunmatrix object A to idas, initializing the idadls
direct linear solver interface for solution of the backward problem.

The user’s main program must include the idas direct.h header file.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) represents the identifier of the backward problem returned by IDACreateB.
LS (SUNLinearSolver) sunlinsol object to use for solving Newton linear systems

for the backward problem.
A (SUNMatrix) sunmatrix object for used as a template for the Jacobian for

the backward problem (must have a type compatible with the linear solver
object).

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The idadls initialization was successful.
IDADLS MEM NULL The ida mem pointer is NULL.
IDADLS ILL INPUT The idadls solver is not compatible with the current nvector

module.
IDADLS MEM FAIL A memory allocation request failed.
IDADLS NO ADJ The function IDAAdjInit has not been previously called.
IDADLS ILL INPUT The parameter which represented an invalid identifier.

Notes The idadls linear solver is not compatible with all implementations of the sunlinsol
and nvector modules. Specifically, idadls requires use of a direct sunlinsol object
and a serial or theaded nvector module. Additional compatibility limitations for each
sunlinsol object (i.e. sunmatrix and nvector object compatibility) are described
in Chapter 9.

IDASpilsSetLinearSolverB

Call flag = IDASpilsSetLinearSolverB(ida mem, which, LS);

Description The function IDASpilsSetLinearSolver attaches an iterative sunlinsol object LS to
idas, initializing the idaspils scaled, preconditioned, iterative linear solver interface to
use for the backward problem.

The user’s main program must include the idas spils.h header file.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) represents the identifier of the backward problem returned by IDACreateB.
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LS (SUNLinearSolver) sunlinsol object to use for solving Newton linear systems
for the backward problem.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The idaspils initialization was successful.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS ILL INPUT The idaspils solver is not compatible with the current nvector

module.
IDASPILS MEM FAIL A memory allocation request failed.
IDASPILS NO ADJ The function IDAAdjInit has not been previously called.
IDASPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The idaspils linear solver interface is not compatible with all implementations of the
sunlinsol and nvector modules. Specifically, idaspils requires use of an itera-
tive sunlinsol object. Additional compatibility limitations for each sunlinsol object
(i.e. required nvector routines) are described in Chapter 9.

6.2.7 Initial condition calculation functions for backward problem

idas provides support for calculation of consistent initial conditions for certain backward index-one
problems of semi-implicit form through the functions IDACalcICB and IDACalcICBS. Calling them is
optional. It is only necessary when the initial conditions do not satisfy the adjoint system.

The above functions provide the same functionality for backward problems as IDACalcIC with
parameter icopt = IDA YA YDP INIT provides for forward problems (see §4.5.4): compute the algebraic
components of yB and differential components of ẏB, given the differential components of yB. They
require that the IDASetIdB was previously called to specify the differential and algebraic components.

Both functions require forward solutions at the final time tB0. IDACalcICBS also needs forward
sensitivities at the final time tB0.

IDACalcICB

Call flag = IDACalcICB(ida mem, which, tBout1, N Vector yfin, N Vector ypfin);

Description The function IDACalcICB corrects the initial values yB0 and ypB0 at time tB0 for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) is the identifier of the backward problem.
tBout1 (realtype) is the first value of t at which a solution will be requested (from

IDASolveB). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable t.

yfin (N Vector) the forward solution at the final time tB0.
ypfin (N Vector) the forward solution derivative at the final time tB0.

Return value The return value flag (of type int) can be any that is returned by IDACalcIC (see
§4.5.4). However IDACalcICB can also return one of the following:

IDA NO ADJ IDAAdjInit has not been previously called.
IDA ILL INPUT Parameter which represented an invalid identifier.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcICB failures.

Note that IDACalcICB will correct the values of yB(tB0) and ẏB(tB0) which were
specified in the previous call to IDAInitB or IDAReInitB. To obtain the corrected values,
call IDAGetconsistentICB (see §6.2.10.2).

In the case where the backward problem also depends on the forward sensitivities, user must call
the following function to correct the initial conditions:
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IDACalcICBS

Call flag = IDACalcICBS(ida mem, which, tBout1, N Vector yfin, N Vector ypfin,
N Vector ySfin, N Vector ypSfin);

Description The function IDACalcICBS corrects the initial values yB0 and ypB0 at time tB0 for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) is the identifier of the backward problem.
tBout1 (realtype) is the first value of t at which a solution will be requested (from

IDASolveB).This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable t.

yfin (N Vector) the forward solution at the final time tB0.
ypfin (N Vector) the forward solution derivative at the final time tB0.
ySfin (N Vector *) a pointer to an array of Ns vectors containing the sensitivities

of the forward solution at the final time tB0.
ypSfin (N Vector *) a pointer to an array of Ns vectors containing the derivatives of

the forward solution sensitivities at the final time tB0.

Return value The return value flag (of type int) can be any that is returned by IDACalcIC (see
§4.5.4). However IDACalcICBS can also return one of the following:

IDA NO ADJ IDAAdjInit has not been previously called.
IDA ILL INPUT Parameter which represented an invalid identifier, sensitivities were not

active during forward integration, or IDAInitBS (or IDAReInitBS) has
not been previously called.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcICBS failures.

Note that IDACalcICBS will correct the values of yB(tB0) and ẏB(tB0) which were
specified in the previous call to IDAInitBS or IDAReInitBS. To obtain the corrected
values, call IDAGetConsistentICB (see §6.2.10.2).

6.2.8 Backward integration function

The function IDASolveB performs the integration of the backward problem. It is essentially a wrapper
for the idas main integration function IDASolve and, in the case in which checkpoints were needed,
it evolves the solution of the backward problem through a sequence of forward-backward integration
pairs between consecutive checkpoints. In each pair, the first run integrates the original IVP forward
in time and stores interpolation data; the second run integrates the backward problem backward in
time and performs the required interpolation to provide the solution of the IVP to the backward
problem.

The function IDASolveB does not return the solution yB itself. To obtain that, call the function
IDAGetB, which is also described below.

The IDASolveB function does not support rootfinding, unlike IDASoveF, which supports the finding
of roots of functions of (t, y, ẏ). If rootfinding was performed by IDASolveF, then for the sake of
efficiency, it should be disabled for IDASolveB by first calling IDARootInit with nrtfn = 0.

The call to IDASolveB has the form

IDASolveB

Call flag = IDASolveB(ida mem, tBout, itaskB);

Description The function IDASolveB integrates the backward DAE problem.

Arguments ida mem (void *) pointer to the idas memory returned by IDACreate.
tBout (realtype) the next time at which a computed solution is desired.
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itaskB (int) a flag indicating the job of the solver for the next step. The IDA NORMAL
task is to have the solver take internal steps until it has reached or just passed
the user-specified value tBout. The solver then interpolates in order to return
an approximate value of yB(tBout). The IDA ONE STEP option tells the solver
to take just one internal step in the direction of tBout and return.

Return value The return value flag (of type int) will be one of the following. For more details see
§4.5.6.

IDA SUCCESS IDASolveB succeeded.
IDA MEM NULL The ida mem was NULL.
IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA NO BCK No backward problem has been added to the list of backward prob-

lems by a call to IDACreateB

IDA NO FWD The function IDASolveF has not been previously called.
IDA ILL INPUT One of the inputs to IDASolveB is illegal.
IDA BAD ITASK The itaskB argument has an illegal value.
IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tBout.
IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for

some internal step.
IDA ERR FAILURE Error test failures occurred too many times during one internal

time step.
IDA CONV FAILURE Convergence test failures occurred too many times during one in-

ternal time step.
IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-

ner.
IDA SOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.
IDA BCKMEM NULL The idas memory for the backward problem was not created with

a call to IDACreateB.
IDA BAD TBOUT The desired output time tBout is outside the interval over which

the forward problem was solved.
IDA REIFWD FAIL Reinitialization of the forward problem failed at the first checkpoint

(corresponding to the initial time of the forward problem).
IDA FWD FAIL An error occurred during the integration of the forward problem.

Notes All failure return values are negative and therefore a test flag< 0 will trap all IDASolveB
failures.

In the case of multiple checkpoints and multiple backward problems, a given call to
IDASolveB in IDA ONE STEP mode may not advance every problem one step, depending
on the relative locations of the current times reached. But repeated calls will eventually
advance all problems to tBout.

To obtain the solution yB to the backward problem, call the function IDAGetB as follows:

IDAGetB

Call flag = IDAGetB(ida mem, which, &tret, yB, ypB);

Description The function IDAGetB provides the solution yB of the backward DAE problem.

Arguments ida mem (void *) pointer to the idas memory returned by IDACreate.
which (int) the identifier of the backward problem.
tret (realtype) the time reached by the solver (output).
yB (N Vector) the backward solution at time tret.
ypB (N Vector) the backward solution derivative at time tret.
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Return value The return value flag (of type int) will be one of the following.

IDA SUCCESS IDAGetB was successful.
IDA MEM NULL ida mem is NULL.
IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA ILL INPUT The parameter which is an invalid identifier.

Notes The user must allocate space for yB and ypB.!

6.2.9 Optional input functions for the backward problem

6.2.9.1 Main solver optional input functions

The adjoint module in idas provides wrappers for most of the optional input functions defined in
§4.5.7.1. The only difference is that the user must specify the identifier which of the backward
problem within the list managed by idas.

The optional input functions defined for the backward problem are:

flag = IDASetUserDataB(ida_mem, which, user_dataB);
flag = IDASetMaxOrdB(ida_mem, which, maxordB);
flag = IDASetMaxNumStepsB(ida_mem, which, mxstepsB);
flag = IDASetInitStepB(ida_mem, which, hinB)
flag = IDASetMaxStepB(ida_mem, which, hmaxB);
flag = IDASetSuppressAlgB(ida_mem, which, suppressalgB);
flag = IDASetIdB(ida_mem, which, idB);
flag = IDASetConstraintsB(ida_mem, which, constraintsB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it
can also be IDA NO ADJ if IDAAdjInit has not been called, or IDA ILL INPUT if which was an invalid
identifier.

6.2.9.2 Direct linear solver interface optional input functions

If using a direct linear solver interface for the Jacobian of the backward problem, the linear solver
will need to be attached to the memory structure through a call to IDADlsSetLinearSolverB.
The Jacobian evaluation function can be attached through a call to either IDADlsSetJacFnB or
idaIDADlsSetJacFnBS, with the second used when the backward problem depends on the forwrad
sensitivities.

IDADlsSetJacFnB

Call flag = IDADlsSetJacFnB(ida mem, which, jacB);

Description The function IDADlsSetJacFnB specifies the Jacobian approximation function to be
used for the backward problem.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) represents the identifier of the backward problem.
jacB (IDADlsJacFnB) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS IDADlsSetDlsJacFnB succeeded.
IDADLS MEM NULL The ida mem was NULL.
IDADLS NO ADJ The function IDAAdjInit has not been previously called.
IDADLS LMEM NULL The linear solver has not been initialized with a call to IDADlsSetLinearSolverB.
IDADLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type IDADlsJacFnB is described in §4.6.5.
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IDADlsSetJacFnBS

Call flag = IDADlsSetJacFnBS(ida mem, which, jacBS);

Description The function IDADlsSetJacFnB specifies the Jacobian approximation function to be
used for the backward problem in the case where the backward problem depends on the
forward sensitivities.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) represents the identifier of the backward problem.
jacBS (IDADlsJacFnBS) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS IDADlsSetDlsJacFnB succeeded.
IDADLS MEM NULL The ida mem was NULL.
IDADLS NO ADJ The function IDAAdjInit has not been previously called.
IDADLS LMEM NULL The linear solver has not been initialized with a call to IDADlsSetLinearSolverB.
IDADLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type IDADlsJacFnBS is described in §4.6.5.

6.2.9.3 SPILS linear solvers

Optional inputs for the idaspils linear solver module can be set for the backward problem through
the following functions:

IDASpilsSetPreconditionerB

Call flag = IDASpilsSetPreconditionerB(ida mem, which, psetupB, psolveB);

Description The function IDASpilsSetPrecSolveFnB specifies the preconditioner setup and solve
functions for the backward integration.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) the identifier of the backward problem.
psetupB (IDASpilsPrecSetupFnB) user-defined preconditioner setup function.
psolveB (IDASpilsPrecSolveFnB) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

IDASPILS SUCCESS The optional value has been successfully set.
IDASPILS MEM NULL The ida mem memory block pointer was NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.
IDASPILS NO ADJ The function IDAAdjInit has not been previously called.
IDASPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types IDASpilsPrecSolveFnB and IDASpilsPrecSetupFnB are described
in §6.3.8 and §6.3.9, respectively. The psetupB argument may be NULL if no setup
operation is involved in the preconditioner.

IDASpilsSetPreconditionerBS

Call flag = IDASpilsSetPreconditionerBS(ida mem, which, psetupBS, psolveBS);

Description The function IDASpilsSetPrecSolveFnBS specifies the preconditioner setup and solve
functions for the backward integration, in the case where the backward problem depends
on the forward sensitivities.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) the identifier of the backward problem.
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psetupBS (IDASpilsPrecSetupFnBS) user-defined preconditioner setup function.
psolveBS (IDASpilsPrecSolveFnBS) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

IDASPILS SUCCESS The optional value has been successfully set.
IDASPILS MEM NULL The ida mem memory block pointer was NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.
IDASPILS NO ADJ The function IDAAdjInit has not been previously called.
IDASPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types IDASpilsPrecSolveFnBS and IDASpilsPrecSetupFnBS are described
in §6.3.8 and §6.3.9, respectively. The psetupBS argument may be NULL if no setup op-
eration is involved in the preconditioner.

IDASpilsSetJacTimesB

Call flag = IDASpilsSetJacTimesB(ida mem, which, jsetupB, jtimesB);

Description The function IDASpilsSetJacTimesB specifies the Jacobian-vector setup and product
functions to be used.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) the identifier of the backward problem.
jtsetupB (IDASpilsJacTimesSetupFnB) user-defined function to set up the Jacobian-

vector product. Pass NULL if no setup is necessary.
jtimesB (IDASpilsJacTimesVecFnB) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of:

IDASPILS SUCCESS The optional value has been successfully set.
IDASPILS MEM NULL The ida mem memory block pointer was NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.
IDASPILS NO ADJ The function IDAAdjInit has not been previously called.
IDASPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types IDASpilsJacTimesVecFnB and IDASpilsJacTimesSetupFnB are de-
scribed in §6.3.6.

IDASpilsSetJacTimesBS

Call flag = IDASpilsSetJacTimesBS(ida mem, which, jsetupBS, jtimesBS);

Description The function IDASpilsSetJacTimesBS specifies the Jacobian-vector product setup and
evaluation functions to be used, in the case where the backward problem depends on
the forward sensitivities.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) the identifier of the backward problem.
jtsetupBS (IDASpilsJacTimesSetupFnBS) user-defined function to set up the Jacobian-

vector product. Pass NULL if no setup is necessary.
jtimesBS (IDASpilsJacTimesVecFnBS) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of:

IDASPILS SUCCESS The optional value has been successfully set.
IDASPILS MEM NULL The ida mem memory block pointer was NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.
IDASPILS NO ADJ The function IDAAdjInit has not been previously called.



6.2 User-callable functions for adjoint sensitivity analysis 125

IDASPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types IDASpilsJacTimesVecFnBS and IDASpilsJacTimesSetupFnBS are
described in §6.3.6.

IDASpilsSetEpsLinB

Call flag = IDASpilsSetEpsLinB(ida mem, which, eplifacB);

Description The function IDASpilsSetEpsLinB specifies the factor by which the Krylov linear
solver’s convergence test constant is reduced from the Newton iteration test constant.
(See §2.1). This routine can be used in both the cases wherethe backward problem does
and does not depend on the forward sensitvities.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) the identifier of the backward problem.
eplifacB (realtype) linear convergence safety factor (>= 0.0).

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.
IDASPILS MEM NULL The ida mem pointer is NULL.
IDASPILS LMEM NULL The idaspils linear solver has not been initialized.
IDASPILS NO ADJ The function IDAAdjInit has not been previously called.
IDASPILS ILL INPUT The value of eplifacB is negative.
IDASPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The default value is 0.05.

Passing a value eplifacB= 0.0 also indicates using the default value.

flag = IDASpilsSetIncrementFactorB(ida mem, which, dqincfacB); The function IDASpilsSetIncrementFactorB
specifies the factor in the increments used in the difference quotient approximations to matrix-vector
products for the backward problem.

This routine can be used in both the cases wherethe backward problem does and does not depend
on the forward sensitvities.
ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

dqincfacB (realtype) difference quotient approximation factor.
The return value flag (of type int) is one of
IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS NO ADJ The function IDAAdjInit has not been previously called.

IDASPILS ILL INPUT The value of eplifacB is negative.

IDASPILS ILL INPUT The parameter which represented an invalid identifier.
The default value is 1.0.

Passing a value dqincfacB= 0.0 also indicates using the default value.

6.2.10 Optional output functions for the backward problem

6.2.10.1 Main solver optional output functions

The user of the adjoint module in idas has access to any of the optional output functions described
in §4.5.9, both for the main solver and for the linear solver modules. The first argument of these
IDAGet* and IDA*Get* functions is the pointer to the idas memory block for the backward problem.
In order to call any of these functions, the user must first call the following function to obtain this
pointer:
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IDAGetAdjIDABmem

Call ida memB = IDAGetAdjIDABmem(ida mem, which);

Description The function IDAGetAdjIDABmem returns a pointer to the idas memory block for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block created by IDACreate.
which (int) the identifier of the backward problem.

Return value The return value, ida memB (of type void *), is a pointer to the idas memory for the
backward problem.

Notes The user should not modify ida memB in any way.!

Optional output calls should pass ida memB as the first argument; thus, for example, to
get the number of integration steps: flag = IDAGetNumSteps(idas memB,&nsteps).

To get values of the forward solution during a backward integration, use the following function.
The input value of t would typically be equal to that at which the backward solution has just been
obtained with IDAGetB. In any case, it must be within the last checkpoint interval used by IDASolveB.

IDAGetAdjY

Call flag = IDAGetAdjY(ida mem, t, y, yp);

Description The function IDAGetAdjY returns the interpolated value of the forward solution y and
its derivative during a backward integration.

Arguments ida mem (void *) pointer to the idas memory block created by IDACreate.
t (realtype) value of the independent variable at which y is desired (input).
y (N Vector) forward solution y(t).
yp (N Vector) forward solution derivative ẏ(t).

Return value The return value flag (of type int) is one of:

IDA SUCCESS IDAGetAdjY was successful.
IDA MEM NULL ida mem was NULL.
IDA GETY BADT The value of t was outside the current checkpoint interval.

Notes The user must allocate space for y and yp.!

6.2.10.2 Initial condition calculation optional output function

IDAGetConsistentICB

Call flag = IDAGetConsistentICB(ida mem, which, yB0 mod, ypB0 mod);

Description The function IDAGetConsistentICB returns the corrected initial conditions for back-
ward problem calculated by IDACalcICB.

Arguments ida mem (void *) pointer to the idas memory block.
which is the identifier of the backward problem.
yB0 mod (N Vector) consistent initial vector.
ypB0 mod (N Vector) consistent initial derivative vector.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA NO ADJ IDAAdjInit has not been previously called.
IDA ILL INPUT Parameter which did not refer a valid backward problem identifier.
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Notes If the consistent solution vector or consistent derivative vector is not desired, pass NULL
for the corresponding argument.

The user must allocate space for yB0 mod and ypB0 mod (if not NULL).!

6.2.11 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend on
the forward sensitivities. Accordingly, one of the IDAQuadInitB or IDAQuadInitBS should be used to
allocate internal memory and to initialize backward quadratures. For any other operation (extraction,
optional input/output, reinitialization, deallocation), the same function is called regardless of whether
or not the quadratures are sensitivity-dependent.

6.2.11.1 Backward quadrature initialization functions

The function IDAQuadInitB initializes and allocates memory for the backward integration of quadra-
ture equations that do not depende on forward sensititvities. It has the following form:

IDAQuadInitB

Call flag = IDAQuadInitB(ida mem, which, rhsQB, yQB0);

Description The function IDAQuadInitB provides required problem specifications, allocates internal
memory, and initializes backward quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) the identifier of the backward problem.
rhsQB (IDAQuadRhsFnB) is the C function which computes fQB, the residual of the

backward quadrature equations. This function has the form rhsQB(t, y, yp,
yB, ypB, rhsvalBQ, user dataB) (see §6.3.3).

yQB0 (N Vector) is the value of the quadrature variables at tB0.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadInitB was successful.
IDA MEM NULL ida mem was NULL.
IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA MEM FAIL A memory allocation request has failed.
IDA ILL INPUT The parameter which is an invalid identifier.

The function IDAQuadInitBS initializes and allocates memory for the backward integration of
quadrature equations that depend on the forward sensitivities.

IDAQuadInitBS

Call flag = IDAQuadInitBS(ida mem, which, rhsQBS, yQBS0);

Description The function IDAQuadInitBS provides required problem specifications, allocates internal
memory, and initializes backward quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) the identifier of the backward problem.
rhsQBS (IDAQuadRhsFnBS) is the C function which computes fQBS, the residual of

the backward quadrature equations. This function has the form rhsQBS(t,
y, yp, yS, ypS, yB, ypB, rhsvalBQS, user dataB) (see §6.3.4).

yQBS0 (N Vector) is the value of the sensitivity-dependent quadrature variables at
tB0.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadInitBS was successful.
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IDA MEM NULL ida mem was NULL.
IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA MEM FAIL A memory allocation request has failed.
IDA ILL INPUT The parameter which is an invalid identifier.

The integration of quadrature equations during the backward phase can be re-initialized by calling
the following function. Before calling IDAQuadReInitB for a new backward problem, call any desired
solution extraction functions IDAGet** associated with the previous backward problem.

IDAQuadReInitB

Call flag = IDAQuadReInitB(ida mem, which, yQB0);

Description The function IDAQuadReInitB re-initializes the backward quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) the identifier of the backward problem.
yQB0 (N Vector) is the value of the quadrature variables at tB0.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadReInitB was successful.
IDA MEM NULL ida mem was NULL.
IDA NO ADJ The function IDAAdjInit has not been previously called.
IDA MEM FAIL A memory allocation request has failed.
IDA NO QUAD Quadrature integration was not activated through a previous call to

IDAQuadInitB.
IDA ILL INPUT The parameter which is an invalid identifier.

Notes IDAQuadReInitB can be used after a call to either IDAQuadInitB or IDAQuadInitBS.

6.2.11.2 Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of IDASolveB, idas provides
a wrapper for the function IDAGetQuad (see §4.7.3). The call to this function has the form

IDAGetQuadB

Call flag = IDAGetQuadB(ida mem, which, &tret, yQB);

Description The function IDAGetQuadB returns the quadrature solution vector after a successful
return from IDASolveB.

Arguments ida mem (void *) pointer to the idas memory.
tret (realtype) the time reached by the solver (output).
yQB (N Vector) the computed quadrature vector.

Return value!

Notes T

he user must allocate space for yQB. The return value flag of IDAGetQuadB is one of:
IDA SUCCESS IDAGetQuadB was successful.

IDA MEM NULL ida mem is NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA NO QUAD Quadrature integration was not initialized.

IDA BAD DKY yQB was NULL.

IDA ILL INPUT The parameter which is an invalid identifier.
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6.2.11.3 Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from
their default values through calls to one of the following functions which are wrappers for the corre-
sponding optional input functions defined in §4.7.4. The user must specify the identifier which of the
backward problem for which the optional values are specified.

flag = IDASetQuadErrConB(ida_mem, which, errconQ);
flag = IDAQuadSStolerancesB(ida_mem, which, reltolQ, abstolQ);
flag = IDAQuadSVtolerancesB(ida_mem, which, reltolQ, abstolQ);

Their return value flag (of type int) can have any of the return values of its counterparts, but it
can also be IDA NO ADJ if the function IDAAdjInit has not been previously called or IDA ILL INPUT
if the parameter which was an invalid identifier.

Access to optional outputs related to backward quadrature integration can be obtained by calling
the corresponding IDAGetQuad* functions (see §4.7.5). A pointer ida memB to the idas memory block
for the backward problem, required as the first argument of these functions, can be obtained through
a call to the functions IDAGetAdjIDABmem (see §6.2.10).

6.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required DAE residual function and any optional functions for the forward problem,
when using the adjoint sensitivity module in idas, the user must supply one function defining the
backward problem DAE and, optionally, functions to supply Jacobian-related information and one
or two functions that define the preconditioner (if one of the idaspils solvers is selected) for the
backward problem. Type definitions for all these user-supplied functions are given below.

6.3.1 DAE residual for the backward problem

The user must provide a resB function of type IDAResFnB defined as follows:

IDAResFnB

Definition typedef int (*IDAResFnB)(realtype t, N Vector y, N Vector yp,
N Vector yB, N Vector ypB,
N Vector resvalB, void *user dataB);

Purpose This function evaluates the residual of the backward problem DAE system. This could
be (2.20) or (2.25).

Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the output vector containing the residual for the backward DAE problem.
user dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAResFnB should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case idas will attempt to correct), or a negative value if an unre-
coverabl failure occurred (in which case the integration stops and IDASolveB returns
IDA RESFUNC FAIL).

Notes Allocation of memory for resvalB is handled within idas.

The y, yp, yB, ypB, and resvalB arguments are all of type N Vector, but yB, ypB, and
resvalB typically have different internal representations from y and yp. It is the user’s



130 Using IDAS for Adjoint Sensitivity Analysis

responsibility to access the vector data consistently (including the use of the correct
accessor macros from each nvector implementation). For the sake of computational
efficiency, the vector functions in the two nvector implementations provided with idas
do not perform any consistency checks with respect to their N Vector arguments (see
§7.1 and §7.2).

The user dataB pointer is passed to the user’s resB function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s resB function, idas needs to evaluate (through interpolation)!

the values of the states from the forward integration. If an error occurs in the inter-
polation, idas triggers an unrecoverable failure in the residual function which will halt
the integration and IDASolveB will return IDA RESFUNC FAIL.

6.3.2 DAE residual for the backward problem depending on the forward
sensitivities

The user must provide a resBS function of type IDAResFnBS defined as follows:

IDAResFnBS

Definition typedef int (*IDAResFnBS)(realtype t, N Vector y, N Vector yp,
N Vector *yS, N Vector *ypS,
N Vector yB, N Vector ypB,
N Vector resvalB, void *user dataB);

Purpose This function evaluates the residual of the backward problem DAE system. This could
be (2.20) or (2.25).

Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yS a pointer to an array of Ns vectors containing the sensitivities of the forward

solution.
ypS a pointer to an array of Ns vectors containing the derivatives of the forward

sensitivities.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the output vector containing the residual for the backward DAE problem.
user dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAResFnBS should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct), or a negative value if an unre-
coverable error occurred (in which case the integration stops and IDASolveB returns
IDA RESFUNC FAIL).

