
CSL reference

A C Norman

November 27, 2011

1 Introduction

This is reference material for CSL. The Lisp identifiers mentioned here are
the ones that are initially present in a raw CSL image. Some proportion
of them are not really intended to be used by end-users but are merely the
internal components of some feature.

2 Command-line options

The items shown here are the ones that are recognized on the CSL command
line. In general an option that requires an argument can be written as either
-x yyy or as -xyyy. Arguments should be case insensitive.

-- If the application is run in console mode then its standard output could
be redirected to a file using shell facilities. But the -- directive (fol-
lowed by a file name) redirects output within the Lisp rather than
outside it. If this is done a very limited capability for sending progress
or status reports to stderr (or the title-bar when running in windowed
mode) remains via the report!-right function.

The -w option may frequently make sense in such cases, but if that
is not used and the system tries to run in a window it will create it
starting off minimised.

--help It is probably obvious what this option does! Note that on Windows
the application was linked as a windows binary so it carefully creates
a console to display the help text in, and organizes a delay to give
people a chance to read it.

--my-path At some time I had felt the need for this option, but I now forget
what I expected to use it for! It leads the executable to display the
fully rooted name of the directory it was in and then terminate. It
may be useful in some script?

1

--texmacs If CSL/Reduce is launched from texmacs this command-line flag
should be used to arrange that the texmacs flag is set in lispsystem!*,
and the code may then do special things.

-a -a is a curious option, not intended for general or casual use. If given
it causes the (batchp) function to return the opposite result from
normal! Without “attfamily -a” (batchp) returns T either if at least
one file was specified on the command line, or if the standard input
is “not a tty” (under some operating systems this makes sense – for
instance the standard input might not be a “tty” if it is provided via file
redirection). Otherwise (ie primary input is directly from a keyboard)
(batchp) returns nil. Sometimes this judgement about how “batch”
the current run is will be wrong or unhelpful, so -a allows the user to
coax the system into better behaviour. I hope that this is never used!

-b -b tells the system to avoid any attempt to recolour prompts and input
text. It will mainly be needed on X terminals that have been set
up so that they use colours that make the defaults here unhelpful.
Specifically white-on-black and so on. -b can be followed by colour
specifications to make things yet more specific. It is supposed to be
the idea that three colours can be specified after it for output, input
and prompts, with the letters KRGYbMCW standing for blacK, Red,
Green, Yellow, blue, Magenta, Cyan and White. This may not fully
work yet!

-c Displays a notice relating to the authorship of CSL. Note that this is an
authorship statement not a Copyright notice, because if any (L)GPL
code is involved that would place requirements on what was displayed
in a Copyright Notice.

-d A command line entry -Dname=value or -D name=value sets the value
of the named lisp variable to the value (as a string). Note that the
value set is a string so if you wish to retrieve it and use it as a symbold
or number within your code you will have to perform some conversion.

-e A “spare” option used from time to time to activate experiments within
CSL.

-f At one stage CSL could run as a socket server, and -f portnumber
activated that mode. -f- used a default port, 1206 (a number inspired
by an account number on Titan that I used in the 1960s). The code
that supports this may be a useful foundation to others who want to
make a network service out of this code-base, but is currently disabled.

-g In line with the implication of this option for C compilers, this enables
a debugging mode. It sets a lisp variable !*backtrace and arranges
that all backtraces are displayed notwithstanding use of errorset.

2

-h This option is a left-over. When the X-windows version of the code first
started to use Xft it viewed that as optional and could allow a build
even when it was not available. And then even if Xft was detected and
liable to be used by default it provided this option to disable its use.
The remnants of the switch that disabled use of Xft (relating to fonts
living on the Host or the Server) used this switch, but it now has no
effect.

-i CSL and Reduce use image files to keep both initial heap images and
“fasl” loadable modules. By default if the executable launched has
some name, say xxx, then an image file xxx.img is used. But to support
greater generality -i introduces a new image, -i- indicates the default
one and a sequence of such directives list image files that are searched
in the order given. These are read-only. The similar option -o equally
introduces image files that are scanned for input, but that can also be
used for output. Normally there would only be one -o directive.

-j Follow this directive with a file-name, and a record of all the files read
during the Lisp run will be dumped there with a view that it can be
included in a Makefile to document dependencies.

-k -K nnn sets the size of heap to be used. If it is given then that much
memory will be allocated and the heap will never expand. Without
this option a default amount is used, and (on many machines) it will
grow if space seems tight.

The extended version of this option is -K nnn/ss and then ss is the
number of “CSL pages” to be allocated to the Lisp stack. The default
value (which is 1) should suffice for almost all users, and it should be
noted that the C stack is separate from and independent of this one
and it too could overflow.