Notes Allocation of memory for resvalB is handled within idas.

The y, yp, yB, ypB, and resvalB arguments are all of type N Vector, but yB, ypB,
and resvalB typically have different internal representations from y and yp. Likewise
for each yS[i] and ypS[i]. It is the user’s responsibility to access the vector data
consistently (including the use of the correct accessor macros from each nvector im-
plementation). For the sake of computational efficiency, the vector functions in the two
nvector implementations provided with idas do not perform any consistency checks
with respect to their N Vector arguments (see §7.1 and §7.2).

The user dataB pointer is passed to the user’s resBS function every time it is called
and can be the same as the user data pointer used for the forward problem.

Before calling the user’s resBS function, idas needs to evaluate (through interpolation)!
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the values of the states from the forward integration. If an error occurs in the inter-
polation, idas triggers an unrecoverable failure in the residual function which will halt
the integration and IDASolveB will return IDA RESFUNC FAIL.

6.3.3 Quadrature right-hand side for the backward problem

The user must provide an fQB function of type IDAQuadRhsFnB defined by

IDAQuadRhsFnB

Definition typedef int (*IDAQuadRhsFnB)(realtype t, N Vector y, N Vector yp,
N Vector yB, N Vector ypB,
N Vector rhsvalBQ, void *user dataB);

Purpose This function computes the quadrature equation right-hand side for the backward prob-
lem.

Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
rhsvalBQ is the output vector containing the residual for the backward quadrature

equations.
user dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAQuadRhsFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA QRHSFUNC FAIL).

Notes Allocation of memory for rhsvalBQ is handled within idas.

The y, yp, yB, ypB, and rhsvalBQ arguments are all of type N Vector, but they typi-
cally all have different internal representations. It is the user’s responsibility to access
the vector data consistently (including the use of the correct accessor macros from each
nvector implementation). For the sake of computational efficiency, the vector func-
tions in the two nvector implementations provided with idas do not perform any
consistency checks with repsect to their N Vector arguments (see §7.1 and §7.2).

The user dataB pointer is passed to the user’s fQB function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s fQB function, idas needs to evaluate (through interpolation) the !

values of the states from the forward integration. If an error occurs in the interpolation,
idas triggers an unrecoverable failure in the quadrature right-hand side function which
will halt the integration and IDASolveB will return IDA QRHSFUNC FAIL.

6.3.4 Sensitivity-dependent quadrature right-hand side for the backward
problem

The user must provide an fQBS function of type IDAQuadRhsFnBS defined by

IDAQuadRhsFnBS

Definition typedef int (*IDAQuadRhsFnBS)(realtype t, N Vector y, N Vector yp,
N Vector *yS, N Vector *ypS,
N Vector yB, N Vector ypB,
N Vector rhsvalBQS, void *user dataB);
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Purpose This function computes the quadrature equation residual for the backward problem.

Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yS a pointer to an array of Ns vectors containing the sensitivities of the forward

solution.
ypS a pointer to an array of Ns vectors containing the derivatives of the forward

sensitivities.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
rhsvalBQS is the output vector containing the residual for the backward quadrature

equations.
user dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAQuadRhsFnBS should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA QRHSFUNC FAIL).

Notes Allocation of memory for rhsvalBQS is handled within idas.

The y, yp, yB, ypB, and rhsvalBQS arguments are all of type N Vector, but they typically
do not all have the same internal representations. Likewise for each yS[i] and ypS[i].
It is the user’s responsibility to access the vector data consistently (including the use
of the correct accessor macros from each nvector implementation). For the sake
of computational efficiency, the vector functions in the two nvector implementations
provided with idas do not perform any consistency checks with repsect to their N Vector
arguments (see §7.1 and §7.2).

The user dataB pointer is passed to the user’s fQBS function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s fQBS function, idas needs to evaluate (through interpolation)!

the values of the states from the forward integration. If an error occurs in the interpo-
lation, idas triggers an unrecoverable failure in the quadrature right-hand side function
which will halt the integration and IDASolveB will return IDA QRHSFUNC FAIL.

6.3.5 Jacobian information for the backward problem (direct method Ja-
cobian)

If the direct linear solver interface is used for the backward problem (i.e. IDADlsSetLinearSolverB
is called in the step described in §6.1), the user may provide a function of type IDADlsJacFnB or
IDADlsJacFnBS (see §6.2.9), defined as follows:

IDADlsJacFnB

Definition typedef int (*IDADlsJacFnB)(realtype tt, realtype cjB,
N Vector yy, N Vector yp,
N Vector yB, N Vector ypB,
N Vector resvalB,
SUNMatrix JacB, void *user dataB,
N Vector tmp1B, N Vector tmp2B,
N Vector tmp3B);

Purpose This function computes the Jacobian of the backward problem (or an approximation to
it).

Arguments tt is the current value of the independent variable.
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cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

yy is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
JacB is the output approximate Jacobian matrix.
user dataB is a pointer to user data — the parameter passed to IDASetUserDataB.
tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by the IDADlsJacFnB function as temporary storage or work space.

Return value An IDADlsJacFnB should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct, while idadls sets last flag to
IDADLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case the
integration is halted, IDASolveB returns IDA LSETUP FAIL and idadls sets last flag
to IDADLS JACFUNC UNRECVR).

Notes A user-supplied Jacobian function must load the matrix JacB with an approximation
to the Jacobian matrix at the point (tt,yy,yB), where yy is the solution of the original
IVP at time tt, and yB is the solution of the backward problem at the same time.
Information regarding the structure of the specific sunmatrix structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific sunmatrix interface functions (see Chapter 8 for details). Only
nonzero elements need to be loaded into JacB as this matrix is set to zero before the
call to the Jacobian function.

Before calling the user’s IDADlsJacFnB, idas needs to evaluate (through interpolation) !

the values of the states from the forward integration. If an error occurs in the interpo-
lation, idas triggers an unrecoverable failure in the Jacobian function which will halt
the integration (IDASolveB returns IDA LSETUP FAIL and idadls sets last flag to
IDADLS JACFUNC UNRECVR).

IDADlsJacFnBS

Definition typedef int (*IDADlsDenseJacFnBS)(realtype tt, realtype cjB,
N Vector yy, N Vector yp,
N Vector *yS, N Vector *ypS,
N Vector yB, N Vector ypB,
N Vector resvalB,
SUNMatrix JacB, void *user dataB,
N Vector tmp1B, N Vector tmp2B,
N Vector tmp3B);

Purpose This function computes the Jacobian of the backward problem (or an approximation to
it), in the case where the backward problem depends on the forward sensitivities.

Arguments tt is the current value of the independent variable.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
yy is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yS a pointer to an array of Ns vectors containing the sensitivities of the forward

solution.
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ypS a pointer to an array of Ns vectors containing the derivatives of the forward
solution sensitivities.

yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
JacB is the output approximate Jacobian matrix.
user dataB is a pointer to user data — the parameter passed to IDASetUserDataB.
tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by IDADlsJacFnBS as temporary storage or work space.

Return value An IDADlsJacFnBS should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct, while idadls sets last flag to
IDADLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case the
integration is halted, IDASolveB returns IDA LSETUP FAIL and idadls sets last flag
to IDADLS JACFUNC UNRECVR).

Notes A user-supplied dense Jacobian function must load the matrix JacB with an approxima-
tion to the Jacobian matrix at the point (tt,yy,yS,yB), where yy is the solution of the
original IVP at time tt, yS is the array of forward sensitivities at time tt, and yB is the
solution of the backward problem at the same time. Information regarding the struc-
ture of the specific sunmatrix structure (e.g. number of rows, upper/lower bandwidth,
sparsity type) may be obtained through using the implementation-specific sunmatrix
interface functions (see Chapter 8 for details). Only nonzero elements need to be loaded
into JacB as this matrix is set to zero before the call to the Jacobian function.

Before calling the user’s IDADlsJacFnBS, idas needs to evaluate (through interpolation)!

the values of the states from the forward integration. If an error occurs in the interpo-
lation, idas triggers an unrecoverable failure in the Jacobian function which will halt
the integration (IDASolveB returns IDA LSETUP FAIL and idadense sets last flag to
IDADLS JACFUNC UNRECVR).

6.3.6 Jacobian information for the backward problem (matrix-vector prod-
uct)

If the idaspils solver interface is selected for the backward problem (i.e., IDASpilsSetLinearSolverB
is called in the steps described in §6.1), the user may provide a function of type IDASpilsJacTimesVecFnB
or IDASpilsJacTimesVecFnBS in the following form, to compute matrix-vector products Jv. If such
a function is not supplied, the default is a difference quotient approximation to these products.

IDASpilsJacTimesVecFnB

Definition typedef int (*IDASpilsJacTimesVecFnB)(realtype t,
N Vector yy, N Vector yp,
N Vector yB, N Vector ypB,
N Vector resvalB,
N Vector vB, N Vector JvB,
realtype cjB, void *user dataB,
N Vector tmp1B, N Vector tmp2B);

Purpose This function computes the action of the backward problem Jacobian JB on a given
vector vB.

Arguments t is the current value of the independent variable.
yy is the current value of the forward solution vector.
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yp is the current value of the forward solution derivative vector.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
vB is the vector by which the Jacobian must be multiplied.
JvB is the computed output vector, JB*vB.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
user dataB is a pointer to user data — the same as the user dataB parameter passed

to IDASetUserDataB.
tmp1B

tmp2B are pointers to memory allocated for variables of type N Vector which can
be used by IDASpilsJacTimesVecFnB as temporary storage or work space.

Return value The return value of a function of type IDASpilsJtimesVecFnB should be 0 if successful
or nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t, y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of the
backward problem at the same time. The rest of the arguments are equivalent to those
passed to a function of type IDASpilsJacTimesVecFn (see §4.6.6). If the backward
problem is the adjoint of ẏ = f(t, y), then this function is to compute −(∂f/∂y)T vB .

IDASpilsJacTimesVecFnBS

Definition typedef int (*IDASpilsJacTimesVecFnBS)(realtype t,
N Vector yy, N Vector yp,
N Vector *yyS, N Vector *ypS,
N Vector yB, N Vector ypB,
N Vector resvalB,
N Vector vB, N Vector JvB,
realtype cjB, void *user dataB,
N Vector tmp1B, N Vector tmp2B);

Purpose This function computes the action of the backward problem Jacobian JB on a given
vector vB, in the case where the backward problem depends on the forward sensitivities.

Arguments t is the current value of the independent variable.
yy is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yyS a pointer to an array of Ns vectors containing the sensitivities of the forward

solution.
ypS a pointer to an array of Ns vectors containing the derivatives of the forward

sensitivities.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
vB is the vector by which the Jacobian must be multiplied.
JvB is the computed output vector, JB*vB.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
user dataB is a pointer to user data — the same as the user dataB parameter passed

to IDASetUserDataB.
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tmp1B

tmp2B are pointers to memory allocated for variables of type N Vector which
can be used by IDASpilsJacTimesVecFnBS as temporary storage or work
space.

Return value The return value of a function of type IDASpilsJtimesVecFnBS should be 0 if successful
or nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t, y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of the
backward problem at the same time. The rest of the arguments are equivalent to those
passed to a function of type IDASpilsJacTimesVecFn (see §4.6.6).

6.3.7 Jacobian information for the backward problem (matrix-vector setup)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or eval-
uated, then this needs to be done in a user-supplied function of type IDASpilsJacTimesSetupFnB,
defined as follows:

IDASpilsJacTimesSetupFnB

Definition typedef int (*IDASpilsJacTimesSetupFnB)(realtype tt,
N Vector yy, N Vector yp,
N Vector yB, N Vector ypB,
N Vector resvalB,
realtype cjB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine for the backward problem.

Arguments tt is the current value of the independent variable.
yy is the current value of the dependent variable vector, y(t).
yp is the current value of ẏ(t).
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
user dataB is a pointer to user data — the same as the user dataB parameter passed

to IDASetUserDataB.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the backward
problem residual user function with the same (t,y, yp, yB, ypB) arguments. Thus,
the setup function can use any auxiliary data that is computed and saved during the
evaluation of the DAE residual.

If the user’s IDASpilsJacTimesVecFnB function uses difference quotient approxima-
tions, it may need to access quantities not in the call list. These include the current
stepsize, the error weights, etc. To obtain these, the user will need to add a pointer to
ida mem to user dataB and then use the IDAGet* functions described in §4.5.9.2. The
unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.
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IDASpilsJacTimesSetupFnBS

Definition typedef int (*IDASpilsJacTimesSetupFnBS)(realtype tt,
N Vector yy, N Vector yp,
N Vector *yyS, N Vector *ypS,
N Vector yB, N Vector ypB,
N Vector resvalB,
realtype cjB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine for the backward problem, in the case that the backward problem
depends on the forward sensitivities.

Arguments tt is the current value of the independent variable.
yy is the current value of the dependent variable vector, y(t).
yp is the current value of ẏ(t).
yyS a pointer to an array of Ns vectors containing the sensitivities of the forward

solution.
ypS a pointer to an array of Ns vectors containing the derivatives of the forward

sensitivities.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
user dataB is a pointer to user data — the same as the user dataB parameter passed

to IDASetUserDataB.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the backward
problem residual user function with the same (t,y, yp, yyS, ypS, yB, ypB) argu-
ments. Thus, the setup function can use any auxiliary data that is computed and saved
during the evaluation of the DAE residual.

If the user’s IDASpilsJacTimesVecFnB function uses difference quotient approxima-
tions, it may need to access quantities not in the call list. These include the current
stepsize, the error weights, etc. To obtain these, the user will need to add a pointer to
ida mem to user dataB and then use the IDAGet* functions described in §4.5.9.2. The
unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

6.3.8 Preconditioning for the backward problem (linear system solution)

If preconditioning is used during integration of the backward problem, then the user must provide a
C function to solve the linear system Pz = r, where P is a left preconditioner matrix. This function
must have one of the following two forms:

IDASpilsPrecSolveFnB

Definition typedef int (*IDASpilsPrecSolveFnB)(realtype t,
N Vector yy, N Vector yp,
N Vector yB, N Vector ypB,
N Vector resvalB,
N Vector rvecB, N Vector zvecB,
realtype cjB, realtype deltaB,
void *user dataB);
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Purpose This function solves the preconditioning system Pz = r for the backward problem.

Arguments t is the current value of the independent variable.
yy is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
rvecB is the right-hand side vector r of the linear system to be solved.
zvecB is the computed output vector.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
deltaB is an input tolerance to be used if an iterative method is employed in the

solution.
user dataB is a pointer to user data — the same as the user dataB parameter passed

to the function IDASetUserDataB.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

IDASpilsPrecSolveFnBS

Definition typedef int (*IDASpilsPrecSolveFnBS)(realtype t,
N Vector yy, N Vector yp,
N Vector *yyS, N Vector *ypS,
N Vector yB, N Vector ypB,
N Vector resvalB,
N Vector rvecB, N Vector zvecB,
realtype cjB, realtype deltaB,
void *user dataB);

Purpose This function solves the preconditioning system Pz = r for the backward problem, for
the case in which the backward problem depends on the forward sensitivities.

Arguments t is the current value of the independent variable.
yy is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yyS a pointer to an array of Ns vectors containing the sensitivities of the forward

solution.
ypS a pointer to an array of Ns vectors containing the derivatives of the forward

sensitivities.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
rvecB is the right-hand side vector r of the linear system to be solved.
zvecB is the computed output vector.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
deltaB is an input tolerance to be used if an iterative method is employed in the

solution.
user dataB is a pointer to user data — the same as the user dataB parameter passed

to the function IDASetUserDataB.
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Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

6.3.9 Preconditioning for the backward problem (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied C function of one of the following two types:

IDASpilsPrecSetupFnB

Definition typedef int (*IDASpilsPrecSetupFnB)(realtype t,
N Vector yy, N Vector yp,
N Vector yB, N Vector ypB,
N Vector resvalB,
realtype cjB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem.

Arguments The arguments of an IDASpilsPrecSetupFnB are as follows:

t is the current value of the independent variable.
yy is the current value of the forward solution vector.
yp is the current value of the forward solution vector.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
user dataB is a pointer to user data — the same as the user dataB parameter passed

to the function IDASetUserDataB.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

IDASpilsPrecSetupFnBS

Definition typedef int (*IDASpilsPrecSetupFnBS)(realtype t,
N Vector yy, N Vector yp,
N Vector *yyS, N Vector *ypS,
N Vector yB, N Vector ypB,
N Vector resvalB,
realtype cjB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem, in the case where the backward problem depends
on the forward sensitivities.

Arguments The arguments of an IDASpilsPrecSetupFnBS are as follows:

t is the current value of the independent variable.
yy is the current value of the forward solution vector.
yp is the current value of the forward solution vector.
yyS a pointer to an array of Ns vectors containing the sensitivities of the forward

solution.
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ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (α in Eq. (2.6) ).
user dataB is a pointer to user data — the same as the user dataB parameter passed

to the function IDASetUserDataB.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

6.4 Using the band-block-diagonal preconditioner for back-
ward problems

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of
linear systems can be greatly enhanced through preconditioning. The band-block-diagonal precondi-
tioner module idabbdpre, provides interface functions through which it can be used on the backward
integration phase.

The adjoint module in idas offers an interface to the band-block-diagonal preconditioner module
idabbdpre described in section §4.8. This generates a preconditioner that is a block-diagonal matrix
with each block being a band matrix and can be used with one of the Krylov linear solvers and with
the MPI-parallel vector module nvector parallel.

In order to use the idabbdpre module in the solution of the backward problem, the user must
define one or two additional functions, described at the end of this section.

6.4.1 Usage of IDABBDPRE for the backward problem

The idabbdpre module is initialized by calling the following function, after one of the idaspils linear
solvers has been specified, by calling the appropriate function (see §6.2.6).

IDABBDPrecInitB

Call flag = IDABBDPrecInitB(ida mem, which, NlocalB, mudqB, mldqB,
mukeepB, mlkeepB, dqrelyB, GresB, GcommB);

Description The function IDABBDPrecInitB initializes and allocates memory for the idabbdpre
preconditioner for the backward problem.

Arguments ida mem (void *) pointer to the idas memory block.
which (int) the identifier of the backward problem.
NlocalB (sunindextype) local vector dimension for the backward problem.
mudqB (sunindextype) upper half-bandwidth to be used in the difference-quotient

Jacobian approximation.
mldqB (sunindextype) lower half-bandwidth to be used in the difference-quotient

Jacobian approximation.
mukeepB (sunindextype) upper half-bandwidth of the retained banded approximate

Jacobian block.
mlkeepB (sunindextype) lower half-bandwidth of the retained banded approximate

Jacobian block.
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dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations. The default is dqrelyB=

√
unit roundoff, which can

be specified by passing dqrely= 0.0.
GresB (IDABBDLocalFnB) the C function which computesGB(t, y, ẏ, yB , ẏB), the func-

tion approximating the residual of the backward problem.
GcommB (IDABBDCommFnB) the optional C function which performs all interprocess com-

munication required for the computation of GB .

Return value If successful, IDABBDPrecInitB creates, allocates, and stores (internally in the idas
solver block) a pointer to the newly created idabbdpre memory block. The return
value flag (of type int) is one of:

IDASPILS SUCCESS The call to IDABBDPrecInitB was successful.
IDASPILS MEM FAIL A memory allocation request has failed.
IDASPILS MEM NULL The ida mem argument was NULL.
IDASPILS LMEM NULL No linear solver has been attached.
IDASPILS ILL INPUT An invalid parameter has been passed.

To reinitialize the idabbdpre preconditioner module for the backward problem, possibly with a change
in mudqB, mldqB, or dqrelyB, call the following function:

IDABBDPrecReInitB

Call flag = IDABBDPrecReInitB(ida mem, which, mudqB, mldqB, dqrelyB);

Description The function IDABBDPrecReInitB reinitializes the idabbdpre preconditioner for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
which (int) the identifier of the backward problem.
mudqB (sunindextype) upper half-bandwidth to be used in the difference-quotient

Jacobian approximation.
mldqB (sunindextype) lower half-bandwidth to be used in the difference-quotient

Jacobian approximation.
dqrelyB (realtype) the relative increment in components of yB used in the difference

quotient approximations.

Return value The return value flag (of type int) is one of:

IDASPILS SUCCESS The call to IDABBDPrecReInitB was successful.
IDASPILS MEM FAIL A memory allocation request has failed.
IDASPILS MEM NULL The ida mem argument was NULL.
IDASPILS PMEM NULL The IDABBDPrecInitB has not been previously called.
IDASPILS LMEM NULL No linear solver has been attached.
IDASPILS ILL INPUT An invalid parameter has been passed.

For more details on idabbdpre see §4.8.

6.4.2 User-supplied functions for IDABBDPRE

To use the idabbdpre module, the user must supply one or two functions which the module calls
to construct the preconditioner: a required function GresB (of type IDABBDLocalFnB) which approxi-
mates the residual of the backward problem and which is computed locally, and an optional function
GcommB (of type IDABBDCommFnB) which performs all interprocess communication necessary to evaluate
this approximate residual (see §4.8). The prototypes for these two functions are described below.
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IDABBDLocalFnB

Definition typedef int (*IDABBDLocalFnB)(sunindextype NlocalB, realtype t,
N Vector y, N Vector yp,
N Vector yB, N Vector ypB,
N Vector gB, void *user dataB);

Purpose This GresB function loads the vector gB, an approximation to the residual of the back-
ward problem, as a function of t, y, yp, and yB and ypB.

Arguments NlocalB is the local vector length for the backward problem.
t is the value of the independent variable.
y is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
gB is the output vector, GB(t, y, ẏ, yB , ẏB).
user dataB is a pointer to user data — the same as the user dataB parameter passed

to IDASetUserDataB.

Return value An IDABBDLocalFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA LSETUP FAIL).

Notes This routine must assume that all interprocess communication of data needed to calcu-
late gB has already been done, and this data is accessible within user dataB.

Before calling the user’s IDABBDLocalFnB, idas needs to evaluate (through interpola-!

tion) the values of the states from the forward integration. If an error occurs in the
interpolation, idas triggers an unrecoverable failure in the preconditioner setup function
which will halt the integration (IDASolveB returns IDA LSETUP FAIL).

IDABBDCommFnB

Definition typedef int (*IDABBDCommFnB)(sunindextype NlocalB, realtype t,
N Vector y, N Vector yp,
N Vector yB, N Vector ypB,
void *user dataB);

Purpose This GcommB function performs all interprocess communications necessary for the exe-
cution of the GresB function above, using the input vectors y, yp, yB and ypB.

Arguments NlocalB is the local vector length.
t is the value of the independent variable.
y is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
user dataB is a pointer to user data — the same as the user dataB parameter passed

to IDASetUserDataB.

Return value An IDABBDCommFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA LSETUP FAIL).
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Notes The GcommB function is expected to save communicated data in space defined within
the structure user dataB.

Each call to the GcommB function is preceded by a call to the function that evaluates the
residual of the backward problem with the same t, y, yp, yB and ypB arguments. If there
is no additional communication needed, then pass GcommB = NULL to IDABBDPrecInitB.





Chapter 7

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vec-
tors (of type N Vector) through a set of operations defined by the particular nvector implemen-
tation. Users can provide their own specific implementation of the nvector module, or use one of
the implementations provided with sundials. The generic operations are described below and the
implementations provided with sundials are described in the following sections.

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {
void *content;
struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector_ID (*nvgetvectorid)(N_Vector);
N_Vector (*nvclone)(N_Vector);
N_Vector (*nvcloneempty)(N_Vector);
void (*nvdestroy)(N_Vector);
void (*nvspace)(N_Vector, sunindextype *, sunindextype *);
realtype* (*nvgetarraypointer)(N_Vector);
void (*nvsetarraypointer)(realtype *, N_Vector);
void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);
void (*nvconst)(realtype, N_Vector);
void (*nvprod)(N_Vector, N_Vector, N_Vector);
void (*nvdiv)(N_Vector, N_Vector, N_Vector);
void (*nvscale)(realtype, N_Vector, N_Vector);
void (*nvabs)(N_Vector, N_Vector);
void (*nvinv)(N_Vector, N_Vector);
void (*nvaddconst)(N_Vector, realtype, N_Vector);
realtype (*nvdotprod)(N_Vector, N_Vector);
realtype (*nvmaxnorm)(N_Vector);
realtype (*nvwrmsnorm)(N_Vector, N_Vector);
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realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);
realtype (*nvmin)(N_Vector);
realtype (*nvwl2norm)(N_Vector, N_Vector);
realtype (*nvl1norm)(N_Vector);
void (*nvcompare)(realtype, N_Vector, N_Vector);
booleantype (*nvinvtest)(N_Vector, N_Vector);
booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);
realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module defines and implements the vector operations acting on N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector
implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector
module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)
{

z->ops->nvscale(c, x, z);
}

Table 7.2 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines the functions N VCloneVectorArray and

N VCloneVectorArrayEmpty. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);
N_Vector *N_VCloneVectorArrayEmpty(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.

Each nvector implementation included in sundials has a unique identifier specified in enumer-
ation and shown in Table 7.1. It is recommended that a user-supplied nvector implementation use
the SUNDIALS NVEC CUSTOM identifier.
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Table 7.1: Vector Identifications associated with vector kernels supplied with sundials.

Vector ID Vector type ID Value
SUNDIALS NVEC SERIAL Serial 0
SUNDIALS NVEC PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS NVEC OPENMP OpenMP shared memory parallel 2
SUNDIALS NVEC PTHREADS PThreads shared memory parallel 3
SUNDIALS NVEC PARHYP hypre ParHyp parallel vector 4
SUNDIALS NVEC PETSC petsc parallel vector 5
SUNDIALS NVEC CUSTOM User-provided custom vector 6

Table 7.2: Description of the NVECTOR operations

Name Usage and Description

N VGetVectorID id = N VGetVectorID(w);
Returns the vector type identifier for the vector w. It is used to deter-
mine the vector implementation type (e.g. serial, parallel,. . . ) from the
abstract N Vector interface. Returned values are given in Table 7.1.

N VClone v = N VClone(w);
Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage
for the new vector.

N VCloneEmpty v = N VCloneEmpty(w);
Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for data.

N VDestroy N VDestroy(v);
Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);
Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied nvector
module if that information is not of interest.

continued on next page
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continued from last page

Name Usage and Description

N VGetArrayPointer vdata = N VGetArrayPointer(v);
Returns a pointer to a realtype array from the N Vector v. Note
that this assumes that the internal data in N Vector is a contiguous
array of realtype. This routine is only used in the solver-specific in-
terfaces to the dense and banded (serial) linear solvers, the sparse lin-
ear solvers (serial and threaded), and in the interfaces to the banded
(serial) and band-block-diagonal (parallel) preconditioner modules pro-
vided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);
Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a contigu-
ous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied
nvector module for a parallel environment.

N VLinearSum N VLinearSum(a, x, b, y, z);
Performs the operation z = ax+ by, where a and b are realtype scalars
and x and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);
Sets all components of the N Vector z to realtype c: zi = c, i =
0, . . . , n− 1.

N VProd N VProd(x, y, z);
Sets the N Vector z to be the component-wise product of the N Vector
inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

N VDiv N VDiv(x, y, z);
Sets the N Vector z to be the component-wise ratio of the N Vector
inputs x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested
for 0 values. It should only be called with a y that is guaranteed to have
all nonzero components.

N VScale N VScale(c, x, z);
Scales the N Vector x by the realtype scalar c and returns the result
in z: zi = cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, z);
Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

continued on next page
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continued from last page

Name Usage and Description

N VInv N VInv(x, z);
Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);
Adds the realtype scalar b to all components of x and returns the result
in the N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);
Returns the maximum norm of the N Vector x: m = maxi |xi|.

N VWrmsNorm m = N VWrmsNorm(x, w)
Returns the weighted root-mean-square norm of the N Vector x with

realtype weight vector w: m =
√(∑n−1

i=0 (xiwi)2
)
/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);
Returns the weighted root mean square norm of the N Vector x with
realtype weight vector w built using only the elements of x correspond-
ing to nonzero elements of the N Vector id:

m =
√(∑n−1

i=0 (xiwisign(idi))2
)
/n.

N VMin m = N VMin(x);
Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);
Returns the weighted Euclidean `2 norm of the N Vector x with

realtype weight vector w: m =
√∑n−1

i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the `1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.

N VCompare N VCompare(c, x, z);
Compares the components of the N Vector x to the realtype scalar c
and returns an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0
otherwise.

continued on next page
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continued from last page

Name Usage and Description

N VInvTest t = N VInvTest(x, z);
Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x, with prior testing for zero values: zi =
1.0/xi, i = 0, . . . , n − 1. This routine returns a boolean assigned to
SUNTRUE if all components of x are nonzero (successful inversion) and
returns SUNFALSE otherwise.

N VConstrMask t = N VConstrMask(c, x, m);
Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if
ci = 1, xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint
on xi if ci = 0. This routine returns a boolean assigned to SUNFALSE
if any element failed the constraint test and assigned to SUNTRUE if all
passed. It also sets a mask vector m, with elements equal to 1.0 where
the constraint test failed, and 0.0 where the test passed. This routine is
used only for constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);
This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

7.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {
sunindextype length;
booleantype own_data;
realtype *data;

};

The header file to include when using this module is nvector serial.h. The installed module
library to link to is libsundials nvecserial.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of an nvector serial vector. The suffix
S in the names denotes the serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector
content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.
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The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

The nvector serial module defines serial implementations of all vector operations listed in Ta-
ble 7.2. Their names are obtained from those in Table 7.2 by appending the suffix Serial (e.g.
N VDestroy Serial). The module nvector serial provides the following additional user-callable
routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(sunindextype vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(sunindextype vec_length);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

(This function does not allocate memory for v data itself.)

N_Vector N_VMake_Serial(sunindextype vec_length, realtype *v_data);

• N VCloneVectorArray Serial

This function creates (by cloning) an array of count serial vectors.

N_Vector *N_VCloneVectorArray_Serial(int count, N_Vector w);

• N VCloneVectorArrayEmpty Serial

This function creates (by cloning) an array of count serial vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_Serial(int count, N_Vector w);

• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Serial or with N VCloneVectorArrayEmpty Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);
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• N VGetLength Serial

This function returns the number of vector elements.

sunindextype N_VGetLength_Serial(N_Vector v);

• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);

• N VPrintFile Serial

This function prints the content of a serial vector to outfile.

void N_VPrintFile_Serial(N_Vector v, FILE *outfile);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneVectorArrayEmpty Serial set the field!

own data = SUNFALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the nvector serial module also includes
a Fortran-callable function FNVINITS(code, NEQ, IER), to initialize this nvector serial module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); and IER is an error return flag equal 0 for
success and -1 for failure.

7.2 The NVECTOR PARALLEL implementation

The nvector parallel implementation of the nvector module provided with sundials is based on
MPI. It defines the content field of N Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, and
a boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
realtype *data;
MPI_Comm comm;

};

The header file to include when using this module is nvector parallel.h. The installed module
library to link to is libsundials nvecparallel.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes the distributed memory parallel version.
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• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorContent Parallel.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 7.2 Their names are obtained from those in Table 7.2 by appending the suffix Parallel
(e.g. N VDestroy Parallel). The module nvector parallel provides the following additional
user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);
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• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.

(This function does not allocate memory for v data itself.)

N_Vector N_VMake_Parallel(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length,
realtype *v_data);

• N VCloneVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors.

N_Vector *N_VCloneVectorArray_Parallel(int count, N_Vector w);

• N VCloneVectorArrayEmpty Parallel

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_Parallel(int count, N_Vector w);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Parallel or with N VCloneVectorArrayEmpty Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VGetLength Parallel

This function returns the number of vector elements (global vector length).

sunindextype N_VGetLength_Parallel(N_Vector v);

• N VGetLocalLength Parallel

This function returns the local vector length.

sunindextype N_VGetLocalLength_Parallel(N_Vector v);

• N VPrint Parallel

This function prints the local content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

• N VPrintFile Parallel

This function prints the local content of a parallel vector to outfile.

void N_VPrintFile_Parallel(N_Vector v, FILE *outfile);
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Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneVectorArrayEmpty Parallel set the!

field own data = SUNFALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the nvector parallel module also includes
a Fortran-callable function FNVINITP(COMM, code, NLOCAL, NGLOBAL, IER), to initialize this nvec-
tor parallel module. Here COMM is the MPI communicator, code is an input solver id (1 for cvode,
2 for ida, 3 for kinsol, 4 for arkode); NLOCAL and NGLOBAL are the local and global vector sizes,
respectively (declared so as to match C type long int); and IER is an error return flag equal 0 for suc-
cess and -1 for failure. NOTE: If the header file sundials config.h defines SUNDIALS MPI COMM F2C !

to be 1 (meaning the MPI implementation used to build sundials includes the MPI Comm f2c func-
tion), then COMM can be any valid MPI communicator. Otherwise, MPI COMM WORLD will be used, so
just pass an integer value as a placeholder.

7.3 The NVECTOR OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The OpenMP nvector implementation provided with sundials, nvector openmp, defines the
content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.

struct _N_VectorContent_OpenMP {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to include when using this module is nvector openmp.h. The installed module
library to link to is libsundials nvecopenmp.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of an nvector openmp vector. The
suffix OMP in the names denotes the OpenMP version.

• NV CONTENT OMP

This routine gives access to the contents of the OpenMP vector N Vector.

The assignment v cont = NV CONTENT OMP(v) sets v cont to be a pointer to the OpenMP
N Vector content structure.
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Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP)(v->content) )

• NV OWN DATA OMP, NV DATA OMP, NV LENGTH OMP, NV NUM THREADS OMP

These macros give individual access to the parts of the content of a OpenMP N Vector.

The assignment v data = NV DATA OMP(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA OMP(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH OMP(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMP(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS OMP(v) sets v num threads to be the num-
ber of threads from v. On the other hand, the call NV NUM THREADS OMP(v) = num threads v
sets the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

• NV Ith OMP

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )

The nvector openmp module defines OpenMP implementations of all vector operations listed in
Table 7.2. Their names are obtained from those in Table 7.2 by appending the suffix OpenMP (e.g.
N VDestroy OpenMP). The module nvector openmp provides the following additional user-callable
routines:

• N VNew OpenMP

This function creates and allocates memory for a OpenMP N Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_OpenMP(sunindextype vec_length, int num_threads);

• N VNewEmpty OpenMP

This function creates a new OpenMP N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_OpenMP(sunindextype vec_length, int num_threads);

• N VMake OpenMP

This function creates and allocates memory for a OpenMP vector with user-provided data array.

(This function does not allocate memory for v data itself.)

N_Vector N_VMake_OpenMP(sunindextype vec_length, realtype *v_data, int num_threads);

• N VCloneVectorArray OpenMP

This function creates (by cloning) an array of count OpenMP vectors.

N_Vector *N_VCloneVectorArray_OpenMP(int count, N_Vector w);
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• N VCloneVectorArrayEmpty OpenMP

This function creates (by cloning) an array of count OpenMP vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneVectorArrayEmpty_OpenMP(int count, N_Vector w);

• N VDestroyVectorArray OpenMP

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray OpenMP or with N VCloneVectorArrayEmpty OpenMP.

void N_VDestroyVectorArray_OpenMP(N_Vector *vs, int count);

• N VGetLength OpenMP

This function returns number of vector elements.

sunindextype N_VGetLength_OpenMP(N_Vector v);

• N VPrint OpenMP

This function prints the content of an OpenMP vector to stdout.

void N_VPrint_OpenMP(N_Vector v);

• N VPrintFile OpenMP

This function prints the content of an OpenMP vector to outfile.

void N_VPrintFile_OpenMP(N_Vector v, FILE *outfile);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA OMP(v) and then access v data[i] within the loop
than it is to use NV Ith OMP(v,i) within the loop.

• N VNewEmpty OpenMP, N VMake OpenMP, and N VCloneVectorArrayEmpty OpenMP set the field !

own data = SUNFALSE. N VDestroy OpenMP and N VDestroyVectorArray OpenMP will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmp implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the nvector openmp module also includes
a Fortran-callable function FNVINITOMP(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

7.4 The NVECTOR PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The Pthreads nvector implementation provided with sundials, denoted nvector pthreads,
defines the content field of N Vector to be a structure containing the length of the vector, a pointer
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to the beginning of a contiguous data array, a boolean flag own data which specifies the ownership
of data, and the number of threads. Operations on the vector are threaded using POSIX threads
(Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to include when using this module is nvector pthreads.h. The installed module
library to link to is libsundials nvecpthreads.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of an nvector pthreads vector. The
suffix PT in the names denotes the Pthreads version.

• NV CONTENT PT

This routine gives access to the contents of the Pthreads vector N Vector.

The assignment v cont = NV CONTENT PT(v) sets v cont to be a pointer to the Pthreads
N Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads)(v->content) )

• NV OWN DATA PT, NV DATA PT, NV LENGTH PT, NV NUM THREADS PT

These macros give individual access to the parts of the content of a Pthreads N Vector.

The assignment v data = NV DATA PT(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA PT(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH PT(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH PT(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS PT(v) sets v num threads to be the number
of threads from v. On the other hand, the call NV NUM THREADS PT(v) = num threads v sets
the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

• NV Ith PT

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

The nvector pthreads module defines Pthreads implementations of all vector operations listed
in Table 7.2. Their names are obtained from those in Table 7.2 by appending the suffix Pthreads
(e.g. N VDestroy Pthreads). The module nvector pthreads provides the following additional
user-callable routines:
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• N VNew Pthreads

This function creates and allocates memory for a Pthreads N Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_Pthreads(sunindextype vec_length, int num_threads);

• N VNewEmpty Pthreads

This function creates a new Pthreads N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Pthreads(sunindextype vec_length, int num_threads);

• N VMake Pthreads

This function creates and allocates memory for a Pthreads vector with user-provided data array.

(This function does not allocate memory for v data itself.)

N_Vector N_VMake_Pthreads(sunindextype vec_length, realtype *v_data, int num_threads);

• N VCloneVectorArray Pthreads

This function creates (by cloning) an array of count Pthreads vectors.

N_Vector *N_VCloneVectorArray_Pthreads(int count, N_Vector w);

• N VCloneVectorArrayEmpty Pthreads

This function creates (by cloning) an array of count Pthreads vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneVectorArrayEmpty_Pthreads(int count, N_Vector w);

• N VDestroyVectorArray Pthreads

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Pthreads or with N VCloneVectorArrayEmpty Pthreads.

void N_VDestroyVectorArray_Pthreads(N_Vector *vs, int count);

• N VGetLength Pthreads

This function returns the number of vector elements.

sunindextype N_VGetLength_Pthreads(N_Vector v);

• N VPrint Pthreads

This function prints the content of a Pthreads vector to stdout.

void N_VPrint_Pthreads(N_Vector v);

• N VPrintFile Pthreads

This function prints the content of a Pthreads vector to outfile.

void N_VPrintFile_Pthreads(N_Vector v, FILE *outfile);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA PT(v) and then access v data[i] within the loop than
it is to use NV Ith PT(v,i) within the loop.

• N VNewEmpty Pthreads, N VMake Pthreads, and N VCloneVectorArrayEmpty Pthreads set the !

field own data = SUNFALSE. N VDestroy Pthreads and N VDestroyVectorArray Pthreads will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.
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• To maximize efficiency, vector operations in the nvector pthreads implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the nvector pthreads module also includes
a Fortran-callable function FNVINITPTS(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

7.5 The NVECTOR PARHYP implementation

The nvector parhyp implementation of the nvector module provided with sundials is a wrapper
around hypre’s ParVector class. Most of the vector kernels simply call hypre vector operations. The
implementation defines the content field of N Vector to be a structure containing the global and local
lengths of the vector, a pointer to an object of type hypre ParVector, an MPI communicator, and a
boolean flag own parvector indicating ownership of the hypre parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
booleantype own_parvector;
MPI_Comm comm;
hypre_ParVector *x;

};

The header file to include when using this module is nvector parhyp.h. The installed module library
to link to is libsundials nvecparhyp.lib where .lib is typically .so for shared libraries and .a
for static libraries.

Unlike native sundials vector types, nvector parhyp does not provide macros to access its
member variables. Note that nvector parhyp requires sundials to be built with MPI support.

The nvector parhyp module defines implementations of all vector operations listed in Table
7.2, except for N VSetArrayPointer and N VGetArrayPointer, because accessing raw vector data
is handled by low-level hypre functions. As such, this vector is not available for use with sundials
Fortran interfaces. When access to raw vector data is needed, one should extract the hypre vector first,
and then use hypre methods to access the data. Usage examples of nvector parhyp are provided in
the cvAdvDiff non ph.c example program for cvode [25] and the ark diurnal kry ph.c example
program for arkode [31].

The names of parhyp methods are obtained from those in Table 7.2 by appending the suffix
ParHyp (e.g. N VDestroy ParHyp). The module nvector parhyp provides the following additional

user-callable routines:

• N VNewEmpty ParHyp

This function creates a new parhyp N Vector with the pointer to the hypre vector set to NULL.

N_Vector N_VNewEmpty_ParHyp(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

• N VMake ParHyp

This function creates an N_Vector wrapper around an existing hypre parallel vector. It does
not allocate memory for x itself.

N_Vector N_VMake_ParHyp(hypre_ParVector *x);
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• N VGetVector ParHyp

This function returns a pointer to the underlying hypre vector.

hypre_ParVector *N_VGetVector_ParHyp(N_Vector v);

• N VCloneVectorArray ParHyp

This function creates (by cloning) an array of count parallel vectors.

N_Vector *N_VCloneVectorArray_ParHyp(int count, N_Vector w);

• N VCloneVectorArrayEmpty ParHyp

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_ParHyp(int count, N_Vector w);

• N VDestroyVectorArray ParHyp

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray ParHyp or with N VCloneVectorArrayEmpty ParHyp.

void N_VDestroyVectorArray_ParHyp(N_Vector *vs, int count);

• N VPrint ParHyp

This function prints the local content of a parhyp vector to stdout.

void N_VPrint_ParHyp(N_Vector v);

• N VPrintFile ParHyp

This function prints the local content of a parhyp vector to outfile.

void N_VPrintFile_ParHyp(N_Vector v, FILE *outfile);

Notes

• When there is a need to access components of an N Vector ParHyp, v, it is recommended to
extract the hypre vector via x vec = N VGetVector ParHyp(v) and then access components
using appropriate hypre functions.

• N VNewEmpty ParHyp, N VMake ParHyp, and N VCloneVectorArrayEmpty ParHyp set the field !

own parvector to SUNFALSE. N VDestroy ParHyp and N VDestroyVectorArray ParHyp will not
attempt to delete an underlying hypre vector for any N Vector with own parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.

• To maximize efficiency, vector operations in the nvector parhyp implementation that have !

more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

7.6 The NVECTOR PETSC implementation

The nvector petsc module is an nvector wrapper around the petsc vector. It defines the content
field of a N Vector to be a structure containing the global and local lengths of the vector, a pointer
to the petsc vector, an MPI communicator, and a boolean flag own data indicating ownership of the
wrapped petsc vector.
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struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
Vec *pvec;
MPI_Comm comm;

};

The header file to include when using this module is nvector petsc.h. The installed module
library to link to is libsundials nvecpetsc.lib where .lib is typically .so for shared libraries and
.a for static libraries.

Unlike native sundials vector types, nvector petsc does not provide macros to access its mem-
ber variables. Note that nvector petsc requires sundials to be built with MPI support.

The nvector petsc module defines implementations of all vector operations listed in Table 7.2,
except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used
with sundials Fortran interfaces. When access to raw vector data is needed, it is recommended to
extract the petsc vector first, and then use petsc methods to access the data. Usage examples of
nvector petsc are provided in example programs for ida [23].

The names of vector operations are obtained from those in Table 7.2 by appending the suffix
Petsc (e.g. N VDestroy Petsc). The module nvector petsc provides the following additional

user-callable routines:

• N VNewEmpty Petsc

This function creates a new nvector wrapper with the pointer to the wrapped petsc vector
set to (NULL). It is used by the N VMake Petsc and N VClone Petsc implementations.

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

• N VMake Petsc

This function creates and allocates memory for an nvector petsc wrapper around a user-
provided petsc vector. It does not allocate memory for the vector pvec itself.

N_Vector N_VMake_Petsc(Vec *pvec);

• N VGetVector Petsc

This function returns a pointer to the underlying petsc vector.

Vec *N_VGetVector_Petsc(N_Vector v);

• N VCloneVectorArray Petsc

This function creates (by cloning) an array of count nvector petsc vectors.

N_Vector *N_VCloneVectorArray_Petsc(int count, N_Vector w);

• N VCloneVectorArrayEmpty Petsc

This function creates (by cloning) an array of count nvector petsc vectors, each with pointers
to petsc vectors set to (NULL).

N_Vector *N_VCloneEmptyVectorArray_Petsc(int count, N_Vector w);
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• N VDestroyVectorArray Petsc

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Petsc or with N VCloneVectorArrayEmpty Petsc.

void N_VDestroyVectorArray_Petsc(N_Vector *vs, int count);

• N VPrint Petsc

This function prints the global content of a wrapped petsc vector to stdout.

void N_VPrint_Petsc(N_Vector v);

• N VPrintFile Petsc

This function prints the global content of a wrapped petsc vector to fname.

void N_VPrintFile_Petsc(N_Vector v, const char fname[]);

Notes

• When there is a need to access components of an N Vector Petsc, v, it is recommeded to
extract the petsc vector via x vec = N VGetVector Petsc(v) and then access components
using appropriate petsc functions.

• The functions N VNewEmpty Petsc, N VMake Petsc, and N VCloneVectorArrayEmpty Petsc set !

the field own data to SUNFALSE. N VDestroy Petsc and N VDestroyVectorArray Petsc will not
attempt to free the pointer pvec for any N Vector with own data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the pvec pointer.

• To maximize efficiency, vector operations in the nvector petsc implementation that have !

more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

7.7 The NVECTOR CUDA implementation

The nvector cuda module is an experimental nvector implementation in the cuda language. The
module allows for sundials vector kernels to run on GPU devices. It is intended for users who are
already familiar with cuda and GPU programming. Building this vector module requires a CUDA
compiler and, by extension, a C++ compiler. The class Vector in namespace suncudavec manages
vector data layout:

template <class T, class I>
class Vector {
I size_;
I mem_size_;
T* h_vec_;
T* d_vec_;
StreamPartitioning<T, I>* partStream_;
ReducePartitioning<T, I>* partReduce_;
bool ownPartitioning_;

...
};

The class members are vector size (length), size of the vector data memory block, pointers to vector
data on the host and the device, pointers to classes StreamPartitioning and ReducePartitioning,
which handle thread partitioning for streaming and reduction vector kernels, respectively, and a
boolean flag that signals if the vector owns the thread partitioning. The class Vector inherits from
the empty structure
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struct _N_VectorContent_Cuda {
};

to interface the C++ class with the nvector C code. When instantiated, the class Vector will
allocate memory on both the host and the device. Due to the rapid progress of cuda development, we
expect that the suncudavec::Vector class will change frequently in future sundials releases. The
code is structured so that it can tolerate significant changes in the suncudavec::Vector class without
requiring changes to the user API.

The header file to include when using this module is nvector cuda.h. The installed module library
to link to is libsundials nveccuda.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Unlike other native sundials vector types, nvector cuda does not provide macros to access its
member variables.

The nvector cuda module defines implementations of all vector operations listed in Table 7.2,
except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used with
sundials Fortran interfaces, nor with sundials direct solvers and preconditioners. This support will
be added in subsequent sundials releases. The nvector cuda module provides separate functions
to access data on the host and on the device. It also provides methods for copying from the host to
the device and vice versa. Usage examples of nvector cuda are provided in some example programs
for cvode [25].

The names of vector operations are obtained from those in Table 7.2 by appending the suffix Cuda
(e.g. N VDestroy Cuda). The module nvector cuda provides the following additional user-callable
routines:

• N VNew Cuda

This function creates and allocates memory for a cuda N Vector. The memory is allocated on
both host and device. Its only argument is the vector length.

N_Vector N_VNew_Cuda(sunindextype vec_length);

• N VNewEmpty Cuda

This function creates a new nvector wrapper with the pointer to the wrapped cuda vector set
to (NULL). It is used by the N VNew Cuda, N VMake Cuda, and N VClone Cuda implementations.

N_Vector N_VNewEmpty_Cuda(sunindextype vec_length);

• N VMake Cuda

This function creates and allocates memory for an nvector cuda wrapper around a user-
provided suncudavec::Vector class. Its only argument is of type N VectorContent Cuda, which
is the pointer to the class.

N_Vector N_VMake_Cuda(N_VectorContent_Cuda c);

• N VCloneVectorArray Cuda

This function creates (by cloning) an array of count nvector cuda vectors.

N_Vector *N_VCloneVectorArray_Cuda(int count, N_Vector w);

• N VCloneVectorArrayEmpty Cuda

This function creates (by cloning) an array of count nvector cuda vectors, each with pointers
to cuda vectors set to (NULL).

N_Vector *N_VCloneEmptyVectorArray_Cuda(int count, N_Vector w);
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• N VDestroyVectorArray Cuda

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Cuda or with N VCloneVectorArrayEmpty Cuda.

void N_VDestroyVectorArray_Cuda(N_Vector *vs, int count);

• N VGetLength Cuda

This function returns the length of the vector.

sunindextype N_VGetLength_Cuda(N_Vector v);

• N VGetHostArrayPointer Cuda

This function returns a pointer to the vector data on the host.

realtype *N_VGetHostArrayPointer_Cuda(N_Vector v);

• N VGetDeviceArrayPointer Cuda

This function returns a pointer to the vector data on the device.

realtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v);

• N VCopyToDevice Cuda

This function copies host vector data to the device.

realtype *N_VCopyToDevice_Cuda(N_Vector v);

• N VCopyFromDevice Cuda

This function copies vector data from the device to the host.

realtype *N_VCopyFromDevice_Cuda(N_Vector v);

• N VPrint Cuda

This function prints the content of a cuda vector to stdout.

void N_VPrint_Cuda(N_Vector v);

• N VPrintFile Cuda

This function prints the content of a cuda vector to outfile.

void N_VPrintFile_Cuda(N_Vector v, FILE *outfile);

Notes

• When there is a need to access components of an N Vector Cuda, v, it is recommeded to use
functions N VGetDeviceArrayPointer Cuda or N VGetHostArrayPointer Cuda.

• To maximize efficiency, vector operations in the nvector cuda implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

7.8 The NVECTOR RAJA implementation

The nvector raja module is an experimental nvector implementation using the raja hardware
abstraction layer, https://software.llnl.gov/RAJA/. In this implementation, raja allows for sundials
vector kernels to run on GPU devices. The module is intended for users who are already familiar with
raja and GPU programming. Building this vector module requires a C++11 compliant compiler and
a CUDA software development toolkit. Besides the cuda backend, raja has other backends such as
serial, OpenMP, and OpenAC. These backends are not used in this sundials release. Class Vector
in namespace sunrajavec manages the vector data layout:
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template <class T, class I>
class Vector {
I size_;
I mem_size_;
T* h_vec_;
T* d_vec_;

...
};

The class members are: vector size (length), size of the vector data memory block, and pointers to
vector data on the host and on the device. The class Vector inherits from an empty structure

struct _N_VectorContent_Raja {
};

to interface the C++ class with the nvector C code. When instantiated, the class Vector will
allocate memory on both the host and the device. Due to the rapid progress of raja development, we
expect that the sunrajavec::Vector class will change frequently in future sundials releases. The
code is structured so that it can tolerate significant changes in the sunrajavec::Vector class without
requiring changes to the user API.

The header file to include when using this module is nvector raja.h. The installed module library
to link to is libsundials nvecraja.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Unlike other native sundials vector types, nvector raja does not provide macros to access its
member variables.

The nvector raja module defines the implementations of all vector operations listed in Table
7.2, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used
with sundials Fortran interfaces, nor with sundials direct solvers and preconditioners. The nvec-
tor raja module provides separate functions to access data on the host and on the device. It also
provides methods for copying data from the host to the device and vice versa. Usage examples of
nvector raja are provided in some example programs for cvode [25].

The names of vector operations are obtained from those in Table 7.2 by appending the suffix Raja
(e.g. N VDestroy Raja). The module nvector raja provides the following additional user-callable
routines:

• N VNew Raja

This function creates and allocates memory for a raja N Vector. The memory is allocated on
both the host and the device. Its only argument is the vector length.

N_Vector N_VNew_Raja(sunindextype vec_length);

• N VNewEmpty Raja

This function creates a new nvector wrapper with the pointer to the wrapped raja vector set
to (NULL). It is used by the N VNew Raja, N VMake Raja, and N VClone Raja implementations.

N_Vector N_VNewEmpty_Raja(sunindextype vec_length);

• N VMake Raja

This function creates and allocates memory for an nvector raja wrapper around a user-
provided sunrajavec::Vector class. Its only argument is of type N VectorContent Raja, which
is the pointer to the class.

N_Vector N_VMake_Raja(N_VectorContent_Raja c);
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• N VCloneVectorArray Raja

This function creates (by cloning) an array of count nvector raja vectors.

N_Vector *N_VCloneVectorArray_Raja(int count, N_Vector w);

• N VCloneVectorArrayEmpty Raja

This function creates (by cloning) an array of count nvector raja vectors, each with pointers
to raja vectors set to (NULL).

N_Vector *N_VCloneEmptyVectorArray_Raja(int count, N_Vector w);

• N VDestroyVectorArray Raja

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Raja or with N VCloneVectorArrayEmpty Raja.

void N_VDestroyVectorArray_Raja(N_Vector *vs, int count);

• N VGetLength Raja

This function returns the length of the vector.

sunindextype N_VGetLength_Raja(N_Vector v);

• N VGetHostArrayPointer Raja

This function returns a pointer to the vector data on the host.

realtype *N_VGetHostArrayPointer_Raja(N_Vector v);

• N VGetDeviceArrayPointer Raja

This function returns a pointer to the vector data on the device.

realtype *N_VGetDeviceArrayPointer_Raja(N_Vector v);

• N VCopyToDevice Raja

This function copies host vector data to the device.

realtype *N_VCopyToDevice_Raja(N_Vector v);

• N VCopyFromDevice Raja

This function copies vector data from the device to the host.

realtype *N_VCopyFromDevice_Raja(N_Vector v);

• N VPrint Raja

This function prints the content of a raja vector to stdout.

void N_VPrint_Raja(N_Vector v);

• N VPrintFile Raja

This function prints the content of a raja vector to outfile.

void N_VPrintFile_Raja(N_Vector v, FILE *outfile);

Notes

• When there is a need to access components of an N Vector Raja, v, it is recommeded to use
functions N VGetDeviceArrayPointer Raja or N VGetHostArrayPointer Raja.

• To maximize efficiency, vector operations in the nvector raja implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.
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7.9 NVECTOR Examples

There are NVector examples that may be installed for the implementations provided with sundials.
Each implementation makes use of the functions in test nvector.c. These example functions show
simple usage of the NVector family of functions. The input to the examples are the vector length,
number of threads (if threaded implementation), and a print timing flag.
The following is a list of the example functions in test nvector.c:

• Test N VClone: Creates clone of vector and checks validity of clone.

• Test N VCloneEmpty: Creates clone of empty vector and checks validity of clone.

• Test N VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test N VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned
array.

• Test N VGetArrayPointer: Get array pointer.

• Test N VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check
values.

• Test N VLinearSum Case 1a: Test y = x + y

• Test N VLinearSum Case 1b: Test y = -x + y

• Test N VLinearSum Case 1c: Test y = ax + y

• Test N VLinearSum Case 2a: Test x = x + y

• Test N VLinearSum Case 2b: Test x = x - y

• Test N VLinearSum Case 2c: Test x = x + by

• Test N VLinearSum Case 3: Test z = x + y

• Test N VLinearSum Case 4a: Test z = x - y

• Test N VLinearSum Case 4b: Test z = -x + y

• Test N VLinearSum Case 5a: Test z = x + by

• Test N VLinearSum Case 5b: Test z = ax + y

• Test N VLinearSum Case 6a: Test z = -x + by

• Test N VLinearSum Case 6b: Test z = ax - y

• Test N VLinearSum Case 7: Test z = a(x + y)

• Test N VLinearSum Case 8: Test z = a(x - y)

• Test N VLinearSum Case 9: Test z = ax + by

• Test N VConst: Fill vector with constant and check result.

• Test N VProd: Test vector multiply: z = x * y

• Test N VDiv: Test vector division: z = x / y

• Test N VScale: Case 1: scale: x = cx

• Test N VScale: Case 2: copy: z = x
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• Test N VScale: Case 3: negate: z = -x

• Test N VScale: Case 4: combination: z = cx

• Test N VAbs: Create absolute value of vector.

• Test N VAddConst: add constant vector: z = c + x

• Test N VDotProd: Calculate dot product of two vectors.

• Test N VMaxNorm: Create vector with known values, find and validate max norm.

• Test N VWrmsNorm: Create vector of known values, find and validate weighted root mean square.

• Test N VWrmsNormMask: Case 1: Create vector of known values, find and validate weighted root
mean square using all elements.

• Test N VWrmsNormMask: Case 2: Create vector of known values, find and validate weighted root
mean square using no elements.

• Test N VMin: Create vector, find and validate the min.

• Test N VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test N VL1Norm: Create vector, find and validate the L1 norm.

• Test N VCompare: Compare vector with constant returning and validating comparison vector.

• Test N VInvTest: Test z[i] = 1 / x[i]

• Test N VConstrMask: Test mask of vector x with vector c.

• Test N VMinQuotient: Fill two vectors with known values. Calculate and validate minimum
quotient.

7.10 NVECTOR functions used by IDAS

In Table 7.3 below, we list the vector functions used in the nvector module used by the idas package.
The table also shows, for each function, which of the code modules uses the function. The idas column
shows function usage within the main integrator module, while the remaining columns show function
usage within each of the idas linear solvers interfaces, the idabbdpre preconditioner module, and the
idaa module. Here, idadls stands for the direct linear solver interface in idas, and idaspils stands
for the scaled, preconditioned, iterative linear solver interface in idas.

Of the functions listed in Table 7.2, N VWL2Norm, N VL1Norm, N VCloneEmpty, and N VInvTest
are not used by idas. Therefore a user-supplied nvector module for idas could omit these four
functions.
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Table 7.3: List of vector functions usage by idas code modules

id
a
s

id
a
d
l
s

id
a
sp

il
s

id
a
b
b
d
p
r
e

id
a
a

N VGetVectorID
N VClone X X X X

N VDestroy X X X X
N VCloneVectorArray X X

N VDestroyVectorArray X X
N VSpace X

N VGetArrayPointer X X
N VSetArrayPointer X

N VLinearSum X X X X
N VConst X X X
N VProd X X
N VDiv X X

N VScale X X X X X
N VAbs X
N VInv X

N VAddConst X
N VDotProd X
N VMaxNorm X
N VWrmsNorm X X

N VMin X
N VMinQuotient X
N VConstrMask X

N VWrmsNormMask X
N VCompare X



Chapter 8

Description of the SUNMatrix
module

For problems that involve direct methods for solving linear systems, the sundials solvers not only op-
erate on generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations
defined by the particular sunmatrix implementation. Users can provide their own specific imple-
mentation of the sunmatrix module, particularly in cases where they provide their own nvector
and/or linear solver modules, and require matrices that are compatible with those implementations.
Alternately, we provide three sunmatrix implementations: dense, banded, and sparse. The generic
operations are described below, and descriptions of the implementations provided with sundials
follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic
N Vector type. Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-
dependent content field containing the description and actual data of the matrix, and an ops field
pointing to a structure with generic matrix operations. The type SUNMatrix is defined as

typedef struct _generic_SUNMatrix *SUNMatrix;

struct _generic_SUNMatrix {
void *content;
struct _generic_SUNMatrix_Ops *ops;

};

The generic SUNMatrix Ops structure is essentially a list of pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {
SUNMatrix_ID (*getid)(SUNMatrix);
SUNMatrix (*clone)(SUNMatrix);
void (*destroy)(SUNMatrix);
int (*zero)(SUNMatrix);
int (*copy)(SUNMatrix, SUNMatrix);
int (*scaleadd)(realtype, SUNMatrix, SUNMatrix);
int (*scaleaddi)(realtype, SUNMatrix);
int (*matvec)(SUNMatrix, N_Vector, N_Vector);
int (*space)(SUNMatrix, long int*, long int*);

};

The generic sunmatrix module defines and implements the matrix operations acting on SUNMatrix
objects. These routines are nothing but wrappers for the matrix operations defined by a particular
sunmatrix implementation, which are accessed through the ops field of the SUNMatrix structure. To
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Table 8.1: Identifiers associated with matrix kernels supplied with sundials.

Matrix ID Matrix type ID Value
SUNMATRIX DENSE Dense M× N matrix 0
SUNMATRIX BAND Band M× M matrix 1
SUNMATRIX SPARSE Sparse (CSR or CSC) M× N matrix 2
SUNMATRIX CUSTOM User-provided custom matrix 3

illustrate this point we show below the implementation of a typical matrix operation from the generic
sunmatrix module, namely SUNMatZero, which sets all values of a matrix A to zero, returning a flag
denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)
{
return((int) A->ops->zero(A));

}

Table 8.2 contains a complete list of all matrix operations defined by the generic sunmatrix module.
A particular implementation of the sunmatrix module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for
each sundials solver to determine which sunmatrix operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunmatrix module (each with different SUNMatrix internal data
representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNMatrix with the new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
SUNMatrix (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros or functions as needed for that particular implementation
to access different parts of the content field of the newly defined SUNMatrix.

Each sunmatrix implementation included in sundials has a unique identifier specified in enu-
meration and shown in Table 8.1. It is recommended that a user-supplied sunmatrix implementation
use the SUNMATRIX CUSTOM identifier.

Table 8.2: Description of the SUNMatrix operations

Name Usage and Description

SUNMatGetID id = SUNMatGetID(A);
Returns the type identifier for the matrix A. It is used to determine the ma-
trix implementation type (e.g. dense, banded, sparse,. . . ) from the abstract
SUNMatrix interface. This is used to assess compatibility with sundials-
provided linear solver implementations. Returned values are given in the
Table 8.1.

continued on next page
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Name Usage and Description

SUNMatClone B = SUNMatClone(A);
Creates a new SUNMatrix of the same type as an existing matrix A and sets
the ops field. It does not copy the matrix, but rather allocates storage for
the new matrix.

SUNMatDestroy SUNMatDestroy(A);
Destroys the SUNMatrix A and frees memory allocated for its internal data.

SUNMatSpace ier = SUNMatSpace(A, &lrw, &liw);
Returns the storage requirements for the matrix A. lrw is a long int con-
taining the number of realtype words and liw is a long int containing
the number of integer words. The return value is an integer flag denoting
success/failure of the operation.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied sunmatrix
module if that information is not of interest.

SUNMatZero ier = SUNMatZero(A);
Performs the operation Aij = 0 for all entries of the matrix A. The return
value is an integer flag denoting success/failure of the operation.

SUNMatCopy ier = SUNMatCopy(A,B);
Performs the operation Bij = Ai,j for all entries of the matrices A and B.
The return value is an integer flag denoting success/failure of the operation.

SUNMatScaleAdd ier = SUNMatScaleAdd(c, A, B);
Performs the operation A = cA + B. The return value is an integer flag
denoting success/failure of the operation.

SUNMatScaleAddI ier = SUNMatScaleAddI(c, A);
Performs the operation A = cA + I. The return value is an integer flag
denoting success/failure of the operation.

SUNMatMatvec ier = SUNMatMatvec(A, x, y);
Performs the matrix-vector product operation, y = Ax. It should only be
called with vectors x and y that are compatible with the matrix A – both in
storage type and dimensions. The return value is an integer flag denoting
success/failure of the operation.

We note that not all sunmatrix types are compatible with all nvector types provided with
sundials. This is primarily due to the need for compatibility within the SUNMatMatvec routine;
however, compatibility between sunmatrix and nvector implementations is more crucial when
considering their interaction within sunlinsol objects, as will be described in more detail in Chapter
9. More specifically, in Table 8.3 we show the matrix interfaces available as sunmatrix modules, and
the compatible vector implementations.

Table 8.3: sundials matrix interfaces and vector implementations that can be used for each.
Matrix
Interface

Serial Parallel
(MPI)

OpenMP pThreads hypre
Vec.

petsc
Vec.

cuda raja User
Suppl.

Dense X X X X

continued on next page
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Matrix
Interface

Serial Parallel
(MPI)

OpenMP pThreads hypre
Vec.

petsc
Vec.

cuda raja User
Suppl.

Band X X X X

Sparse X X X X

User supplied X X X X X X X X X

8.1 The SUNMatrix Dense implementation

The dense implementation of the sunmatrix module provided with sundials, sunmatrix dense,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
realtype *data;
sunindextype ldata;
realtype **cols;

};

These entries of the content field contain the following information:

M - number of rows

N - number of columns

data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are
stored columnwise, i.e. the (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤
j < N) may be accessed via data[j*M+i].

ldata - length of the data array (= M·N).

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤ j < N) may
be accessed via cols[j][i].

The header file to include when using this module is sunmatrix/sunmatrix dense.h. The sunma-
trix dense module is accessible from all sundials solvers without linking to the
libsundials sunmatrixdense module library.

The following macros are provided to access the content of a sunmatrix dense matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix D
denotes that these are specific to the dense version.

• SM CONTENT D

This macro gives access to the contents of the dense SUNMatrix.

The assignment A cont = SM CONTENT D(A) sets A cont to be a pointer to the dense SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_D(A) ( (SUNMatrixContent_Dense)(A->content) )

• SM ROWS D, SM COLUMNS D, and SM LDATA D

These macros give individual access to various lengths relevant to the content of a dense
SUNMatrix.
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These may be used either to retrieve or to set these values. For example, the assignment A rows
= SM ROWS D(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS D(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_D(A) ( SM_CONTENT_D(A)->M )

#define SM_COLUMNS_D(A) ( SM_CONTENT_D(A)->N )

#define SM_LDATA_D(A) ( SM_CONTENT_D(A)->ldata )

• SM DATA D and SM COLS D

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA D(A) sets A data to be a pointer to the first component of
the data array for the dense SUNMatrix A. The assignment SM DATA D(A) = A data sets the data
array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS D(A) sets A cols to be a pointer to the array of
column pointers for the dense SUNMatrix A. The assignment SM COLS D(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_D(A) ( SM_CONTENT_D(A)->data )

#define SM_COLS_D(A) ( SM_CONTENT_D(A)->cols )

• SM COLUMN D and SM ELEMENT D

These macros give access to the individual columns and entries of the data array of a dense
SUNMatrix.

The assignment col j = SM COLUMN D(A,j) sets col j to be a pointer to the first entry of
the j-th column of the M × N dense matrix A (with 0 ≤ j < N). The type of the expression
SM COLUMN D(A,j) is realtype *. The pointer returned by the call SM COLUMN D(A,j) can be
treated as an array which is indexed from 0 to M− 1.

The assignments SM ELEMENT D(A,i,j) = a ij and a ij = SM ELEMENT D(A,i,j) reference the
(i,j)-th element of the M× N dense matrix A (with 0 ≤ i < M and 0 ≤ j < N).

Implementation:

#define SM_COLUMN_D(A,j) ( (SM_CONTENT_D(A)->cols)[j] )

#define SM_ELEMENT_D(A,i,j) ( (SM_CONTENT_D(A)->cols)[j][i] )

The sunmatrix dense module defines dense implementations of all matrix operations listed in Ta-
ble 8.2. Their names are obtained from those in Table 8.2 by appending the suffix Dense (e.g.
SUNMatCopy Dense). The module sunmatrix dense provides the following additional user-callable
routines:

• SUNDenseMatrix

This constructor function creates and allocates memory for a dense SUNMatrix. Its arguments
are the number of rows, M, and columns, N, for the dense matrix.

SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N);

• SUNDenseMatrix Print

This function prints the content of a dense SUNMatrix to the output stream specified by outfile.
Note: stdout or stderr may be used as arguments for outfile to print directly to standard
output or standard error, respectively.

void SUNDenseMatrix_Print(SUNMatrix A, FILE* outfile);
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• SUNDenseMatrix Rows

This function returns the number of rows in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Rows(SUNMatrix A);

• SUNDenseMatrix Columns

This function returns the number of columns in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Columns(SUNMatrix A);

• SUNDenseMatrix LData

This function returns the length of the data array for the dense SUNMatrix.

sunindextype SUNDenseMatrix_LData(SUNMatrix A);

• SUNDenseMatrix Data

This function returns a pointer to the data array for the dense SUNMatrix.

realtype* SUNDenseMatrix_Data(SUNMatrix A);

• SUNDenseMatrix Cols

This function returns a pointer to the cols array for the dense SUNMatrix.

realtype** SUNDenseMatrix_Cols(SUNMatrix A);

• SUNDenseMatrix Column

This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The
resulting pointer should be indexed over the range 0 to M− 1.

realtype* SUNDenseMatrix_Column(SUNMatrix A, sunindextype j);

Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA D(A) or
A data = SUNDenseMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS D(A) or
A cols = SUNDenseMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNDenseMatrix Column(A,j) and then to access the entries within that column
using A colj[i] within the loop.

All three of these are more efficient than using SM ELEMENT D(A,i,j) within a double loop.

• Within the SUNMatMatvec Dense routine, internal consistency checks are performed to ensure!

that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.

For solvers that include a Fortran interface module, the sunmatrix dense module also in-
cludes the Fortran-callable function FSUNDenseMatInit(code, M, N, ier) to initialize this sunma-
trix dense module for a given sundials solver. Here code is an integer input solver id (1 for cvode,
2 for ida, 3 for kinsol, 4 for arkode); M and N are the corresponding dense matrix construction ar-
guments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
arkode with a non-identity mass matrix, the Fortran-callable function FSUNDenseMassMatInit(M,
N, ier) initializes this sunmatrix dense module for storing the mass matrix.
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8.2 The SUNMatrix Band implementation

The banded implementation of the sunmatrix module provided with sundials, sunmatrix band,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Band {
sunindextype M;
sunindextype N;
sunindextype mu;
sunindextype ml;
sunindextype s_mu;
sunindextype ldim;
realtype *data;
sunindextype ldata;
realtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Figure 8.1. A more
complete description of the parts of this content field is given below:

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < N

ml - lower half-bandwidth, 0 ≤ ml < N

s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routines in the associated
sunlinsol band and sunlinsol lapackband modules write the LU factors into the storage
for A. The upper triangular factor U, however, may have an upper bandwidth as big as min(N-
1,mu+ml) because of partial pivoting. The s mu field holds the upper half-bandwidth allocated
for A.

ldim - leading dimension (ldim ≥ s mu)

data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are
stored columnwise (i.e. columns are stored one on top of the other in memory). Only elements
within the specified half-bandwidths are stored. data is a pointer to ldata contiguous locations
which hold the elements within the band of A.

ldata - length of the data array (= ldim·(s mu+ml+1))

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th
column. This pointer may be treated as an array indexed from s mu−mu (to access the uppermost
element within the band in the j-th column) to s mu+ml (to access the lowest element within the
band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra storage elements
required by the LU decomposition function. Finally, cols[j][i-j+s mu] is the (i, j)-th element
with j−mu ≤ i ≤ j+ml.

The header file to include when using this module is sunmatrix/sunmatrix band.h. The sunma-
trix band module is accessible from all sundials solvers without linking to the
libsundials sunmatrixband module library.

The following macros are provided to access the content of a sunmatrix band matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix B
denotes that these are specific to the banded version.
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A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 8.1: Diagram of the storage for the sunmatrix band module. Here A is an N × N band
matrix with upper and lower half-bandwidths mu and ml, respectively. The rows and columns of A are
numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The greyed out areas of
the underlying component storage are used by the associated sunlinsol band linear solver.
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• SM CONTENT B

This routine gives access to the contents of the banded SUNMatrix.

The assignment A cont = SM CONTENT B(A) sets A cont to be a pointer to the banded SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_B(A) ( (SUNMatrixContent_Band)(A->content) )

• SM ROWS B, SM COLUMNS B, SM UBAND B, SM LBAND B, SM SUBAND B, SM LDIM B, and SM LDATA B

These macros give individual access to various lengths relevant to the content of a banded
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows
= SM ROWS B(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS B(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_B(A) ( SM_CONTENT_B(A)->M )

#define SM_COLUMNS_B(A) ( SM_CONTENT_B(A)->N )

#define SM_UBAND_B(A) ( SM_CONTENT_B(A)->mu )

#define SM_LBAND_B(A) ( SM_CONTENT_B(A)->ml )

#define SM_SUBAND_B(A) ( SM_CONTENT_B(A)->s_mu )

#define SM_LDIM_B(A) ( SM_CONTENT_B(A)->ldim )

#define SM_LDATA_B(A) ( SM_CONTENT_B(A)->ldata )

• SM DATA B and SM COLS B

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA B(A) sets A data to be a pointer to the first component of
the data array for the banded SUNMatrix A. The assignment SM DATA B(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS B(A) sets A cols to be a pointer to the array of
column pointers for the banded SUNMatrix A. The assignment SM COLS B(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_B(A) ( SM_CONTENT_B(A)->data )

#define SM_COLS_B(A) ( SM_CONTENT_B(A)->cols )

• SM COLUMN B, SM COLUMN ELEMENT B, and SM ELEMENT B

These macros give access to the individual columns and entries of the data array of a banded
SUNMatrix.

The assignments SM ELEMENT B(A,i,j) = a ij and a ij = SM ELEMENT B(A,i,j) reference the
(i,j)-th element of the N× N band matrix A, where 0 ≤ i, j ≤ N− 1. The location (i,j) should
further satisfy j−mu ≤ i ≤ j+ml.

The assignment col j = SM COLUMN B(A,j) sets col j to be a pointer to the diagonal element
of the j-th column of the N × N band matrix A, 0 ≤ j ≤ N − 1. The type of the expression
SM COLUMN B(A,j) is realtype *. The pointer returned by the call SM COLUMN B(A,j) can be
treated as an array which is indexed from −mu to ml.

The assignments SM COLUMN ELEMENT B(col j,i,j) = a ij and
a ij = SM COLUMN ELEMENT B(col j,i,j) reference the (i,j)-th entry of the band matrix A
when used in conjunction with SM COLUMN B to reference the j-th column through col j. The
index (i,j) should satisfy j−mu ≤ i ≤ j+ml.
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Implementation:

#define SM_COLUMN_B(A,j) ( ((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A) )

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])

#define SM_ELEMENT_B(A,i,j)

( (SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)] )

The sunmatrix band module defines banded implementations of all matrix operations listed in
Table 8.2. Their names are obtained from those in Table 8.2 by appending the suffix Band (e.g.
SUNMatCopy Band). The module sunmatrix band provides the following additional user-callable
routines:

• SUNBandMatrix

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments
are the matrix size, N, the upper and lower half-bandwidths of the matrix, mu and ml, and the
stored upper bandwidth, smu. When creating a band SUNMatrix, if the matrix will be used by
the sunlinsol band module then smu should be at least min(N-1,mu+ml); otherwise smu should
be at least mu.

SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu,
sunindextype ml, sunindextype smu);

• SUNBandMatrix Print

This function prints the content of a banded SUNMatrix to the output stream specified by
outfile. Note: stdout or stderr may be used as arguments for outfile to print directly to
standard output or standard error, respectively.

void SUNBandMatrix_Print(SUNMatrix A, FILE* outfile);

• SUNBandMatrix Rows

This function returns the number of rows in the banded SUNMatrix.

sunindextype SUNBandMatrix_Rows(SUNMatrix A);

• SUNBandMatrix Columns

This function returns the number of columns in the banded SUNMatrix.

sunindextype SUNBandMatrix_Columns(SUNMatrix A);

• SUNBandMatrix LowerBandwidth

This function returns the lower half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_LowerBandwidth(SUNMatrix A);

• SUNBandMatrix UpperBandwidth

This function returns the upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_UpperBandwidth(SUNMatrix A);

• SUNBandMatrix StoredUpperBandwidth

This function returns the stored upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_StoredUpperBandwidth(SUNMatrix A);

• SUNBandMatrix LDim

This function returns the length of the leading dimension of the banded SUNMatrix.

sunindextype SUNBandMatrix_LDim(SUNMatrix A);
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• SUNBandMatrix Data

This function returns a pointer to the data array for the banded SUNMatrix.

realtype* SUNBandMatrix_Data(SUNMatrix A);

• SUNBandMatrix Cols

This function returns a pointer to the cols array for the banded SUNMatrix.

realtype** SUNBandMatrix_Cols(SUNMatrix A);

• SUNBandMatrix Column

This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMatrix.
The resulting pointer should be indexed over the range −mu to ml.

realtype* SUNBandMatrix_Column(SUNMatrix A, sunindextype j);

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA B(A) or
A data = SUNBandMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS B(A) or
A cols = SUNBandMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNBandMatrix Column(A,j) and then to access the entries within that column
using SM COLUMN ELEMENT B(A colj,i,j).

All three of these are more efficient than using SM ELEMENT B(A,i,j) within a double loop.

• Within the SUNMatMatvec Band routine, internal consistency checks are performed to ensure !

that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.

For solvers that include a Fortran interface module, the sunmatrix band module also includes the
Fortran-callable function FSUNBandMatInit(code, N, mu, ml, smu, ier) to initialize this sunma-
trix band module for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2
for ida, 3 for kinsol, 4 for arkode); N, mu, ml and smu are the corresponding band matrix construction
arguments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
arkode with a non-identity mass matrix, the Fortran-callable function FSUNBandMassMatInit(N,
mu, ml, smu, ier) initializes this sunmatrix band module for storing the mass matrix.

8.3 The SUNMatrix Sparse implementation

The sparse implementation of the sunmatrix module provided with sundials, sunmatrix sparse,
is designed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR)
sparse matrix formats. To this end, it defines the content field of SUNMatrix to be the following
structure:

struct _SUNMatrixContent_Sparse {
sunindextype M;
sunindextype N;
sunindextype NNZ;
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sunindextype NP;
realtype *data;
int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/* CSC indices */
sunindextype **rowvals;
sunindextype **colptrs;
/* CSR indices */
sunindextype **colvals;
sunindextype **rowptrs;

};

A diagram of the underlying data representation for a CSC matrix is shown in Figure 8.2 (the CSR
format is similar). A more complete description of the parts of this content field is given below:

M - number of rows

N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals
arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices
NP = N, and for CSR matrices NP = M. This value is set automatically based the input for
sparsetype.

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the values of
the nonzero entries in the matrix

sparsetype - type of the sparse matrix (CSC MAT or CSR MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
(if CSC) or column indices (if CSR) of each nonzero matrix entry held in data

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each
entry provides the index of the first column entry into the data and indexvals arrays, e.g. if
indexptr[3]=7, then the first nonzero entry in the fourth column of the matrix is located in
data[7], and is located in row indexvals[7] of the matrix. The last entry contains the total
number of nonzero values in the matrix and hence points one past the end of the active data in
the data and indexvals arrays. For CSR matrices, each entry provides the index of the first
row entry into the data and indexvals arrays.

The following pointers are added to the SlsMat type for user convenience, to provide a more intuitive
interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating
a sparse sunmatrix, based on the sparse matrix storage type.

rowvals - pointer to indexvals when sparsetype is CSC MAT, otherwise set to NULL.

colptrs - pointer to indexptrs when sparsetype is CSC MAT, otherwise set to NULL.

colvals - pointer to indexvals when sparsetype is CSR MAT, otherwise set to NULL.

rowptrs - pointer to indexptrs when sparsetype is CSR MAT, otherwise set to NULL.

For example, the 5× 4 CSC matrix 
0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5


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could be stored in this structure as either

M = 5;
N = 4;
NNZ = 8;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4};
indexptrs = {0, 2, 4, 5, 8};

or

M = 5;
N = 4;
NNZ = 10;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};
indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with
* may contain any values). Note in both cases that the final value in indexptrs is 8, indicating the
total number of nonzero entries in the matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;
N = 4;
NNZ = 8;
NP = N;
data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};
sparsetype = CSR_MAT;
indexvals = {1, 2, 0, 3, 1, 0, 3, 3};
indexptrs = {0, 2, 4, 5, 7, 8};

The header file to include when using this module is sunmatrix/sunmatrix sparse.h. The sunma-
trix sparse module is accessible from all sundials solvers without linking to the
libsundials sunmatrixsparse module library.

The following macros are provided to access the content of a sunmatrix sparse matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix S
denotes that these are specific to the sparse version.

• SM CONTENT S

This routine gives access to the contents of the sparse SUNMatrix.

The assignment A cont = SM CONTENT S(A) sets A cont to be a pointer to the sparse SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_S(A) ( (SUNMatrixContent_Sparse)(A->content) )

• SM ROWS S, SM COLUMNS S, SM NNZ S, SM NP S, and SM SPARSETYPE S

These macros give individual access to various lengths relevant to the content of a sparse
SUNMatrix.
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Figure 8.2: Diagram of the storage for a compressed-sparse-column matrix. Here A is an M× N sparse
matrix with storage for up to NNZ nonzero entries (the allocated length of both data and indexvals).
The entries in indexvals may assume values from 0 to M− 1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the
row i, column j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1
entries; the first N denote the starting index of each column within the indexvals and data arrays,
while the final entry points one past the final nonzero entry. Here, although NNZ values are allocated,
only nz are actually filled in; the greyed-out portions of data and indexvals indicate extra allocated
space.
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These may be used either to retrieve or to set these values. For example, the assignment A rows
= SM ROWS S(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS S(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_S(A) ( SM_CONTENT_S(A)->M )

#define SM_COLUMNS_S(A) ( SM_CONTENT_S(A)->N )

#define SM_NNZ_S(A) ( SM_CONTENT_S(A)->NNZ )

#define SM_NP_S(A) ( SM_CONTENT_S(A)->NP )

#define SM_SPARSETYPE_S(A) ( SM_CONTENT_S(A)->sparsetype )

• SM DATA S, SM INDEXVALS S, and SM INDEXPTRS S

These macros give access to the data and index arrays for the matrix entries.

The assignment A data = SM DATA S(A) sets A data to be a pointer to the first component of
the data array for the sparse SUNMatrix A. The assignment SM DATA S(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A indexvals = SM INDEXVALS S(A) sets A indexvals to be a pointer
to the array of index values (i.e. row indices for a CSC matrix, or column indices for a CSR
matrix) for the sparse SUNMatrix A. The assignment A indexptrs = SM INDEXPTRS S(A) sets
A indexptrs to be a pointer to the array of index pointers (i.e. the starting indices in the
data/indexvals arrays for each row or column in CSR or CSC formats, respectively).

Implementation:

#define SM_DATA_S(A) ( SM_CONTENT_S(A)->data )

#define SM_INDEXVALS_S(A) ( SM_CONTENT_S(A)->indexvals )

#define SM_INDEXPTRS_S(A) ( SM_CONTENT_S(A)->indexptrs )

The sunmatrix sparse module defines sparse implementations of all matrix operations listed in
Table 8.2. Their names are obtained from those in Table 8.2 by appending the suffix Sparse (e.g.
SUNMatCopy Sparse). The module sunmatrix sparse provides the following additional user-callable
routines:

• SUNSparseMatrix

This function creates and allocates memory for a sparse SUNMatrix. Its arguments are the
number of rows and columns of the matrix, M and N, the maximum number of nonzeros to be
stored in the matrix, NNZ, and a flag sparsetype indicating whether to use CSR or CSC format
(valid arguments are CSR MAT or CSC MAT).

SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N,
sunindextype NNZ, int sparsetype);

• SUNSparseFromDenseMatrix

This function creates a new sparse matrix from an existing dense matrix by copying all values
with magnitude larger than droptol into the sparse matrix structure.

Requirements:

– A must have type SUNMATRIX DENSE;

– droptol must be non-negative;

– sparsetype must be either CSC MAT or CSR MAT.
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The function returns NULL if any requirements are violated, or if the matrix storage request
cannot be satisfied.

SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol,
int sparsetype);

• SUNSparseFromBandMatrix

This function creates a new sparse matrix from an existing band matrix by copying all values
with magnitude larger than droptol into the sparse matrix structure.

Requirements:

– A must have type SUNMATRIX BAND;
– droptol must be non-negative;
– sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage request
cannot be satisfied.

SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, realtype droptol,
int sparsetype);

• SUNSparseMatrix Realloc

This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse
matrix has no wasted space (i.e. the space allocated for nonzero entries equals the actual number
of nonzeros, indexptrs[NP]). Returns 0 on success and 1 on failure (e.g. if the input matrix is
not sparse).

int SUNSparseMatrix_Realloc(SUNMatrix A);

• SUNSparseMatrix Print

This function prints the content of a sparse SUNMatrix to the output stream specified by
outfile. Note: stdout or stderr may be used as arguments for outfile to print directly
to standard output or standard error, respectively.

void SUNSparseMatrix_Print(SUNMatrix A, FILE* outfile);

• SUNSparseMatrix Rows

This function returns the number of rows in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Rows(SUNMatrix A);

• SUNSparseMatrix Columns

This function returns the number of columns in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Columns(SUNMatrix A);

• SUNSparseMatrix NNZ

This function returns the number of entries allocated for nonzero storage for the sparse matrix
SUNMatrix.

sunindextype SUNSparseMatrix_NNZ(SUNMatrix A);

• SUNSparseMatrix NP

This function returns the number of columns/rows for the sparse SUNMatrix, depending on
whether the matrix uses CSC/CSR format, respectively. The indexptrs array has NP+1 entries.

sunindextype SUNSparseMatrix_NP(SUNMatrix A);
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• SUNSparseMatrix SparseType

This function returns the storage type (CSR MAT or CSC MAT) for the sparse SUNMatrix.

int SUNSparseMatrix_SparseType(SUNMatrix A);

• SUNSparseMatrix Data

This function returns a pointer to the data array for the sparse SUNMatrix.

realtype* SUNSparseMatrix_Data(SUNMatrix A);

• SUNSparseMatrix IndexValues

This function returns a pointer to index value array for the sparse SUNMatrix: for CSR format
this is the column index for each nonzero entry, for CSC format this is the row index for each
nonzero entry.

sunindextype* SUNSparseMatrix_IndexValues(SUNMatrix A);

• SUNSparseMatrix IndexPointers

This function returns a pointer to the index pointer array for the sparse SUNMatrix: for CSR
format this is the location of the first entry of each row in the data and indexvalues arrays,
for CSC format this is the location of the first entry of each column.

sunindextype* SUNSparseMatrix_IndexPointers(SUNMatrix A);

Within the SUNMatMatvec Sparse routine, internal consistency checks are performed to ensure that !

the matrix is called with consistent nvector implementations. These are currently limited to: nvec-
tor serial, nvector openmp, and nvector pthreads. As additional compatible vector imple-
mentations are added to sundials, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the sunmatrix sparse module also includes
the Fortran-callable function FSUNSparseMatInit(code, M, N, NNZ, sparsetype, ier) to initial-
ize this sunmatrix sparse module for a given sundials solver. Here code is an integer input for the
solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); M, N and NNZ are the corresponding
sparse matrix construction arguments (declared to match C type long int); sparsetype is an integer
flag indicating the sparse storage type (0 for CSC, 1 for CSR); and ier is an error return flag equal to
0 for success and -1 for failure. Each of code, sparsetype and ier are declared so as to match C type
int. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit(M, N, NNZ, sparsetype, ier) initializes this sunmatrix sparse mod-
ule for storing the mass matrix.

8.4 SUNMatrix Examples

There are SUNMatrix examples that may be installed for each implementation: dense, banded, and
sparse. Each implementation makes use of the functions in test sunmatrix.c. These example func-
tions show simple usage of the SUNMatrix family of functions. The inputs to the examples depend on
the matrix type, and are output to stdout if the example is run without the appropriate number of
command-line arguments.
The following is a list of the example functions in test sunmatrix.c:

• Test SUNMatGetID: Verifies the returned matrix ID against the value that should be returned.

• Test SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their
values match.

• Test SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.

• Test SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values
match.
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• Test SUNMatScaleAdd: Given an input matrix A and an input identity matrix I, this test clones
and copies A to a new matrix B, computes B = −B +B, and verifies that the resulting matrix
entries equal 0.0. Additionally, if the matrix is square, this test clones and copies A to a new
matrix D, clones and copies I to a new matrix C, computes D = D + I and C = C + A using
SUNMatScaleAdd, and then verifies that C == D.

• Test SUNMatScaleAddI: Given an input matrix A and an input identity matrix I, this clones
and copies I to a new matrix B, computes B = −B + I using SUNMatScaleAddI, and verifies
that the resulting matrix entries equal 0.0.

• Test SUNMatMatvec Given an input matrix A and input vectors x and y such that y = Ax, this
test has different behavior depending on whether A is square. If it is square, it clones and copies
A to a new matrix B, computes B = 3B+ I using SUNMatScaleAddI, clones y to new vectors w
and z, computes z = Bx using SUNMatMatvec, computes w = 3y + x using N VLinearSum, and
verifies that w == z. If A is not square, it just clones y to a new vector z, computes z = Ax
using SUNMatMatvec, and verifies that y == z.

• Test SUNMatSpace verifies that SUNMatSpace can be called, and outputs the results to stdout.

8.5 SUNMatrix functions used by IDAS

In Table 8.4 below, we list the matrix functions in the sunmatrix module used within the idas
package. The table also shows, for each function, which of the code modules uses the function.
Neither the main idas integrator or the idaspils interface call sunmatrix functions directly, so the
table columns are specific to the idadls direct solver interface and the idabbdpre preconditioner
module.

At this point, we should emphasize that the idas user does not need to know anything about the
usage of matrix functions by the idas code modules in order to use idas. The information is presented
as an implementation detail for the interested reader.

Table 8.4: List of matrix functions usage by idas code modules

id
a
d
l
s

id
a
b
b
d
p
r
e

SUNMatGetID X
SUNMatDestroy X

SUNMatZero X X
SUNMatSpace †

The matrix functions listed in Table 8.2 with a † symbol are optionally used, in that these are only
called if they are implemented in the sunmatrix module that is being used (i.e. their function pointers
are non-NULL). The matrix functions listed in Table 8.2 that are not used by idas are: SUNMatCopy,
SUNMatClone, SUNMatScaleAdd, SUNMatScaleAddI and SUNMatMatvec. Therefore a user-supplied
sunmatrix module for idas could omit these functions.



Chapter 9

Description of the
SUNLinearSolver module

For problems that involve the solution of linear systems of equations, the sundials solvers operate
using generic linear solver modules (of type SUNLinearSolver), through a set of operations defined
by the particular sunlinsol implementation. These work in coordination with the sundials generic
nvector and sunmatrix modules to provide a set of compatible data structures and solvers for
the solution of linear systems using direct or iterative methods. Moreover, users can provide their
own specific sunlinsol implementation to each sundials solver, particularly in cases where they
provide their own nvector and/or sunmatrix modules, and the customized linear solver leverages
these additional data structures to create highly efficient and/or scalable solvers for their particular
problem. Additionally, sundials provides native implementations sunlinsol modules, as well as
sunlinsol modules that interface between sundials and external linear solver libraries.

The various sundials solvers have been designed to specifically leverage the use of either direct
linear solvers or scaled, preconditioned, iterative linear solvers, through their “Dls” and “Spils” in-
terfaces, respectively. Additionally, sundials solvers can make use of user-supplied custom linear
solvers, whether these are problem-specific or come from external solver libraries.

For iterative (and possibly custom) linear solvers, the sundials solvers leverage scaling and precon-
ditioning, as applicable, to balance error between solution components and to accelerate convergence
of the linear solver. To this end, instead of solving the linear system Ax = b directly, we apply the
underlying iterative algorithm to the transformed system

Ãx̃ = b̃ (9.1)

where

Ã = S1P
−1
1 AP−1

2 S−1
2 ,

b̃ = S1P
−1
1 b, (9.2)

x̃ = S2P2x,

and where

• P1 is the left preconditioner,

• P2 is the right preconditioner,

• S1 is a diagonal matrix of scale factors for P−1
1 b,

• S2 is a diagonal matrix of scale factors for P2x.

The sundials solvers request that iterative linear solvers stop based on the 2-norm of the scaled
preconditioned residual meeting a prescribed tolerance∥∥∥b̃− Ãx̃∥∥∥

2
< tol.
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We note that not all of the iterative linear solvers implemented in sundials support the full range of
the above options. Similarly, some of the sundials integrators only utilize a subset of these options.
Exceptions to the operators shown above are described in the documentation for each sunlinsol
implementation, or for each sundials solver “Spils” interface.

The generic SUNLinearSolver type has been modeled after the object-oriented style of the generic
N Vector type. Specifically, a generic SUNLinearSolver is a pointer to a structure that has an
implementation-dependent content field containing the description and actual data of the linear
solver, and an ops field pointing to a structure with generic linear solver operations. The type
SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver;

struct _generic_SUNLinearSolver {
void *content;
struct _generic_SUNLinearSolver_Ops *ops;

};

The generic SUNLinearSolver Ops structure is essentially a list of pointers to the various actual
linear solver operations, and is defined as

struct _generic_SUNLinearSolver_Ops {
SUNLinearSolver_Type (*gettype)(SUNLinearSolver);
int (*setatimes)(SUNLinearSolver, void*, ATimesFn);
int (*setpreconditioner)(SUNLinearSolver, void*,

PSetupFn, PSolveFn);
int (*setscalingvectors)(SUNLinearSolver,

N_Vector, N_Vector);
int (*initialize)(SUNLinearSolver);
int (*setup)(SUNLinearSolver, SUNMatrix);
int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector,

N_Vector, realtype);
int (*numiters)(SUNLinearSolver);
realtype (*resnorm)(SUNLinearSolver);
long int (*lastflag)(SUNLinearSolver);
int (*space)(SUNLinearSolver, long int*, long int*);
N_Vector (*resid)(SUNLinearSolver);
int (*free)(SUNLinearSolver);

};

The generic sunlinsol module defines and implements the linear solver operations acting on
SUNLinearSolver objects. These routines are in fact only wrappers for the linear solver operations
defined by a particular sunlinsol implementation, which are accessed through the ops field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical
linear solver operation from the generic sunlinsol module, namely SUNLinSolInitialize, which
initializes a sunlinsol object for use after it has been created and configured, and returns a flag
denoting a successful/failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)
{
return ((int) S->ops->initialize(S));

}

Table 9.2 contains a complete list of all linear solver operations defined by the generic sunlinsol
module. In order to support both direct and iterative linear solver types, the generic sunlinsol
module defines linear solver routines (or arguments) that may be specific to individual use cases. As
such, for each routine we specify its intended use. If a custom sunlinsol module is provided, the
function pointers for non-required routines may be set to NULL to indicate that they are not provided.

A particular implementation of the sunlinsol module must:
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Table 9.1: Identifiers associated with linear solver kernels supplied with sundials.

Linear Solver ID Solver type ID Value
SUNLINEARSOLVER DIRECT Direct solvers 0
SUNLINEARSOLVER ITERATIVE Iterative solvers 1
SUNLINEARSOLVER CUSTOM Custom solvers 2

• Specify the content field of the SUNLinearSolver object.

• Define and implement a minimal subset of the linear solver operations. See the documentation
for each sundials linear solver interface to determine which sunlinsol operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunlinsol module (each with different SUNLinearSolver internal
data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver
operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
SUNLinearSolver (e.g., routines to set various configuration options for tuning the linear solver
to a particular problem).

• Optionally, provide functions as needed for that particular implementation to access different
parts in the content field of the newly defined SUNLinearSolver object (e.g., routines to return
various statistics from the solver).

Each sunlinsol implementation included in sundials has a “type” identifier specified in enu-
meration and shown in Table 9.1. It is recommended that a user-supplied sunlinsol implemen-
tation set this identifier based on the sundials solver interface they intend to use: “Dls” inter-
faces require the SUNLINEARSOLVER DIRECT sunlinsol objects and “Spils” interfaces require the
SUNLINEARSOLVER ITERATIVE objects.

Table 9.2: Description of the SUNLinearSolver operations

Name Usage and Description

SUNLinSolGetType type = SUNLinSolGetType(LS);
Returns the type identifier for the linear solver LS. It is used to
determine the solver type (direct, iterative, or custom) from
the abstract SUNLinearSolver interface. This is used to assess
compatibility with sundials-provided linear solver interfaces.
Returned values are given in the Table 9.1.

continued on next page
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Name Usage and Description

SUNLinSolInitialize ier = SUNLinSolInitialize(LS);
Performs linear solver initialization (assumes that all solver-
specific options have been set). This should return zero for
a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 9.4.

SUNLinSolSetup ier = SUNLinSolSetup(LS, A);
Performs any linear solver setup needed, based on an updated
system sunmatrix A. This may be called frequently (e.g. with
a full Newton method) or infrequently (for a modified Newton
method), based on the type of integrator and/or nonlinear
solver requesting the solves. This should return zero for a
successful call, a positive value for a recoverable failure and a
negative value for an unrecoverable failure, ideally returning
one of the generic error codes listed in Table 9.4.

SUNLinSolSolve ier = SUNLinSolSolve(LS, A, x, b, tol);
Solves a linear system Ax = b. This should return zero for a
successful call, a positive value for a recoverable failure and a
negative value for an unrecoverable failure, ideally returning
one of the generic error codes listed in Table 9.4.
Direct solvers: can ignore the realtype argument tol.
Iterative solvers: can ignore the sunmatrix input A since a
NULL argument will be passed (these should instead rely on the
matrix-vector product function supplied through the routine
SUNLinSolSetATimes). These should attempt to solve to the
specified realtype tolerance tol in a weighted 2-norm. If
the solver does not support scaling then it should just use a
2-norm.
Custom solvers: all arguments will be supplied, and if the
solver is approximate then it should attempt to solve to the
specified realtype tolerance tol in a weighted 2-norm. If
the solver does not support scaling then it should just use a
2-norm.

SUNLinSolFree ier = SUNLinSolFree(LS);
Frees memory allocated by the linear solver. This should re-
turn zero for a successful call, and a negative value for a failure.

SUNLinSolSetATimes ier = SUNLinSolSetATimes(LS, A data, ATimes);
(Iterative/Custom linear solvers only) Provides ATimesFn
function pointer, as well as a void * pointer to a data struc-
ture used by this routine, to a linear solver object. sundials
solvers will call this function to set the matrix-vector product
function to either a solver-provided difference-quotient via vec-
tor operations or a user-supplied solver-specific routine. This
routine should return zero for a successful call, and a negative
value for a failure, ideally returning one of the generic error
codes listed in Table 9.4.

continued on next page
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Name Usage and Description

SUNLinSolSetPreconditioner ier = SUNLinSolSetPreconditioner(LS, Pdata, Pset,
Psol);
(Optional; Iterative/Custom linear solvers only) Provides
PSetupFn and PSolveFn function pointers that implement the
preconditioner solves P−1

1 and P−1
2 from equations (9.1)-(9.2).

This routine will be called by a sundials solver, which will
provide translation between the generic Pset and Psol calls
and the integrator-specific and integrator- or user-supplied
routines. This routine should return zero for a successful call,
and a negative value for a failure, ideally returning one of the
generic error codes listed in Table 9.4.

SUNLinSolSetScalingVectors ier = SUNLinSolSetScalingVectors(LS, s1, s2);
(Optional; Iterative/Custom linear solvers only) Sets pointers
to left/right scaling vectors for the linear system solve. Here,
s1 is an nvector of positive scale factors containing the diag-
onal of the matrix S1 from equations (9.1)-(9.2). Similarly, s2
is an nvector containing the diagonal of S2 from equations
(9.1)-(9.2). Neither of these vectors are tested for positivity,
and a NULL argument for either indicates that the correspond-
ing scaling matrix is the identity. This routine should return
zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table
9.4.

SUNLinSolNumIters its = SUNLinSolNumIters(LS);
(Optional; Iterative/Custom linear solvers only) Should return
the int number of linear iterations performed in the last ‘solve’
call.

SUNLinSolResNorm rnorm = SUNLinSolResNorm(LS);
(Optional; Iterative/Custom linear solvers only) Should return
the realtype final residual norm from the last ‘solve’ call.

SUNLinSolResid rvec = SUNLinSolResid(LS);
(Optional; Iterative/Custom linear solvers only) If an iterative
method computes the preconditioned initial residual and re-
turns with a successful solve without performing any iterations
(i.e. either the initial guess or the preconditioner is sufficiently
accurate), then this function may be called by the sundials
solver. This routine should return the nvector containing
the preconditioned initial residual vector.

continued on next page
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Name Usage and Description

SUNLinLastFlag lflag = SUNLinLastFlag(LS);
(Optional) Should return the last error flag encountered within
the linear solver. This is not called by the sundials solvers
directly; it allows the user to investigate linear solver issues
after a failed solve.

SUNLinSolSpace ier = SUNLinSolSpace(LS, &lrw, &liw);
(Optional) Returns the storage requirements for the linear
solver LS. lrw is a long int containing the number of re-
altype words and liw is a long int containing the number
of integer words. The return value is an integer flag denoting
success/failure of the operation.
This function is advisory only, for use in determining a user’s
total space requirements.

9.1 Description of the client-supplied SUNLinearSolver rou-
tines

The sundials packages provide the ATimes, Pset and Psol routines utilized by the sunlinsol mod-
ules. These function types are defined in the header file sundials/sundials iterative.h, and are
described here in case a user wishes to interact directly with an iterative sunlinsol object.

ATimesFn

Definition typedef int (*ATimesFn)(void *A data, N Vector v, N Vector z);

Purpose These functions compute the action of a matrix on a vector, performing the operation
z = Av. Memory for z should already be allocted prior to calling this function. The
vector v should be left unchanged.

Arguments A data is a pointer to client data, the same as that supplied to SUNLinSolSetATimes.
v is the input vector to multiply.
z is the output vector computed.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

Notes

PSetupFn

Definition typedef int (*PSetupFn)(void *P data)

Purpose These functions set up any requisite problem data in preparation for calls to the corre-
sponding PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

Notes
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PSolveFn

Definition typedef int (*PSolveFn)(void *P data, N Vector r, N Vector z,
realtype tol, int lr)

Purpose These functions solve the preconditioner equation Pz = r for the vector z. Memory for
z should already be allocted prior to calling this function. The parameter P data is a
pointer to any information about P which the function needs in order to do its job (set
up by the corresponding PSetupFn. The parameter lr is input, and indicates whether
P is to be taken as the left preconditioner or the right preconditioner: lr = 1 for left
and lr = 2 for right. If preconditioning is on one side only, lr can be ignored. If the
preconditioner is iterative, then it should strive to solve the preconditioner equation so
that

‖Pz − r‖wrms < tol

where the weight vector for the WRMS norm may be accessed from the main package
memory structure. The vector r should not be modified by the PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

r is the right-hand side vector for the preconditioner system
z is the solution vector for the preconditioner system
tol is the desired tolerance for an iterative preconditioner
lr is flag indicating whether the routine should perform left (1) or right (2) precondi-

tioning.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful. On a
failure, a negative return value indicates an unrecoverable condition, while a positive
value indicates a recoverable one, in which the calling routine may reattempt the solution
after updating preconditioner data.

Notes

9.2 Compatibility of SUNLinearSolver modules

We note that not all sunlinsol types are compatible with all sunmatrix and nvector types provided
with sundials. In Table 9.3 we show the direct linear solvers available as sunlinsol modules, and
the compatible matrix implementations. Recall that Table 4.1 shows the compatibility between all
sunlinsol modules and vector implementations.

Table 9.3: sundials direct linear solvers and matrix implementations that can be used for each.
Linear Solver
Interface

Dense
Matrix

Banded
Matrix

Sparse
Matrix

User
Supplied

Dense X X
Band X X
LapackDense X X
LapackBand X X
klu X X
superlumt X X

continued on next page
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Linear Solver
Interface

Dense
Matrix

Banded
Matrix

Sparse
Matrix

User
Supplied

User supplied X X X X

The functions within the sundials-provided SUNLinearSolver implementations return a common
set of error codes, shown below in the Table 9.4.

Table 9.4: Description of the SUNLinearSolver error codes

Name Value Description

SUNLS SUCCESS 0 successful call or converged solve
SUNLS MEM NULL -1 the memory argument to the function is NULL

SUNLS ILL INPUT -2 an illegal input has been provided to the function
SUNLS MEM FAIL -3 failed memory access or allocation
SUNLS ATIMES FAIL UNREC -4 an unrecoverable failure occurred in the ATimes routine
SUNLS PSET FAIL UNREC -5 an unrecoverable failure occurred in the Pset routine
SUNLS PSOLVE FAIL UNREC -6 an unrecoverable failure occurred in the Psolve routine
SUNLS PACKAGE FAIL UNREC -7 an unrecoverable failure occurred in an external linear

solver package
SUNLS GS FAIL -8 a failure occurred during Gram-Schmidt orthogonalization

(sunlinsol spgmr/sunlinsol spfgmr)
SUNLS QRSOL FAIL -9 a singular R matrix was encountered in a QR factorization

(sunlinsol spgmr/sunlinsol spfgmr)
SUNLS RES REDUCED 1 an iterative solver reduced the residual, but did not con-

verge to the desired tolerance
SUNLS CONV FAIL 2 an iterative solver did not converge (and the residual was

not reduced)
SUNLS ATIMES FAIL REC 3 a recoverable failure occurred in the ATimes routine
SUNLS PSET FAIL REC 4 a recoverable failure occurred in the Pset routine
SUNLS PSOLVE FAIL REC 5 a recoverable failure occurred in the Psolve routine
SUNLS PACKAGE FAIL REC 6 a recoverable failure occurred in an external linear solver

package
SUNLS QRFACT FAIL 7 a singular matrix was encountered during a QR factoriza-

tion (sunlinsol spgmr/sunlinsol spfgmr)
SUNLS LUFACT FAIL 8 a singular matrix was encountered during a LU factorization

(sunlinsol dense/sunlinsol band)

9.3 The SUNLinearSolver Dense implementation

The dense implementation of the sunlinsol module provided with sundials, sunlinsol dense,
is designed to be used with the corresponding sunmatrix dense matrix type, and one of the se-
rial or shared-memory nvector implementations (nvector serial, nvector openmp or nvec-
tor pthreads). The sunlinsol dense module defines the content field of a SUNLinearSolver to
be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
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long int last_flag;
};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

The header file to include when using this module is sunlinsol/sunlinsol dense.h. The sunlin-
sol dense module is accessible from all sundials solvers without linking to the

libsundials sunlinsoldense module library.
The sunlinsol dense module defines dense implementations of all “direct” linear solver operations
listed in Table 9.2:

• SUNLinSolGetType Dense

• SUNLinSolInitialize Dense – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Dense – this performs the LU factorization.

• SUNLinSolSolve Dense – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Dense

• SUNLinSolSpace Dense – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Dense

The module sunlinsol dense provides the following additional user-callable constructor routine:

• SUNDenseLinearSolver

This function creates and allocates memory for a dense SUNLinearSolver. Its arguments are
an nvector and sunmatrix, that it uses to determine the linear system size and to assess
compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix dense matrix
type and the nvector serial, nvector openmp, and nvector pthreads vector types. As
additional compatible matrix and vector implementations are added to sundials, these will be
included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNDenseLinearSolver(N_Vector y, SUNMatrix A);
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For solvers that include a Fortran interface module, the sunlinsol dense module also includes
the Fortran-callable function FSUNDenseLinSolInit(code, ier) to initialize this sunlinsol dense
module for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida,
3 for kinsol, 4 for arkode); ier is an error return flag equal to 0 for success and -1 for failure.
Both code and ier are declared to match C type int. This routine must be called after both the
nvector and sunmatrix objects have been initialized. Additionally, when using arkode with a
non-identity mass matrix, the Fortran-callable function FSUNMassDenseLinSolInit(ier) initializes
this sunlinsol dense module for solving mass matrix linear systems.

9.4 The SUNLinearSolver Band implementation

The band implementation of the sunlinsol module provided with sundials, sunlinsol band,
is designed to be used with the corresponding sunmatrix band matrix type, and one of the se-
rial or shared-memory nvector implementations (nvector serial, nvector openmp or nvec-
tor pthreads). The sunlinsol band module defines the content field of a SUNLinearSolver to be
the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-!

ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml.

The header file to include when using this module is sunlinsol/sunlinsol band.h. The sunlin-
sol band module is accessible from all sundials solvers without linking to the

libsundials sunlinsolband module library.
The sunlinsol band module defines band implementations of all “direct” linear solver operations
listed in Table 9.2:

• SUNLinSolGetType Band

• SUNLinSolInitialize Band – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Band – this performs the LU factorization.
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• SUNLinSolSolve Band – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Band

• SUNLinSolSpace Band – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Band

The module sunlinsol band provides the following additional user-callable constructor routine:

• SUNBandLinearSolver

This function creates and allocates memory for a band SUNLinearSolver. Its arguments are
an nvector and sunmatrix, that it uses to determine the linear system size and to assess
compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix band matrix
type and the nvector serial, nvector openmp, and nvector pthreads vector types. As
additional compatible matrix and vector implementations are added to sundials, these will be
included within this compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper
bandwidth storage for the LU factorization.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNBandLinearSolver(N_Vector y, SUNMatrix A);

For solvers that include a Fortran interface module, the sunlinsol band module also includes the
Fortran-callable function FSUNBandLinSolInit(code, ier) to initialize this sunlinsol band mod-
ule for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida,
3 for kinsol, 4 for arkode); ier is an error return flag equal to 0 for success and -1 for failure.
Both code and ier are declared to match C type int. This routine must be called after both the
nvector and sunmatrix objects have been initialized. Additionally, when using arkode with a
non-identity mass matrix, the Fortran-callable function FSUNMassBandLinSolInit(ier) initializes
this sunlinsol band module for solving mass matrix linear systems.

9.5 The SUNLinearSolver LapackDense implementation

The LAPACK dense implementation of the sunlinsol module provided with sundials, sunlin-
sol lapackdense, is designed to be used with the corresponding sunmatrix dense matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads). The sunlinsol lapackdense module defines the content field of a
SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.
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The sunlinsol lapackdense module is a sunlinsol wrapper for the LAPACK dense matrix !

factorization and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackdense module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackdense module also cannot be compiled when using int64 t for the
sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

The header file to include when using this module is sunlinsol/sunlinsol lapackdense.h. The in-
stalled module library to link to is libsundials sunlinsollapackdense.lib where .lib is typically
.so for shared libraries and .a for static libraries.
The sunlinsol lapackdense module defines dense implementations of all “direct” linear solver
operations listed in Table 9.2:

• SUNLinSolGetType LapackDense

• SUNLinSolInitialize LapackDense – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackDense – this calls either DGETRF or SGETRF to perform the LU factor-
ization.

• SUNLinSolSolve LapackDense – this calls either DGETRS or SGETRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackDense

• SUNLinSolSpace LapackDense – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackDense

The module sunlinsol lapackdense provides the following additional user-callable constructor rou-
tine:

• SUNLapackDense

This function creates and allocates memory for a LAPACK dense SUNLinearSolver. Its argu-
ments are an nvector and sunmatrix, that it uses to determine the linear system size and to
assess compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix dense matrix
type and the nvector serial, nvector openmp, and nvector pthreads vector types. As
additional compatible matrix and vector implementations are added to sundials, these will be
included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNLapackDense(N_Vector y, SUNMatrix A);



9.6 The SUNLinearSolver LapackBand implementation 201

For solvers that include a Fortran interface module, the sunlinsol lapackdense module also in-
cludes the Fortran-callable function FSUNLapackDenseInit(code, ier) to initialize this sunlin-
sol lapackdense module for a given sundials solver. Here code is an integer input solver id (1 for
cvode, 2 for ida, 3 for kinsol, 4 for arkode); ier is an error return flag equal to 0 for success and
-1 for failure. Both code and ier are declared to match C type int. This routine must be called after
both the nvector and sunmatrix objects have been initialized. Additionally, when using arkode
with a non-identity mass matrix, the Fortran-callable function FSUNMassLapackDenseInit(ier) ini-
tializes this sunlinsol lapackdense module for solving mass matrix linear systems.

9.6 The SUNLinearSolver LapackBand implementation

The LAPACK band implementation of the sunlinsol module provided with sundials, sunlin-
sol lapackband, is designed to be used with the corresponding sunmatrix band matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads). The sunlinsol lapackband module defines the content field of a
SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

The sunlinsol lapackband module is a sunlinsol wrapper for the LAPACK band matrix !

factorization and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackband module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackband module also cannot be compiled when using int64 t for the
sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor- !

ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml.
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The header file to include when using this module is sunlinsol/sunlinsol lapackband.h. The
installed module library to link to is libsundials sunlinsollapackband.lib where .lib is typically
.so for shared libraries and .a for static libraries.
The sunlinsol lapackband module defines band implementations of all “direct” linear solver op-
erations listed in Table 9.2:

• SUNLinSolGetType LapackBand

• SUNLinSolInitialize LapackBand – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackBand – this calls either DGBTRF or SGBTRF to perform the LU factoriza-
tion.

• SUNLinSolSolve LapackBand – this calls either DGBTRS or SGBTRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackBand

• SUNLinSolSpace LapackBand – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackBand

The module sunlinsol lapackband provides the following additional user-callable routine:

• SUNLapackBand

This function creates and allocates memory for a LAPACK band SUNLinearSolver. Its argu-
ments are an nvector and sunmatrix, that it uses to determine the linear system size and to
assess compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix band matrix
type and the nvector serial, nvector openmp, and nvector pthreads vector types. As
additional compatible matrix and vector implementations are added to sundials, these will be
included within this compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper
bandwidth storage for the LU factorization.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNLapackBand(N_Vector y, SUNMatrix A);

For solvers that include a Fortran interface module, the sunlinsol lapackband module also includes
the Fortran-callable function FSUNLapackBandInit(code, ier) to initialize this
sunlinsol lapackband module for a given sundials solver. Here code is an integer input solver id (1
for cvode, 2 for ida, 3 for kinsol, 4 for arkode); ier is an error return flag equal to 0 for success and
-1 for failure. Both code and ier are declared to match C type int. This routine must be called after
both the nvector and sunmatrix objects have been initialized. Additionally, when using arkode
with a non-identity mass matrix, the Fortran-callable function FSUNMassLapackBandInit(ier) ini-
tializes this sunlinsol lapackband module for solving mass matrix linear systems.

9.7 The SUNLinearSolver KLU implementation

The klu implementation of the sunlinsol module provided with sundials, sunlinsol klu, is
designed to be used with the corresponding sunmatrix sparse matrix type, and one of the se-
rial or shared-memory nvector implementations (nvector serial, nvector openmp, or nvec-
tor pthreads). The sunlinsol klu module defines the content field of a SUNLinearSolver to be
the following structure:
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struct _SUNLinearSolverContent_KLU {
long int last_flag;
int first_factorize;
sun_klu_symbolic *symbolic;
sun_klu_numeric *numeric;
sun_klu_common common;
sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,

sunindextype, sunindextype,
double*, sun_klu_common*);

};

These entries of the content field contain the following information:

last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

Symbolic - klu storage structure for symbolic factorization components,

Numeric - klu storage structure for numeric factorization components,

Common - storage structure for common klu solver components,

klu solver – pointer to the appropriate klu solver function (depending on whether it is using a CSR
or CSC sparse matrix).

The sunlinsol klu module is a sunlinsol wrapper for the klu sparse matrix factorization and !

solver library written by Tim Davis [1, 14]. In order to use the sunlinsol klu interface to klu,
it is assumed that klu has been installed on the system prior to installation of sundials, and that
sundials has been configured appropriately to link with klu (see Appendix A for details). Addi-
tionally, this wrapper only supports double-precision calculations, and therefore cannot be compiled
if sundials is configured to have realtype set to either extended or single (see Section 4.2). Since
the klu library supports both 32-bit and 64-bit integers, this interface will be compiled for either of
the available sunindextype options.

The klu library has a symbolic factorization routine that computes the permutation of the linear
system matrix to block triangular form and the permutations that will pre-order the diagonal blocks
(the only ones that need to be factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural,
or an ordering given by the user). Of these ordering choices, the default value in the sunlinsol klu
module is the COLAMD ordering.

klu breaks the factorization into two separate parts. The first is a symbolic factorization and the
second is a numeric factorization that returns the factored matrix along with final pivot information.
klu also has a refactor routine that can be called instead of the numeric factorization. This routine
will reuse the pivot information. This routine also returns diagnostic information that a user can
examine to determine if numerical stability is being lost and a full numerical factorization should be
done instead of the refactor.

Since the linear systems that arise within the context of sundials calculations will typically
have identical sparsity patterns, the sunlinsol klu module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it calls the appropriate klu “refactor” routine,
followed by estimates of the numerical conditioning using the relevant “rcond”, and if necessary
“condest”, routine(s). If these estimates of the condition number are larger than ε−2/3 (where
ε is the double-precision unit roundoff), then a new factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full
refactorization at the next “setup” call.
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• The “solve” call performs pivoting and forward and backward substitution using the stored klu
data structures. We note that in this solve klu operates on the native data arrays for the
right-hand side and solution vectors, without requiring costly data copies.

The header file to include when using this module is sunlinsol/sunlinsol klu.h. The installed
module library to link to is libsundials sunlinsolklu.lib where .lib is typically .so for shared
libraries and .a for static libraries.
The sunlinsol klu module defines implementations of all “direct” linear solver operations listed in
Table 9.2:

• SUNLinSolGetType KLU

• SUNLinSolInitialize KLU – this sets the first factorize flag to 1, forcing both symbolic
and numerical factorizations on the subsequent “setup” call.

• SUNLinSolSetup KLU – this performs either a LU factorization or refactorization of the input
matrix.

• SUNLinSolSolve KLU – this calls the appropriate klu solve routine to utilize the LU factors to
solve the linear system.

• SUNLinSolLastFlag KLU

• SUNLinSolSpace KLU – this only returns information for the storage within the solver interface,
i.e. storage for the integers last flag and first factorize. For additional space requirements,
see the klu documentation.

• SUNLinSolFree KLU

The module sunlinsol klu provides the following additional user-callable routines:

• SUNKLU

This constructor function creates and allocates memory for a sunlinsol klu object. Its argu-
ments are an nvector and sunmatrix, that it uses to determine the linear system size and to
assess compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix sparse matrix
type (using either CSR or CSC storage formats) and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vector implemen-
tations are added to sundials, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNKLU(N_Vector y, SUNMatrix A);

• SUNKLUReInit

This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be
conducted at the next solver setup call. This routine is useful in the cases where the number of
nonzeroes has changed or if the structure of the linear system has changed which would require
a new symbolic (and numeric factorization).

The reinit type argument governs the level of reinitialization. The allowed values are:

1 The Jacobian matrix will be destroyed and a new one will be allocated based on the nnz
value passed to this call. New symbolic and numeric factorizations will be completed at
the next solver setup.

2 Only symbolic and numeric factorizations will be completed. It is assumed that the Ja-
cobian size has not exceeded the size of nnz given in the sparse matrix provided to the
original constructor routine (or the previous SUNKLUReInit call).
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This routine assumes no other changes to solver use are necessary.

The return values from this function are SUNLS MEM NULL (either S or A are NULL), SUNLS ILL INPUT
(A does not have type SUNMATRIX SPARSE or reinit type is invalid), SUNLS MEM FAIL (realloca-
tion of the sparse matrix failed) or SUNLS SUCCESS.

int SUNKLUReInit(SUNLinearSolver S, SUNMatrix A,
sunindextype nnz, int reinit_type);

• SUNKLUSetOrdering

This function sets the ordering used by klu for reducing fill in the linear solve. Options for
ordering choice are:

0 AMD,

1 COLAMD, and

2 the natural ordering.

The default is 1 for COLAMD.

The return values from this function are SUNLS MEM NULL (S is NULL), SUNLS ILL INPUT (invalid
ordering choice), or SUNLS SUCCESS.

int SUNKLUSetOrdering(SUNLinearSolver S, int ordering_choice);

For solvers that include a Fortran interface module, the sunlinsol klu module also includes the
Fortran-callable function FSUNKLUInit(code, ier) to initialize this sunlinsol klu module for a
given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida, 3 for kinsol,
4 for arkode); ier is an error return flag equal to 0 for success and -1 for failure. Both code and
ier are declared to match C type int. This routine must be called after both the nvector and
sunmatrix objects have been initialized. Additionally, when using arkode with a non-identity mass
matrix, the Fortran-callable function FSUNMassKLUInit(ier) initializes this sunlinsol klu module
for solving mass matrix linear systems.

The SUNKLUReInit and SUNKLUSetOrdering routines also support Fortran interfaces for the system
and mass matrix solvers:

• FSUNKLUReInit(code, NNZ, reinit type, ier) – NNZ should be commensurate with a C long
int and reinit type should be commensurate with a C int

• FSUNMassKLUReInit(NNZ, reinit type, ier)

• FSUNKLUSetOrdering(code, ordering, ier) – ordering should be commensurate with a C
int

• FSUNMassKLUSetOrdering(ordering, ier)

9.8 The SUNLinearSolver SuperLUMT implementation

The superlumt implementation of the sunlinsol module provided with sundials,
sunlinsol superlumt, is designed to be used with the corresponding sunmatrix sparse matrix
type, and one of the serial or shared-memory nvector implementations (nvector serial, nvec-
tor openmp, or nvector pthreads). While these are compatible, it is not recommended to use a
threaded vector module with sunlinsol superlumt unless it is the nvector openmp module and
the superlumt library has also been compiled with OpenMP. The sunlinsol superlumt module
defines the content field of a SUNLinearSolver to be the following structure:
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struct _SUNLinearSolverContent_SuperLUMT {
long int last_flag;
int first_factorize;
SuperMatrix *A, *AC, *L, *U, *B;
Gstat_t *Gstat;
sunindextype *perm_r, *perm_c;
sunindextype N;
int num_threads;
realtype diag_pivot_thresh;
int ordering;
superlumt_options_t *options;

};

These entries of the content field contain the following information:

last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

A, AC, L, U, B - SuperMatrix pointers used in solve,

Gstat - GStat t object used in solve,

perm r, perm c - permutation arrays used in solve,

N - size of the linear system,

num threads - number of OpenMP/Pthreads threads to use,

diag pivot thresh - threshold on diagonal pivoting,

ordering - flag for which reordering algorithm to use,

options - pointer to superlumt options structure.

The sunlinsol superlumt module is a sunlinsol wrapper for the superlumt sparse matrix!

factorization and solver library written by X. Sherry Li [2, 28, 15]. The package performs matrix fac-
torization using threads to enhance efficiency in shared memory parallel environments. It should be
noted that threads are only used in the factorization step. In order to use the sunlinsol superlumt
interface to superlumt, it is assumed that superlumt has been installed on the system prior to in-
stallation of sundials, and that sundials has been configured appropriately to link with superlumt
(see Appendix A for details). Additionally, this wrapper only supports single- and double-precision
calculations, and therefore cannot be compiled if sundials is configured to have realtype set to
extended (see Section 4.2). Moreover, since the superlumt library may be installed to support
either 32-bit or 64-bit integers, it is assumed that the superlumt library is installed using the same
integer precision as the sundials sunindextype option.

The superlumt library has a symbolic factorization routine that computes the permutation of
the linear system matrix to reduce fill-in on subsequent LU factorizations (using COLAMD, minimal
degree ordering on AT ∗A, minimal degree ordering on AT +A, or natural ordering). Of these ordering
choices, the default value in the sunlinsol superlumt module is the COLAMD ordering.

Since the linear systems that arise within the context of sundials calculations will typically have
identical sparsity patterns, the sunlinsol superlumt module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors
the input matrix.
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• The “solve” call performs pivoting and forward and backward substitution using the stored
superlumt data structures. We note that in this solve superlumt operates on the native data
arrays for the right-hand side and solution vectors, without requiring costly data copies.

The header file to include when using this module is sunlinsol/sunlinsol superlumt.h. The in-
stalled module library to link to is libsundials sunlinsolsuperlumt.lib where .lib is typically
.so for shared libraries and .a for static libraries.
The sunlinsol superlumt module defines implementations of all “direct” linear solver operations
listed in Table 9.2:

• SUNLinSolGetType SuperLUMT

• SUNLinSolInitialize SuperLUMT – this sets the first factorize flag to 1 and resets the
internal superlumt statistics variables.

• SUNLinSolSetup SuperLUMT – this performs either a LU factorization or refactorization of the
input matrix.

• SUNLinSolSolve SuperLUMT – this calls the appropriate superlumt solve routine to utilize the
LU factors to solve the linear system.

• SUNLinSolLastFlag SuperLUMT

• SUNLinSolSpace SuperLUMT – this only returns information for the storage within the solver
interface, i.e. storage for the integers last flag and first factorize. For additional space
requirements, see the superlumt documentation.

• SUNLinSolFree SuperLUMT

The module sunlinsol superlumt provides the following additional user-callable routines:

• SUNSuperLUMT

This constructor function creates and allocates memory for a sunlinsol superlumt object.
Its arguments are an nvector, a sunmatrix, and a desired number of threads (OpenMP or
Pthreads, depending on how superlumt was installed) to use during the factorization steps.
This routine analyzes the input matrix and vector to determine the linear system size and to
assess compatibility with the superlumt library.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix sparse matrix
type (using either CSR or CSC storage formats) and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vector implemen-
tations are added to sundials, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL. The num threads argument
is not checked and is passed directly to superlumt routines.

SUNLinearSolver SUNSuperLUMT(N_Vector y, SUNMatrix A, int num_threads);

• SUNSuperLUMTSetOrdering

This function sets the ordering used by superlumt for reducing fill in the linear solve. Options
for ordering choice are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices
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The default is 3 for COLAMD.

The return values from this function are SUNLS MEM NULL (S is NULL), SUNLS ILL INPUT (invalid
ordering choice), or SUNLS SUCCESS.

int SUNSuperLUMTSetOrdering(SUNLinearSolver S, int ordering_choice);

For solvers that include a Fortran interface module, the sunlinsol superlumt module also includes
the Fortran-callable function FSUNSuperLUMTInit(code, num threads, ier) to initialize this sun-
linsol superlumt module for a given sundials solver. Here code is an integer input solver id (1
for cvode, 2 for ida, 3 for kinsol, 4 for arkode); num threads is the desired number of Open-
MP/Pthreads threads to use in the factorization; ier is an error return flag equal to 0 for suc-
cess and -1 for failure. All of these arguments should be declared so as to match C type int.
This routine must be called after both the nvector and sunmatrix objects have been initial-
ized. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable func-
tion FSUNMassSuperLUMTInit(num threads, ier) initializes this sunlinsol superlumt module for
solving mass matrix linear systems.

The SUNSuperLUMTSetOrdering routine also supports Fortran interfaces for the system and mass
matrix solvers:

• FSUNSuperLUMTSetOrdering(code, ordering, ier) – ordering should be commensurate with
a C int

• FSUNMassSuperLUMTSetOrdering(ordering, ier)

9.9 The SUNLinearSolver SPGMR implementation

The spgmr (Scaled, Preconditioned, Generalized Minimum Residual [33]) implementation of the
sunlinsol module provided with sundials, sunlinsol spgmr, is an iterative linear solver that is
designed to be compatible with any nvector implementation (serial, threaded, parallel, and user-
supplied) that supports a minimal subset of operations (N VClone, N VDotProd, N VScale, N VLinearSum,
N VProd, N VConst, N VDiv, and N VDestroy).

The sunlinsol spgmr module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_SPGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
realtype **Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;

};
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These entries of the content field contain the following information:

maxl - number of GMRES basis vectors to use (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of GMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each vi is a vector
of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is
given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the GMRES

algorithm. These matrices are F0, F1, . . . , Fj , where Fi =



1
. . .

1
ci −si

si ci
1

. . .
1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2] = c1,
givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and g),

vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spgmr
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.
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• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning,
and restarts if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol spgmr.h. The sunlin-
sol spgmr module is accessible from all sundials solvers without linking to the

libsundials sunlinsolspgmr module library.
The sunlinsol spgmr module defines implementations of all “iterative” linear solver operations listed
in Table 9.2:

• SUNLinSolGetType SPGMR

• SUNLinSolInitialize SPGMR

• SUNLinSolSetATimes SPGMR

• SUNLinSolSetPreconditioner SPGMR

• SUNLinSolSetScalingVectors SPGMR

• SUNLinSolSetup SPGMR

• SUNLinSolSolve SPGMR

• SUNLinSolNumIters SPGMR

• SUNLinSolResNorm SPGMR

• SUNLinSolResid SPGMR

• SUNLinSolLastFlag SPGMR

• SUNLinSolSpace SPGMR

• SUNLinSolFree SPGMR

The module sunlinsol spgmr provides the following additional user-callable routines:

• SUNSPGMR

This constructor function creates and allocates memory for a spgmr SUNLinearSolver. Its
arguments are an nvector, the desired type of preconditioning, and the number of Krylov
basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent nvector
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC NONE (0), PREC LEFT (1), PREC RIGHT (2) and PREC BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some
sundials solvers are designed to only work with left preconditioning (ida and idas) and others
with only right preconditioning (kinsol). While it is possible to configure a sunlinsol spgmr
object to use any of the preconditioning options with these solvers, this use mode is not supported
and may result in inferior performance.

SUNLinearSolver SUNSPGMR(N_Vector y, int pretype, int maxl);
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• SUNSPGMRSetPrecType

This function updates the type of preconditioning to use. Supported values are PREC NONE (0),
PREC LEFT (1), PREC RIGHT (2) and PREC BOTH (3).

This routine will return with one of the error codes SUNLS ILL INPUT (illegal pretype), SUNLS MEM NULL
(S is NULL) or SUNLS SUCCESS.

int SUNSPGMRSetPrecType(SUNLinearSolver S, int pretype);

• SUNSPGMRSetGSType

This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are
MODIFIED GS (1) and CLASSICAL GS (2). Any other integer input will result in a failure, returning
error code SUNLS ILL INPUT.

This routine will return with one of the error codes SUNLS ILL INPUT (illegal gstype), SUNLS MEM NULL
(S is NULL) or SUNLS SUCCESS.

int SUNSPGMRSetGSType(SUNLinearSolver S, int gstype);

• SUNSPGMRSetMaxRestarts

This function sets the number of GMRES restarts to allow. A negative input will result in the
default of 0.

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNSPGMRSetMaxRestarts(SUNLinearSolver S, int maxrs);

For solvers that include a Fortran interface module, the sunlinsol spgmr module also includes
the Fortran-callable function FSUNSPGMRInit(code, pretype, maxl, ier) to initialize this sunlin-
sol spgmr module for a given sundials solver. Here code is an integer input solver id (1 for cvode,
2 for ida, 3 for kinsol, 4 for arkode); pretype and maxl are the same as for the C function SUNSPGMR;
ier is an error return flag equal to 0 for success and -1 for failure. All of these input arguments should
be declared so as to match C type int. This routine must be called after the nvector object has been
initialized. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable
function FSUNMassSPGMRInit(pretype, maxl, ier) initializes this sunlinsol spgmr module for
solving mass matrix linear systems.

The SUNSPGMRSetPrecType, SUNSPGMRSetGSType and SUNSPGMRSetMaxRestarts routines also sup-
port Fortran interfaces for the system and mass matrix solvers (all arguments should be commensurate
with a C int):

• FSUNSPGMRSetGSType(code, gstype, ier)

• FSUNMassSPGMRSetGSType(gstype, ier)

• FSUNSPGMRSetPrecType(code, pretype, ier)

• FSUNMassSPGMRSetPrecType(pretype, ier)

• FSUNSPGMRSetMaxRS(code, maxrs, ier)

• FSUNMassSPGMRSetMaxRS(maxrs, ier)

9.10 The SUNLinearSolver SPFGMR implementation

The spfgmr (Scaled, Preconditioned, Flexible, Generalized Minimum Residual [32]) implementation
of the sunlinsol module provided with sundials, sunlinsol spfgmr, is an iterative linear solver
that is designed to be compatible with any nvector implementation (serial, threaded, parallel,
and user-supplied) that supports a minimal subset of operations (N VClone, N VDotProd, N VScale,
N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy). Unlike the other Krylov iterative linear
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solvers supplied with sundials, FGMRES is specifically designed to work with a changing precondi-
tioner (e.g. from an iterative method).

The sunlinsol spfgmr module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_SPFGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
N_Vector *Z;
realtype **Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;

};

These entries of the content field contain the following information:

maxl - number of FGMRES basis vectors to use (default is 5),

pretype - flag for use of preconditioning (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of FGMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each vi is a vector
of type nvector.,
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Z - the array of preconditioned Krylov basis vectors z1, . . . , zmaxl+1, stored in Z[0], . . . , Z[maxl].
Each zi is a vector of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is
given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the FGM-

RES algorithm. These matrices are F0, F1, . . . , Fj , where Fi =



1
. . .

1
ci −si

si ci
1

. . .
1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2] = c1,
givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and g),

vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spfgmr
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, precondition-
ing, and restarts if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol spfgmr.h. The sunlin-
sol spfgmr module is accessible from all sundials solvers without linking to the

libsundials sunlinsolspfgmr module library.
The sunlinsol spfgmr module defines implementations of all “iterative” linear solver operations
listed in Table 9.2:

• SUNLinSolGetType SPFGMR

• SUNLinSolInitialize SPFGMR

• SUNLinSolSetATimes SPFGMR

• SUNLinSolSetPreconditioner SPFGMR

• SUNLinSolSetScalingVectors SPFGMR

• SUNLinSolSetup SPFGMR
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• SUNLinSolSolve SPFGMR

• SUNLinSolNumIters SPFGMR

• SUNLinSolResNorm SPFGMR

• SUNLinSolResid SPFGMR

• SUNLinSolLastFlag SPFGMR

• SUNLinSolSpace SPFGMR

• SUNLinSolFree SPFGMR

The module sunlinsol spfgmr provides the following additional user-callable routines:

• SUNSPFGMR

This constructor function creates and allocates memory for a spfgmr SUNLinearSolver. Its
arguments are an nvector, a flag indicating to use preconditioning, and the number of Krylov
basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent nvector
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Since the FGMRES algorithm is designed to only support right preconditioning, then any of the
pretype inputs PREC LEFT (1), PREC RIGHT (2), or PREC BOTH (3) will result in use of PREC RIGHT;
any other integer input will result in the default (no preconditioning). We note that some
SUNDIALS solvers are designed to only work with left preconditioning (ida and idas). While
it is possible to use a right-preconditioned sunlinsol spfgmr object for these packages, this
use mode is not supported and may result in inferior performance.

SUNLinearSolver SUNSPFGMR(N_Vector y, int pretype, int maxl);

• SUNSPFGMRSetPrecType

This function updates the flag indicating use of preconditioning. Since the FGMRES algorithm
is designed to only support right preconditioning, then any of the pretype inputs PREC LEFT
(1), PREC RIGHT (2), or PREC BOTH (3) will result in use of PREC RIGHT; any other integer input
will result in the default (no preconditioning).

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNSPFGMRSetPrecType(SUNLinearSolver S, int pretype);

• SUNSPFGMRSetGSType

This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are
MODIFIED GS (1) and CLASSICAL GS (2). Any other integer input will result in a failure, returning
error code SUNLS ILL INPUT.

This routine will return with one of the error codes SUNLS ILL INPUT (illegal gstype), SUNLS MEM NULL
(S is NULL), or SUNLS SUCCESS.

int SUNSPFGMRSetGSType(SUNLinearSolver S, int gstype);

• SUNSPFGMRSetMaxRestarts

This function sets the number of FGMRES restarts to allow. A negative input will result in the
default of 0.

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNSPFGMRSetMaxRestarts(SUNLinearSolver S, int maxrs);
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For solvers that include a Fortran interface module, the sunlinsol spfgmr module also includes
the Fortran-callable function FSUNSPFGMRInit(code, pretype, maxl, ier) to initialize this sun-
linsol spfgmr module for a given sundials solver. Here code is an integer input solver id (1 for
cvode, 2 for ida, 3 for kinsol, 4 for arkode); pretype and maxl are the same as for the C func-
tion SUNSPFGMR; ier is an error return flag equal to 0 for success and -1 for failure. All of these
input arguments should be declared so as to match C type int. This routine must be called af-
ter the nvector object has been initialized. Additionally, when using arkode with a non-identity
mass matrix, the Fortran-callable function FSUNMassSPFGMRInit(pretype, maxl, ier) initializes
this sunlinsol spfgmr module for solving mass matrix linear systems.

The SUNSPFGMRSetPrecType, SUNSPFGMRSetGSType, and SUNSPFGMRSetMaxRestarts routines also
support Fortran interfaces for the system and mass matrix solvers (all arguments should be commen-
surate with a C int):

• FSUNSPFGMRSetGSType(code, gstype, ier)

• FSUNMassSPFGMRSetGSType(gstype, ier)

• FSUNSPFGMRSetPrecType(code, pretype, ier)

• FSUNMassSPFGMRSetPrecType(pretype, ier)

• FSUNSPFGMRSetMaxRS(code, maxrs, ier)

• FSUNMassSPFGMRSetMaxRS(maxrs, ier)

9.11 The SUNLinearSolver SPBCGS implementation

The spbcgs (Scaled, Preconditioned, Bi-Conjugate Gradient, Stabilized [36]) implementation of
the sunlinsol module provided with sundials, sunlinsol spbcgs, is an iterative linear solver
that is designed to be compatible with any nvector implementation (serial, threaded, parallel,
and user-supplied) that supports a minimal subset of operations (N VClone, N VDotProd, N VScale,
N VLinearSum, N VProd, N VDiv, and N VDestroy). Unlike the spgmr and spfgmr algorithms, sp-
bcgs requires a fixed amount of memory that does not increase with the number of allowed iterations.

The sunlinsol spbcgs module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_SPBCGS {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r;
N_Vector r_star;
N_Vector p;
N_Vector q;
N_Vector u;
N_Vector Ap;
N_Vector vtemp;

};
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These entries of the content field contain the following information:

maxl - number of spbcgs iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r - a nvector which holds the current scaled, preconditioned linear system residual,

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

p, q, u, Ap, vtemp - nvectors used for workspace by the spbcgs algorithm.

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spbcgs
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the spbcgs iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol spbcgs.h. The sunlin-
sol spbcgs module is accessible from all sundials solvers without linking to the

libsundials sunlinsolspbcgs module library.
The sunlinsol spbcgs module defines implementations of all “iterative” linear solver operations
listed in Table 9.2:

• SUNLinSolGetType SPBCGS

• SUNLinSolInitialize SPBCGS

• SUNLinSolSetATimes SPBCGS

• SUNLinSolSetPreconditioner SPBCGS

• SUNLinSolSetScalingVectors SPBCGS
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• SUNLinSolSetup SPBCGS

• SUNLinSolSolve SPBCGS

• SUNLinSolNumIters SPBCGS

• SUNLinSolResNorm SPBCGS

• SUNLinSolResid SPBCGS

• SUNLinSolLastFlag SPBCGS

• SUNLinSolSpace SPBCGS

• SUNLinSolFree SPBCGS

The module sunlinsol spbcgs provides the following additional user-callable routines:

• SUNSPBCGS

This constructor function creates and allocates memory for a spbcgs SUNLinearSolver. Its
arguments are an nvector, the desired type of preconditioning, and the number of linear
iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent nvector
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC NONE (0), PREC LEFT (1), PREC RIGHT (2) and PREC BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some
sundials solvers are designed to only work with left preconditioning (ida and idas) and others
with only right preconditioning (kinsol). While it is possible to configure a sunlinsol spbcgs
object to use any of the preconditioning options with these solvers, this use mode is not supported
and may result in inferior performance.

SUNLinearSolver SUNSPBCGS(N_Vector y, int pretype, int maxl);

• SUNSPBCGSSetPrecType

This function updates the type of preconditioning to use. Supported values are PREC NONE (0),
PREC LEFT (1), PREC RIGHT (2), and PREC BOTH (3).

This routine will return with one of the error codes SUNLS ILL INPUT (illegal pretype), SUNLS MEM NULL
(S is NULL), or SUNLS SUCCESS.

int SUNSPBCGSSetPrecType(SUNLinearSolver S, int pretype);

• SUNSPBCGSSetMaxl

This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNSPBCGSSetMaxl(SUNLinearSolver S, int maxl);

For solvers that include a Fortran interface module, the sunlinsol spbcgs module also includes
the Fortran-callable function FSUNSPBCGSInit(code, pretype, maxl, ier) to initialize this sun-
linsol spbcgs module for a given sundials solver. Here code is an integer input solver id (1 for
cvode, 2 for ida, 3 for kinsol, 4 for arkode); pretype and maxl are the same as for the C func-
tion SUNSPBCGS; ier is an error return flag equal to 0 for success and -1 for failure. All of these
input arguments should be declared so as to match C type int. This routine must be called af-
ter the nvector object has been initialized. Additionally, when using arkode with a non-identity
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mass matrix, the Fortran-callable function FSUNMassSPBCGSInit(pretype, maxl, ier) initializes
this sunlinsol spbcgs module for solving mass matrix linear systems.

The SUNSPBCGSSetPrecType and SUNSPBCGSSetMaxl routines also support Fortran interfaces for
the system and mass matrix solvers (all arguments should be commensurate with a C int):

• FSUNSPBCGSSetPrecType(code, pretype, ier)

• FSUNMassSPBCGSSetPrecType(pretype, ier)

• FSUNSPBCGSSetMaxl(code, maxl, ier)

• FSUNMassSPBCGSSetMaxl(maxl, ier)

9.12 The SUNLinearSolver SPTFQMR implementation

The sptfqmr (Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual [17]) implementa-
tion of the sunlinsol module provided with sundials, sunlinsol sptfqmr, is an iterative linear
solver that is designed to be compatible with any nvector implementation (serial, threaded, parallel,
and user-supplied) that supports a minimal subset of operations (N VClone, N VDotProd, N VScale,
N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy). Unlike the spgmr and spfgmr al-
gorithms, sptfqmr requires a fixed amount of memory that does not increase with the number of
allowed iterations.

The sunlinsol sptfqmr module defines the content field of a SUNLinearSolver to be the fol-
lowing structure:

struct _SUNLinearSolverContent_SPTFQMR {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r_star;
N_Vector q;
N_Vector d;
N_Vector v;
N_Vector p;
N_Vector *r;
N_Vector u;
N_Vector vtemp1;
N_Vector vtemp2;
N_Vector vtemp3;

};

These entries of the content field contain the following information:

maxl - number of TFQMR iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,
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resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

q, d, v, p, u - nvectors used for workspace by the SPTFQMR algorithm,

r - array of two nvectors used for workspace within the SPTFQMR algorithm,

vtemp1, vtemp2, vtemp3 - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol sptfqmr
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol sptfqmr.h. The sun-
linsol sptfqmr module is accessible from all sundials solvers without linking to the

libsundials sunlinsolsptfqmr module library.
The sunlinsol sptfqmr module defines implementations of all “iterative” linear solver operations
listed in Table 9.2:

• SUNLinSolGetType SPTFQMR

• SUNLinSolInitialize SPTFQMR

• SUNLinSolSetATimes SPTFQMR

• SUNLinSolSetPreconditioner SPTFQMR

• SUNLinSolSetScalingVectors SPTFQMR

• SUNLinSolSetup SPTFQMR

• SUNLinSolSolve SPTFQMR

• SUNLinSolNumIters SPTFQMR
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• SUNLinSolResNorm SPTFQMR

• SUNLinSolResid SPTFQMR

• SUNLinSolLastFlag SPTFQMR

• SUNLinSolSpace SPTFQMR

• SUNLinSolFree SPTFQMR

The module sunlinsol sptfqmr provides the following additional user-callable routines:

• SUNSPTFQMR

This constructor function creates and allocates memory for a sptfqmr SUNLinearSolver. Its
arguments are an nvector, the desired type of preconditioning, and the number of linear
iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent nvector
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC NONE (0), PREC LEFT (1), PREC RIGHT (2) and PREC BOTH
(3); any other integer input will result in the default (no preconditioning). We note that
some sundials solvers are designed to only work with left preconditioning (ida and idas)
and others with only right preconditioning (kinsol). While it is possible to configure a sun-
linsol sptfqmr object to use any of the preconditioning options with these solvers, this use
mode is not supported and may result in inferior performance.

SUNLinearSolver SUNSPTFQMR(N_Vector y, int pretype, int maxl);

• SUNSPTFQMRSetPrecType

This function updates the type of preconditioning to use. Supported values are PREC NONE (0),
PREC LEFT (1), PREC RIGHT (2), and PREC BOTH (3).

This routine will return with one of the error codes SUNLS ILL INPUT (illegal pretype), SUNLS MEM NULL
(S is NULL), or SUNLS SUCCESS.

int SUNSPTFQMRSetPrecType(SUNLinearSolver S, int pretype);

• SUNSPTFQMRSetMaxl

This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNSPTFQMRSetMaxl(SUNLinearSolver S, int maxl);

For solvers that include a Fortran interface module, the sunlinsol sptfqmr module also includes
the Fortran-callable function FSUNSPTFQMRInit(code, pretype, maxl, ier) to initialize this sun-
linsol sptfqmr module for a given sundials solver. Here code is an integer input solver id (1
for cvode, 2 for ida, 3 for kinsol, 4 for arkode); pretype and maxl are the same as for the C
function SUNSPTFQMR; ier is an error return flag equal to 0 for success and -1 for failure. All of
these input arguments should be declared so as to match C type int. This routine must be called
after the nvector object has been initialized. Additionally, when using arkode with a non-identity
mass matrix, the Fortran-callable function FSUNMassSPTFQMRInit(pretype, maxl, ier) initializes
this sunlinsol sptfqmr module for solving mass matrix linear systems.

The SUNSPTFQMRSetPrecType and SUNSPTFQMRSetMaxl routines also support Fortran interfaces
for the system and mass matrix solvers (all arguments should be commensurate with a C int):

• FSUNSPTFQMRSetPrecType(code, pretype, ier)
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• FSUNMassSPTFQMRSetPrecType(pretype, ier)

• FSUNSPTFQMRSetMaxl(code, maxl, ier)

• FSUNMassSPTFQMRSetMaxl(maxl, ier)

9.13 The SUNLinearSolver PCG implementation

The pcg (Preconditioned Conjugate Gradient [18]) implementation of the sunlinsol module provided
with sundials, sunlinsol pcg, is an iterative linear solver that is designed to be compatible with
any nvector implementation (serial, threaded, parallel, and user-supplied) that supports a minimal
subset of operations (N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, and N VDestroy).
Unlike the spgmr and spfgmr algorithms, pcg requires a fixed amount of memory that does not
increase with the number of allowed iterations.

Unlike all of the other iterative linear solvers supplied with sundials, pcg should only be used
on symmetric linear systems (e.g. mass matrix linear systems encountered in arkode). As a result,
the explanation of the role of scaling and preconditioning matrices given in general must be modified
in this scenario. The pcg algorithm solves a linear system Ax = b where A is a symmetric (AT = A),
real-valued matrix. Preconditioning is allowed, and is applied in a symmetric fashion on both the
right and left. Scaling is also allowed and is applied symmetrically. We denote the preconditioner and
scaling matrices as follows:

• P is the preconditioner (assumed symmetric),

• S is a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P−1 as operators
are required. The diagonal of the matrix S is held in a single nvector, supplied by the user.

In this notation, pcg applies the underlying CG algorithm to the equivalent transformed system

Ãx̃ = b̃ (9.3)

where

Ã = SP−1AP−1S,

b̃ = SP−1b, (9.4)

x̃ = S−1Px.

The scaling matrix must be chosen so that the vectors SP−1b and S−1Px have dimensionless com-
ponents.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖b̃− Ãx̃‖2 < δ

⇔
‖SP−1b− SP−1Ax‖2 < δ

⇔
‖P−1b− P−1Ax‖S < δ

where ‖v‖S =
√
vTSTSv, with an input tolerance δ.

The sunlinsol pcg module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_PCG {
int maxl;
int pretype;



222 Description of the SUNLinearSolver module

int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s;
N_Vector r;
N_Vector p;
N_Vector z;
N_Vector Ap;

};

These entries of the content field contain the following information:

maxl - number of pcg iterations to allow (default is 5),

pretype - flag for use of preconditioning (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s - vector pointer for supplied scaling matrix (default is NULL),

r - a nvector which holds the preconditioned linear system residual,

p, z, Ap - nvectors used for workspace by the pcg algorithm.

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol pcg
to supply the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the pcg iteration is performed. This will include scaling and preconditioning
if those options have been supplied.
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The header file to include when using this module is sunlinsol/sunlinsol pcg.h. The sunlin-
sol pcg module is accessible from all sundials solvers without linking to the

libsundials sunlinsolpcg module library.
The sunlinsol pcg module defines implementations of all “iterative” linear solver operations listed
in Table 9.2:

• SUNLinSolGetType PCG

• SUNLinSolInitialize PCG

• SUNLinSolSetATimes PCG

• SUNLinSolSetPreconditioner PCG

• SUNLinSolSetScalingVectors PCG – since pcg only supports symmetric scaling, the second
nvector argument to this function is ignored

• SUNLinSolSetup PCG

• SUNLinSolSolve PCG

• SUNLinSolNumIters PCG

• SUNLinSolResNorm PCG

• SUNLinSolResid PCG

• SUNLinSolLastFlag PCG

• SUNLinSolSpace PCG

• SUNLinSolFree PCG

The module sunlinsol pcg provides the following additional user-callable routines:

• SUNPCG

This constructor function creates and allocates memory for a pcg SUNLinearSolver. Its ar-
guments are an nvector, a flag indicating to use preconditioning, and the number of linear
iterations to allow.
This routine will perform consistency checks to ensure that it is called with a consistent nvector
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible then
this routine will return NULL.
A maxl argument that is ≤ 0 will result in the default value (5).
Since the pcg algorithm is designed to only support symmetric preconditioning, then any of
the pretype inputs PREC LEFT (1), PREC RIGHT (2), or PREC BOTH (3) will result in use of the
symmetric preconditioner; any other integer input will result in the default (no preconditioning).
Although some sundials solvers are designed to only work with left preconditioning (ida and
idas) and others with only right preconditioning (kinsol), pcg should only be used with these
packages when the linear systems are known to be symmetric. Since the scaling of matrix rows
and columns must be identical in a symmetric matrix, symmetric preconditioning should work
appropriately even for packages designed with one-sided preconditioning in mind.
SUNLinearSolver SUNPCG(N_Vector y, int pretype, int maxl);

• SUNPCGSetPrecType

This function updates the flag indicating use of preconditioning. As above, any one of the input
values, PREC LEFT (1), PREC RIGHT (2), or PREC BOTH (3) will enable preconditioning; PREC NONE
(0) disables preconditioning.
This routine will return with one of the error codes SUNLS ILL INPUT (illegal pretype), SUNLS MEM NULL
(S is NULL), or SUNLS SUCCESS.
int SUNPCGSetPrecType(SUNLinearSolver S, int pretype);
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• SUNPCGSetMaxl

This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNPCGSetMaxl(SUNLinearSolver S, int maxl);

For solvers that include a Fortran interface module, the sunlinsol pcg module also includes the
Fortran-callable function FSUNPCGInit(code, pretype, maxl, ier) to initialize this sunlinsol pcg
module for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida,
3 for kinsol, 4 for arkode); pretype and maxl are the same as for the C function SUNPCG; ier is
an error return flag equal to 0 for success and -1 for failure. All of these input arguments should be
declared so as to match C type int. This routine must be called after the nvector object has been
initialized. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable
function FSUNMassPCGInit(pretype, maxl, ier) initializes this sunlinsol pcg module for solving
mass matrix linear systems.

The SUNPCGSetPrecType and SUNPCGSetMaxl routines also support Fortran interfaces for the
system and mass matrix solvers (all arguments should be commensurate with a C int):

• FSUNPCGSetPrecType(code, pretype, ier)

• FSUNMassPCGSetPrecType(pretype, ier)

• FSUNPCGSetMaxl(code, maxl, ier)

• FSUNMassPCGSetMaxl(maxl, ier)

9.14 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make
use of the functions in test sunlinsol.c. These example functions show simple usage of the
SUNLinearSolver family of functions. The inputs to the examples depend on the linear solver type,
and are output to stdout if the example is run without the appropriate number of command-line
arguments.
The following is a list of the example functions in test sunlinsol.c:

• Test SUNLinSolGetType: Verifies the returned solver type against the value that should be
returned.

• Test SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns
successfully.

• Test SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

• Test SUNLinSolSolve: Given a sunmatrix object A, nvector objects x and b (where Ax = b)
and a desired solution tolerance tol, this routine clones x into a new vector y, calls SUNLinSolSolve
to fill y as the solution to Ay = b (to the input tolerance), verifies that each entry in x and y
match to within 10*tol, and overwrites x with y prior to returning (in case the calling routine
would like to investigate further).

• Test SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be
called and returns successfully.

• Test SUNLinSolSetPreconditioner (iterative solvers only): Verifies that SUNLinSolSetPreconditioner
can be called and returns successfully.

• Test SUNLinSolSetScalingVectors (iterative solvers only): Verifies that SUNLinSolSetScalingVectors
can be called and returns successfully.
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• Test SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the
result to stdout.

• Test SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be
called, and outputs the result to stdout.

• Test SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called,
and that the result is non-negative.

• Test SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

• Test SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to
stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative lin-
ear solvers, Test SUNLinSolInitialize must be called before Test SUNLinSolSetup, which must be
called before Test SUNLinSolSolve. Additionally, for iterative linear solvers Test SUNLinSolSetATimes,
Test SUNLinSolSetPreconditioner and Test SUNLinSolSetScalingVectors should be called be-
fore Test SUNLinSolInitialize; similarly Test SUNLinSolNumIters, Test SUNLinSolResNorm and
Test SUNLinSolResid should be called after Test SUNLinSolSolve. These are called in the appro-
priate order in all of the example problems.

9.15 SUNLinearSolver functions used by IDAS

In Table 9.5 below, we list the linear solver functions in the sunlinsol module used within the idas
package. The table also shows, for each function, which of the code modules uses the function. In
general, the main idas integrator considers three categories of linear solvers, direct, iterative and
custom, with interfaces accessible in the idas header files idas direct.h (idadls), idas spils.h
(idaspils) and idas customls.h (idacls), respectively. Hence, the table columns reference the use
of sunlinsol functions by each of these solver interfaces.

As with the sunmatrix module, we emphasize that the idas user does not need to know detailed
usage of linear solver functions by the idas code modules in order to use idas. This information is
presented as an implementation detail for the interested reader.

Table 9.5: List of linear solver functions usage by idas code modules

id
a
d
l
s

id
a
sp

il
s

id
a
c
l
s

SUNLinSolGetType X X †
SUNLinSolSetATimes X †

SUNLinSolSetPreconditioner X †
SUNLinSolSetScalingVectors X †

SUNLinSolInitialize X X X
SUNLinSolSetup X X X
SUNLinSolSolve X X X

SUNLinSolNumIters X †
SUNLinSolResNorm X †
SUNLinSolResid X †

SUNLinSolLastFlag
SUNLinSolFree
SUNLinSolSpace † † †

The linear solver functions listed in Table 9.2 with a † symbol are optionally used, in that these
are only called if they are implemented in the sunlinsol module that is being used (i.e. their function
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pointers are non-NULL). Also, although idas does not call the SUNLinSolLastFlag or SUNLinSolFree
routines directly, these are available for users to query linear solver issues and free linear solver memory
directly.



Appendix A

SUNDIALS Package Installation
Procedure

The installation of any sundials package is accomplished by installing the sundials suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in sundials.

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz).
The name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of:
sundials, cvode, cvodes, arkode, ida, idas, or kinsol, and x.y.z represents the version number
(of the sundials suite or of the individual solver) . To begin the installation, first uncompress and
expand the sources, by issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of sundials, CMake is the only supported method of installation.

The explanations of the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

srcdir is the directory solver-x.y.z created above; i.e., the directory containing the sundials
sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/lib, with instdir specified at configuration time.

• For sundials CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as srcdir and such an attempt will lead to an error.
This prevents “polluting” the source tree and allows efficient builds for different configurations
and/or options.

• The installation directory instdir can not be the same as the source directory srcdir. !

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
sundials will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed sundials headers and libraries. As such, these configuration files for the sundials ex-
amples can be used as ”templates” for your own problems. CMake installs CMakeLists.txt files
and also (as an option available only under Unix/Linux) Makefile files. Note this installation
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approach also allows the option of building the sundials examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in ”undefined symbol” errors at link time.)

A.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The sundials build process requires CMake version 2.8.1 or higher and a working C compiler. On
Unix-like operating systems, it also requires Make (and curses, including its development libraries, for
the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. While many Linux
distributions offer CMake, the version included is probably out of date. Many new CMake features
have been added recently, and you should download the latest version from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake
website. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users
will be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install sundials, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make
clean which will remove files generated by the compiler and linker.

A.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The installdir defaults to /usr/local and can be changed by setting the
CMAKE INSTALL PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level sundials directory with appropriate source,
build and install directories:

% mkdir (...)sundials/instdir
% mkdir (...)sundials/builddir
% cd (...)sundials/builddir

Building with the GUI

Using CMake with the GUI follows this general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string
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– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the srcdir:

% ccmake ../srcdir

The default configuration screen is shown in Figure A.1.

Figure A.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press ’c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default instdir for both sundials and corresponding examples can be changed by setting the
CMAKE INSTALL PREFIX and the EXAMPLES INSTALL PATH as shown in figure A.2.

Pressing the (g key) will generate makefiles including all dependencies and all rules to build sun-
dials on this system. Back at the command prompt, you can now run:

% make

To install sundials in the installation directory specified in the configuration, simply run:

% make install
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Figure A.2: Changing the instdir for sundials and corresponding examples

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> ../srcdir
% make
% make install

A.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.

BLAS ENABLE - Enable BLAS support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with BLAS enabled in A.1.4.

BLAS LIBRARIES - BLAS library
Default: /usr/lib/libblas.so
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Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

BUILD ARKODE - Build the ARKODE library
Default: ON

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON

BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: ON

BUILD STATIC LIBS - Build static libraries
Default: ON

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used), Debug,
Release, RelWithDebInfo, and MinSizeRel
Default:
Note: Specifying a build type will trigger the corresponding build type specific compiler flag
options below which will be appended to the flags set by CMAKE <language> FLAGS.

CMAKE C COMPILER - C compiler
Default: /usr/bin/cc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the C compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the C compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the C compiler during release builds
Default: -O3 -DNDEBUG

CMAKE CXX COMPILER - C++ compiler
Default: /usr/bin/c++
Note: A C++ compiler (and all related options) are only triggered if C++ examples are enabled
(EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ applications by
default without setting any additional configuration options.

CMAKE CXX FLAGS - Flags for C++ compiler
Default:

CMAKE CXX FLAGS DEBUG - Flags used by the C++ compiler during debug builds
Default: -g
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CMAKE CXX FLAGS MINSIZEREL - Flags used by the C++ compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE CXX FLAGS RELEASE - Flags used by the C++ compiler during release builds
Default: -O3 -DNDEBUG

CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C sup-
port is enabled (FCMIX ENABLE is ON) or BLAS/LAPACK support is enabled (BLAS ENABLE or
LAPACK ENABLE is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the Fortran compiler during debug builds
Default: -g

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the Fortran compiler during release minsize builds
Default: -Os

CMAKE Fortran FLAGS RELEASE - Flags used by the Fortran compiler during release builds
Default: -O3

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Exported
sundials header files and libraries will be installed under subdirectories include and lib of
CMAKE INSTALL PREFIX, respectively.

CUDA ENABLE - Build the sundials cuda vector module.
Default: OFF

EXAMPLES ENABLE C - Build the sundials C examples
Default: ON

EXAMPLES ENABLE CUDA - Build the sundials cuda examples
Default: OFF
Note: You need to enable cuda support to build these examples.

EXAMPLES ENABLE CXX - Build the sundials C++ examples
Default: OFF

EXAMPLES ENABLE RAJA - Build the sundials raja examples
Default: OFF
Note: You need to enable cuda and raja support to build these examples.

EXAMPLES ENABLE F77 - Build the sundials Fortran77 examples
Default: ON (if FCMIX ENABLE is ON)

EXAMPLES ENABLE F90 - Build the sundials Fortran90 examples
Default: OFF

EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered when any of the sundials example programs are enabled
(EXAMPLES ENABLE <language> is ON). If the user requires installation of example programs
then the sources and sample output files for all sundials modules that are currently enabled
will be exported to the directory specified by EXAMPLES INSTALL PATH. A CMake configuration
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script will also be automatically generated and exported to the same directory. Additionally, if
the configuration is done under a Unix-like system, makefiles for the compilation of the example
programs (using the installed sundials libraries) will be automatically generated and exported
to the directory specified by EXAMPLES INSTALL PATH.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will be an examples subdirectory created under
CMAKE INSTALL PREFIX.

FCMIX ENABLE - Enable Fortran-C support
Default: OFF

HYPRE ENABLE - Enable hypre support
Default: OFF
Note: See additional information on building with hypre enabled in A.1.4.

HYPRE INCLUDE DIR - Path to hypre header files

HYPRE LIBRARY DIR - Path to hypre installed library files

KLU ENABLE - Enable KLU support
Default: OFF
Note: See additional information on building with KLU enabled in A.1.4.

KLU INCLUDE DIR - Path to SuiteSparse header files

KLU LIBRARY DIR - Path to SuiteSparse installed library files

LAPACK ENABLE - Enable LAPACK support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with LAPACK enabled in A.1.4.

LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

MPI ENABLE - Enable MPI support (build the parallel nvector).
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI MPICC - mpicc program
Default:

MPI MPICXX - mpicxx program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON) and C++ examples are
enabled (EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ MPI appli-
cations by default without setting any additional configuration options other than MPI ENABLE.

MPI MPIF77 - mpif77 program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON) and Fortran-C support
is enabled (FCMIX ENABLE is ON).
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MPI MPIF90 - mpif90 program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON), Fortran-C support is
enabled (FCMIX ENABLE is ON), and Fortran90 examples are enabled (EXAMPLES ENABLE F90 is
ON).

MPI RUN COMMAND - Specify run command for MPI
Default: mpirun Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON).

OPENMP ENABLE - Enable OpenMP support (build the OpenMP nvector).
Default: OFF

PETSC ENABLE - Enable PETSc support
Default: OFF
Note: See additional information on building with PETSc enabled in A.1.4.

PETSC INCLUDE DIR - Path to PETSc header files

PETSC LIBRARY DIR - Path to PETSc installed library files

PTHREAD ENABLE - Enable Pthreads support (build the Pthreads nvector).
Default: OFF

RAJA ENABLE - Enable raja support (build the raja nvector).
Default: OFF
Note: You need to enable cuda in order to build the raja vector module.

SUNDIALS INDEX TYPE - Integer type used for sundials indices, options are: int32 t or int64 t
Default: int64 t

SUNDIALS PRECISION - Precision used in sundials, options are: double, single, or extended
Default: double

SUPERLUMT ENABLE - Enable SuperLU MT support
Default: OFF
Note: See additional information on building with SuperLU MT enabled in A.1.4.

SUPERLUMT INCLUDE DIR - Path to SuperLU MT header files (typically SRC directory)

SUPERLUMT LIBRARY DIR - Path to SuperLU MT installed library files

SUPERLUMT THREAD TYPE - Must be set to Pthread or OpenMP
Default: Pthread

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

xSDK Configuration Options

sundials supports CMake configuration options defined by the Extreme-scale Scientific Software
Development Kit (xSDK) community policies (see https://xsdk.info for more information). xSDK
CMake options are unused by default but may be activated by setting USE XSDK DEFAULTS to ON.

When xSDK options are active, they will overwrite the corresponding sundials option and may!

have different default values (see details below). As such the equivalent sundials options should
not be used when configuring with xSDK options. In the GUI front end to CMake (ccmake), setting
USE XSDK DEFAULTS to ON will hide the corresponding sundials options as advanced CMake variables.
During configuration, messages are output detailing which xSDK flags are active and the equivalent
sundials options that are replaced. Below is a complete list xSDK options and the corresponding
sundials options if applicable.
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TPL BLAS LIBRARIES - BLAS library
Default: /usr/lib/libblas.so
sundials equivalent: BLAS LIBRARIES
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

TPL ENABLE BLAS - Enable BLAS support
Default: OFF
sundials equivalent: BLAS ENABLE

TPL ENABLE HYPRE - Enable hypre support
Default: OFF
sundials equivalent: HYPRE ENABLE

TPL ENABLE KLU - Enable KLU support
Default: OFF
sundials equivalent: KLU ENABLE

TPL ENABLE PETSC - Enable PETSc support
Default: OFF
sundials equivalent: PETSC ENABLE

TPL ENABLE LAPACK - Enable LAPACK support
Default: OFF
sundials equivalent: LAPACK ENABLE

TPL ENABLE SUPERLUMT - Enable SuperLU MT support
Default: OFF
sundials equivalent: SUPERLUMT ENABLE

TPL HYPRE INCLUDE DIRS - Path to hypre header files
sundials equivalent: HYPRE INCLUDE DIR

TPL HYPRE LIBRARIES - hypre library
sundials equivalent: N/A

TPL KLU INCLUDE DIRS - Path to KLU header files
sundials equivalent: KLU INCLUDE DIR

TPL KLU LIBRARIES - KLU library
sundials equivalent: N/A

TPL LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
sundials equivalent: LAPACK LIBRARIES
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

TPL PETSC INCLUDE DIRS - Path to PETSc header files
sundials equivalent: PETSC INCLUDE DIR

TPL PETSC LIBRARIES - PETSc library
sundials equivalent: N/A

TPL SUPERLUMT INCLUDE DIRS - Path to SuperLU MT header files
sundials equivalent: SUPERLUMT INCLUDE DIR

TPL SUPERLUMT LIBRARIES - SuperLU MT library
sundials equivalent: N/A
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TPL SUPERLUMT THREAD TYPE - SuperLU MT library thread type
sundials equivalent: SUPERLUMT THREAD TYPE

USE XSDK DEFAULTS - Enable xSDK default configuration settings
Default: OFF
sundials equivalent: N/A
Note: Enabling xSDK defaults also sets CMAKE BUILD TYPE to Debug

XSDK ENABLE FORTRAN - Enable sundials Fortran interface
Default: OFF
sundials equivalent: FCMIX ENABLE

XSDK INDEX SIZE - Integer size (bits) used for indices in sundials, options are: 32 or 64
Default: 32
sundials equivalent: SUNDIALS INDEX TYPE

XSDK PRECISION - Precision used in sundials, options are: double, single, or quad
Default: double
sundials equivalent: SUNDIALS PRECISION

A.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.
To configure sundials using the default C and Fortran compilers, and default mpicc and mpif77
parallel compilers, enable compilation of examples, and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=ON \
> -DFCMIX_ENABLE=ON \
> /home/myname/sundials/srcdir
%
% make install
%

To disable installation of the examples, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=ON \
> -DFCMIX_ENABLE=ON \
> -DEXAMPLES_INSTALL=OFF \
> /home/myname/sundials/srcdir
%
% make install
%

A.1.4 Working with external Libraries

The sundials suite contains many options to enable implementation flexibility when developing so-
lutions. The following are some notes addressing specific configurations when using the supported
third party libraries. When building sundials as a shared library external libraries any used with
sundials must also be build as a shared library or as a static library compiled with the -fPIC flag.!
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Building with BLAS

sundials does not utilize BLAS directly but it may be needed by other external libraries that sun-
dials can be build with (e.g. LAPACK, PETSc, SuperLU MT, etc.). To enable BLAS, set the
BLAS ENABLE option to ON. If the directory containing the BLAS library is in the LD LIBRARY PATH
environment variable, CMake will set the BLAS LIBRARIES variable accordingly, otherwise CMake will
attempt to find the BLAS library in standard system locations. To explicitly tell CMake what libraries
to use, the BLAS LIBRARIES variable can be set to the desired library. Example:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DBLAS_ENABLE=ON \
> -DBLAS_LIBRARIES=/myblaspath/lib/libblas.so \
> -DSUPERLUMT_ENABLE=ON \
> -DSUPERLUMT_INCLUDE_DIR=/mysuperlumtpath/SRC
> -DSUPERLUMT_LIBRARY_DIR=/mysuperlumtpath/lib
> /home/myname/sundials/srcdir
%
% make install
%

If enabling LAPACK and allowing CMake to automatically locate the LAPACK library, it is not !

necessary to also enable BLAS as CMake will find the corresponding BLAS library and include it
when searching for LAPACK.

Building with LAPACK

To enable LAPACK, set the LAPACK ENABLE option to ON. If the directory containing the LAPACK li-
brary is in the LD LIBRARY PATH environment variable, CMake will set the LAPACK LIBRARIES variable
accordingly, otherwise CMake will attempt to find the LAPACK library in standard system locations.
To explicitly tell CMake what library to use, the LAPACK LIBRARIES variable can be set to the de-
sired libraries. When setting the LAPACK location explicitly the location of the corresponding BLAS !

library will also need to be set. Example:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DBLAS_ENABLE=ON \
> -DBLAS_LIBRARIES=/mylapackpath/lib/libblas.so \
> -DLAPACK_ENABLE=ON \
> -DLAPACK_LIBRARIES=/mylapackpath/lib/liblapack.so \
> /home/myname/sundials/srcdir
%
% make install
%

If enabling LAPACK and allowing CMake to automatically locate the LAPACK library, it is not !

necessary to also enable BLAS as CMake will find the corresponding BLAS library and include it
when searching for LAPACK.

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas
A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html. sundials has
been tested with SuiteSparse version 4.5.3. To enable KLU, set KLU ENABLE to ON, set KLU INCLUDE DIR
to the include path of the KLU installation and set KLU LIBRARY DIR to the lib path of the KLU
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installation. The CMake configure will result in populating the following variables: AMD LIBRARY,
AMD LIBRARY DIR, BTF LIBRARY, BTF LIBRARY DIR, COLAMD LIBRARY, COLAMD LIBRARY DIR, and
KLU LIBRARY.

Building with SuperLU MT

The SuperLU MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu mt. sundials has been
tested with SuperLU MT version 3.1. To enable SuperLU MT, set SUPERLUMT ENABLE to ON, set
SUPERLUMT INCLUDE DIR to the SRC path of the SuperLU MT installation, and set the variable
SUPERLUMT LIBRARY DIR to the lib path of the SuperLU MT installation. At the same time, the
variable SUPERLUMT THREAD TYPE must be set to either Pthread or OpenMP.
Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having either OPENMP ENABLE or PTHREAD ENABLE set to ON then SuperLU MT should be set to use
the same threading type.!

Building with PETSc

The PETSc libraries are available for download from the Argonne National Laboratory website:
http://www.mcs.anl.gov/petsc. sundials has been tested with PETSc version 3.7.2. To en-
able PETSc, set PETSC ENABLE to ON, set PETSC INCLUDE DIR to the include path of the PETSc
installation, and set the variable PETSC LIBRARY DIR to the lib path of the PETSc installation.

Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory
website: http://computation.llnl.gov/projects/hypre. sundials has been tested with hypre
version 2.11.1. To enable hypre, set HYPRE ENABLE to ON, set HYPRE INCLUDE DIR to the include
path of the hypre installation, and set the variable HYPRE LIBRARY DIR to the lib path of the hypre
installation.

Building with CUDA

sundials cuda modules and examples are tested with version 8.0 of the cuda toolkit. To build them,
you need to install the Toolkit and compatible NVIDIA drivers. Both are available for download
from NVIDIA website: https://developer.nvidia.com/cuda-downloads. To enable cuda, set
CUDA ENABLE to ON. If you installed cuda in a nonstandard location, you may be prompted to set the
variable CUDA TOOLKIT ROOT DIR with your cuda Toolkit installation path. To enable cuda examples,
set EXAMPLES ENABLE CUDA to ON.

Building with RAJA

To build sundials raja modules you need to enable sundials cuda support, first. You also need a
cuda-enabled raja installation on your system. raja is free software, developed by Lawrence Liver-
more National Laboratory, and can be obtained from https://github.com/LLNL/RAJA. Next you need
to set RAJA ENABLE to ON, to enable building the raja vector module, and EXAMPLES ENABLE RAJA to
ON to build the raja examples. If you installed raja to a nonstandard location you will be prompted
to set the variable RAJA DIR with the path to the raja CMake configuration file. sundials was tested
with raja version 0.3.

A.1.5 Testing the build and installation

If sundials was configured with EXAMPLES ENABLE <language> options to ON, then a set of regression
tests can be run after building with the make command by running:

% make test
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Additionally, if EXAMPLES INSTALL was also set to ON, then a set of smoke tests can be run after
installing with the make install command by running:

% make test_install

A.2 Building and Running Examples

Each of the sundials solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set at least of the EXAMPLES ENABLE <language> options to ON,
and set EXAMPLES INSTALL to ON. Specify the installation path for the examples with the variable
EXAMPLES INSTALL PATH. CMake will generate CMakeLists.txt configuration files (and Makefile
files if on Linux/Unix) that reference the installed sundials headers and libraries.

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as
well as serve as a template for creating user developed solutions. To use the supplied Makefile simply
run make to compile and generate the executables. To use CMake from within the installed example
directory, run cmake (or ccmake to use the GUI) followed by make to compile the example code.
Note that if CMake is used, it will overwrite the traditional Makefile with a new CMake-generated
Makefile. The resulting output from running the examples can be compared with example output
bundled in the sundials distribution.
NOTE: There will potentially be differences in the output due to machine architecture, compiler
versions, use of third party libraries etc. !

A.3 Configuring, building, and installing on Windows

CMake can also be used to build sundials on Windows. To build sundials for use with Visual
Studio the following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the srcdir

2. Create a separate builddir

3. Open a Visual Studio Command Prompt and cd to builddir

4. Run cmake-gui ../srcdir

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE INSTALL PREFIX to instdir

(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the instdir. The sundials project can also now be opened in Visual
Studio. Double click on the ALL BUILD.vcxproj file to open the project. Build the whole solution to
create the sundials libraries. To use the sundials libraries in your own projects, you must set the
include directories for your project, add the sundials libraries to your project solution, and set the
sundials libraries as dependencies for your project.
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A.4 Installed libraries and exported header files

Using the CMake sundials build system, the command

% make install

will install the libraries under libdir and the public header files under includedir. The values for these
directories are instdir/lib and instdir/include, respectively. The location can be changed by setting
the CMake variable CMAKE INSTALL PREFIX. Although all installed libraries reside under libdir/lib,
the public header files are further organized into subdirectories under includedir/include.

The installed libraries and exported header files are listed for reference in Table A.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the Tables,
names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/include/sundials directory since they are explicitly included by the appropriate
solver header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and
safe to do so, and would be useful, for example, if the functions declared in sundials dense.h are to
be used in building a preconditioner.

Table A.1: sundials libraries and header files
shared Libraries n/a

Header files sundials/sundials config.h sundials/sundials fconfig.h
sundials/sundials types.h sundials/sundials math.h
sundials/sundials nvector.h sundials/sundials fnvector.h
sundials/sundials iterative.h sundials/sundials direct.h
sundials/sundials dense.h sundials/sundials band.h
sundials/sundials matrix.h sundials/sundials version.h
sundials/sundials linearsolver.h

nvector serial Libraries libsundials nvecserial.lib libsundials fnvecserial.a
Header files nvector/nvector serial.h

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector/nvector parallel.h

nvector openmp Libraries libsundials nvecopenmp.lib libsundials fnvecopenmp.a
Header files nvector/nvector openmp.h

nvector pthreads Libraries libsundials nvecpthreads.lib libsundials fnvecpthreads.a
Header files nvector/nvector pthreads.h

nvector parhyp Libraries libsundials nvecparhyp.lib
Header files nvector/nvector parhyp.h

nvector petsc Libraries libsundials nvecpetsc.lib
Header files nvector/nvector petsc.h

nvector cuda Libraries libsundials nveccuda.lib
Header files nvector/nvector cuda.h

nvector/cuda/ThreadPartitioning.hpp
nvector/cuda/Vector.hpp
nvector/cuda/VectorKernels.cuh

continued on next page
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continued from last page

nvector raja Libraries libsundials nvecraja.lib
Header files nvector/nvector raja.h

nvector/raja/Vector.hpp
sunmatrix band Libraries libsundials sunmatrixband.lib

libsundials fsunmatrixband.a
Header files sunmatrix/sunmatrix band.h

sunmatrix dense Libraries libsundials sunmatrixdense.lib
libsundials fsunmatrixdense.a

Header files sunmatrix/sunmatrix dense.h
sunmatrix sparse Libraries libsundials sunmatrixsparse.lib

libsundials fsunmatrixsparse.a
Header files sunmatrix/sunmatrix sparse.h

sunlinsol band Libraries libsundials sunlinsolband.lib
libsundials fsunlinsolband.a

Header files sunlinsol/sunlinsol band.h
sunlinsol dense Libraries libsundials sunlinsoldense.lib

libsundials fsunlinsoldense.a
Header files sunlinsol/sunlinsol dense.h

sunlinsol klu Libraries libsundials sunlinsolklu.lib
libsundials fsunlinsolklu.a

Header files sunlinsol/sunlinsol klu.h
sunlinsol lapackband Libraries libsundials sunlinsollapackband.lib

libsundials fsunlinsollapackband.a
Header files sunlinsol/sunlinsol lapackband.h

sunlinsol lapackdense Libraries libsundials sunlinsollapackdense.lib
libsundials fsunlinsollapackdense.a

Header files sunlinsol/sunlinsol lapackdense.h
sunlinsol pcg Libraries libsundials sunlinsolpcg.lib

libsundials fsunlinsolpcg.a
Header files sunlinsol/sunlinsol pcg.h

sunlinsol spbcgs Libraries libsundials sunlinsolspbcgs.lib
libsundials fsunlinsolspbcgs.a

Header files sunlinsol/sunlinsol spbcgs.h
sunlinsol spfgmr Libraries libsundials sunlinsolspfgmr.lib

libsundials fsunlinsolspfgmr.a
Header files sunlinsol/sunlinsol spfgmr.h

sunlinsol spgmr Libraries libsundials sunlinsolspgmr.lib
libsundials fsunlinsolspgmr.a

Header files sunlinsol/sunlinsol spgmr.h
sunlinsol sptfqmr Libraries libsundials sunlinsolsptfqmr.lib

libsundials fsunlinsolsptfqmr.a
continued on next page
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continued from last page

Header files sunlinsol/sunlinsol sptfqmr.h
sunlinsol superlumt Libraries libsundials sunlinsolsuperlumt.lib

libsundials fsunlinsolsuperlumt.a
Header files sunlinsol/sunlinsol superlumt.h

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode/cvode.h cvode/cvode impl.h

cvode/cvode direct.h cvode/cvode spils.h
cvode/cvode bandpre.h cvode/cvode bbdpre.h

cvodes Libraries libsundials cvodes.lib
Header files cvodes/cvodes.h cvodes/cvodes impl.h

cvodes/cvodes direct.h cvodes/cvodes spils.h
cvodes/cvodes bandpre.h cvodes/cvodes bbdpre.h

arkode Libraries libsundials arkode.lib libsundials farkode.a
Header files arkode/arkode.h arkode/arkode impl.h

arkode/arkode direct.h arkode/arkode spils.h
arkode/arkode bandpre.h arkode/arkode bbdpre.h

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida/ida.h ida/ida impl.h

ida/ida direct.h ida/ida spils.h
ida/ida bbdpre.h

idas Libraries libsundials idas.lib
Header files idas/idas.h idas/idas impl.h

idas/idas direct.h idas/idas spils.h
idas/idas bbdpre.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol/kinsol.h kinsol/kinsol impl.h

kinsol/kinsol direct.h kinsol/kinsol spils.h
kinsol/kinsol bbdpre.h
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IDAS Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 IDAS input constants

idas main solver module

IDA NORMAL 1 Solver returns at specified output time.
IDA ONE STEP 2 Solver returns after each successful step.
IDA SIMULTANEOUS 1 Simultaneous corrector forward sensitivity method.
IDA STAGGERED 2 Staggered corrector forward sensitivity method.
IDA CENTERED 1 Central difference quotient approximation (2nd order) of the

sensitivity RHS.
IDA FORWARD 2 Forward difference quotient approximation (1st order) of the

sensitivity RHS.
IDA YA YDP INIT 1 Compute ya and ẏd, given yd.
IDA Y INIT 2 Compute y, given ẏ.

idas adjoint solver module

IDA HERMITE 1 Use Hermite interpolation.
IDA POLYNOMIAL 2 Use variable-degree polynomial interpolation.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 IDAS output constants

idas main solver module
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IDA SUCCESS 0 Successful function return.
IDA TSTOP RETURN 1 IDASolve succeeded by reaching the specified stopping point.
IDA ROOT RETURN 2 IDASolve succeeded and found one or more roots.
IDA WARNING 99 IDASolve succeeded but an unusual situation occurred.
IDA TOO MUCH WORK -1 The solver took mxstep internal steps but could not reach

tout.
IDA TOO MUCH ACC -2 The solver could not satisfy the accuracy demanded by the

user for some internal step.
IDA ERR FAIL -3 Error test failures occurred too many times during one inter-

nal time step or minimum step size was reached.
IDA CONV FAIL -4 Convergence test failures occurred too many times during one

internal time step or minimum step size was reached.
IDA LINIT FAIL -5 The linear solver’s initialization function failed.
IDA LSETUP FAIL -6 The linear solver’s setup function failed in an unrecoverable

manner.
IDA LSOLVE FAIL -7 The linear solver’s solve function failed in an unrecoverable

manner.
IDA RES FAIL -8 The user-provided residual function failed in an unrecoverable

manner.
IDA REP RES FAIL -9 The user-provided residual function repeatedly returned a re-

coverable error flag, but the solver was unable to recover.
IDA RTFUNC FAIL -10 The rootfinding function failed in an unrecoverable manner.
IDA CONSTR FAIL -11 The inequality constraints were violated and the solver was

unable to recover.
IDA FIRST RES FAIL -12 The user-provided residual function failed recoverably on the

first call.
IDA LINESEARCH FAIL -13 The line search failed.
IDA NO RECOVERY -14 The residual function, linear solver setup function, or linear

solver solve function had a recoverable failure, but IDACalcIC
could not recover.

IDA MEM NULL -20 The ida mem argument was NULL.
IDA MEM FAIL -21 A memory allocation failed.
IDA ILL INPUT -22 One of the function inputs is illegal.
IDA NO MALLOC -23 The idas memory was not allocated by a call to IDAInit.
IDA BAD EWT -24 Zero value of some error weight component.
IDA BAD K -25 The k-th derivative is not available.
IDA BAD T -26 The time t is outside the last step taken.
IDA BAD DKY -27 The vector argument where derivative should be stored is

NULL.
IDA NO QUAD -30 Quadratures were not initialized.
IDA QRHS FAIL -31 The user-provided right-hand side function for quadratures

failed in an unrecoverable manner.
IDA FIRST QRHS ERR -32 The user-provided right-hand side function for quadratures

failed in an unrecoverable manner on the first call.
IDA REP QRHS ERR -33 The user-provided right-hand side repeatedly returned a re-

coverable error flag, but the solver was unable to recover.
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IDA NO SENS -40 Sensitivities were not initialized.
IDA SRES FAIL -41 The user-provided sensitivity residual function failed in an

unrecoverable manner.
IDA REP SRES ERR -42 The user-provided sensitivity residual function repeatedly re-

turned a recoverable error flag, but the solver was unable to
recover.

IDA BAD IS -43 The sensitivity identifier is not valid.
IDA NO QUADSENS -50 Sensitivity-dependent quadratures were not initialized.
IDA QSRHS FAIL -51 The user-provided sensitivity-dependent quadrature right-

hand side function failed in an unrecoverable manner.
IDA FIRST QSRHS ERR -52 The user-provided sensitivity-dependent quadrature right-

hand side function failed in an unrecoverable manner on the
first call.

IDA REP QSRHS ERR -53 The user-provided sensitivity-dependent quadrature right-
hand side repeatedly returned a recoverable error flag, but
the solver was unable to recover.

idas adjoint solver module

IDA NO ADJ -101 The combined forward-backward problem has not been ini-
tialized.

IDA NO FWD -102 IDASolveF has not been previously called.
IDA NO BCK -103 No backward problem was specified.
IDA BAD TB0 -104 The desired output for backward problem is outside the in-

terval over which the forward problem was solved.
IDA REIFWD FAIL -105 No checkpoint is available for this hot start.
IDA FWD FAIL -106 IDASolveB failed because IDASolve was unable to store data

between two consecutive checkpoints.
IDA GETY BADT -107 Wrong time in interpolation function.

idadls linear solver modules

IDADLS SUCCESS 0 Successful function return.
IDADLS MEM NULL -1 The ida mem argument was NULL.
IDADLS LMEM NULL -2 The idadls linear solver has not been initialized.
IDADLS ILL INPUT -3 The idadls solver is not compatible with the current nvec-

tor module.
IDADLS MEM FAIL -4 A memory allocation request failed.
IDADLS JACFUNC UNRECVR -5 The Jacobian function failed in an unrecoverable manner.
IDADLS JACFUNC RECVR -6 The Jacobian function had a recoverable error.
IDADLS SUNMAT FAIL -7 An error occurred with the current sunmatrix module.
IDADLS NO ADJ -101 The combined forward-backward problem has not been ini-

tialized.
IDADLS LMEMB NULL -102 The linear solver was not initialized for the backward phase.
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idaspils linear solver modules

IDASPILS SUCCESS 0 Successful function return.
IDASPILS MEM NULL -1 The ida mem argument was NULL.
IDASPILS LMEM NULL -2 The idaspils linear solver has not been initialized.
IDASPILS ILL INPUT -3 The idaspils solver is not compatible with the current nvec-

tor module, or an input value was illegal.
IDASPILS MEM FAIL -4 A memory allocation request failed.
IDASPILS PMEM NULL -5 The preconditioner module has not been initialized.
IDASPILS SUNLS FAIL -6 An error occurred with the current sunlinsol module.
IDASPILS NO ADJ -101 The combined forward-backward problem has not been ini-

tialized.
IDASPILS LMEMB NULL -102 The linear solver was not initialized for the backward phase.
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