A suffix K, M or G on the number indicates units of kilobytes, megabytes
or gigabytes, with megabytes being the default. So -K200M might rep-
resent typical usage for common-sized computations. In general CSL
will automatically expand its heap, and so it should normally never
be necessary to use this option.

-l This is to send a copy of the standard output to a named log file. It
is very much as if the Lisp function (spool ‘‘logfile’’) had been
invoked at the start of the run.

-m Memory trace mode. An option that represents an experiment from the
past, and no longer reliably in use. It make it possible to force an
exception at stages whene reference to a specified part of memory was
made and that could be useful for some low level debugging. It is not
supported at present.

3

-n Normally when the system is started it will run a “restart function” as
indicated in its heap image. There can be cases where a heap image has
been created in a bad way such that the saved restart function always
fails abruptly, and hence working out what was wrong becomes hard.
In such cases it may be useful to give the -n option that forces CSL to
ignore any startup function and merely always begin in a minimal Lisp-
style read-eval-print loop. This is intended for experts to do disaster
recovery and diagnosis of damaged image files.

-o See -i. This specifies an image file used for output via faslout and
reserve.

-p If a suitable profile option gets implemented one day this will activate
it, but for now it has no effect.

-q This option sets !*echo to nil and switches off garbage collector mes-
sages to give a slightly quieter run.

-r The random-number generator in CSL is normally initialised to a value
based on the time of day and is hence not reproducible from run to run.
In many cases that behavious is desirable, but for debugging it can be
useful to force a seed. The directive -r nnn,mmm sets the seed to up
to 64 bits taken from the values nnn and mmm. The second value if
optional, and specifying -r0 explicitly asks for the non-reproducible
behaviour (I hope). Note that the main Reduce-level random number
source is coded at a higher level and does not get reset this way – this
is the lower level CSL generator.

-s Sets the Lisp variable !*plap and hence the compiler generates an as-
sembly listing.

-t -t name reports the time-stamp on the named module, and then exits.
This is for use in perl scripts and the like, and is needed because the
stamps on modules within an image or library file are not otherwise
instantly available.

Note that especially on windowed systems it may be necessary to use
this with -- filename since the information generated here goes to
the default output, which in some cases is just the screen.

-u See -d, but this forcibly undefines a symbol. There are probably very
very few cases where it is useful since I do not have a large number of
system-specific predefined names.

-v An option to make things mildly more verbose. It displays more of a
banner at startup and switches garbage collection messages on.

4

-w On a typical system if the system is launched it creates a new window
and uses its own windowed intarface in that. If it is run such that
at startup the standard input or output are associated with a file or
pipe, or under X the variable DISPLAY is not set it will try to start
up in console mode. The flag -w indicates that the system should run
in console more regadless, while -w+ attempts a window even if that
seems doomed to failure. When running the system to obey a script it
will often make sense to use the -w option. Note that on Windows the
system is provided as two separate (but almost identical) binaries. For
example the file csl.exe is linked in windows mode. A result is that
if launched from the command line it detaches from its console, and if
launched by double-clicking it does not create a console. It is in fact
very ugly when double clicking on an application causes an unwanted
console window to appear. In contrast csl.com is a console mode
version of just the same program, so when launched from a command
line it can communicate with the console in the ordinary expected
manner.

-x -x is an option intended for use only by system support experts – it
disables trapping if segment violations by errorset and so makes it
easier to track down low level disasters – maybe! This can be valuable
when running under a debugger since if the code traps signals in its
usual way and tries to recover it can make it a lot harder to find out
just what was going wrong.

-y -y sets the variable !*hankaku, which causes the lisp reader convert a
Zenkaku code to Hankaku one when read. I leave this option decoded
on the command line even if the Kanji support code is not otherwise
compiled into CSL just so I can reduce conditional compilation. This
was part of the Internationalisation effort for CSL bu this is no longer
supported.

-z When bootstrapping it is necessary to start up the system for one initial
time without the benefit of any image file at all. The option -z makes
this happen, so when it is specified the system starts up with a min-
imal environment and only those capabilities that are present in the
CSL kernel. It will normally make sense to start loading some basic
Lisp definitions rather rapidly. The files compat.lsp, extras.lsp and
compiler.lsp have Lisp source for the main things I use, and once
they are loaded the Lisp compiler can be used to compile itself.

3 Predefined variables

!!fleps1
There is a function safe!-fp!-plus that performs floating point arith-

5

metic but guarantees never to raise an exception. This value was at
one stage related to when small values created there got truncated to
zero, but the current code does not use the Lisp variable at all and
instead does things based on the bitwise representation of the numbers.

!$cslbase
See !@cslbase.

!$eof!$
The value of this variable is a pseudo-character returned from various
read functions to signal end-of-file.

!$eol!$
The value of this variable is an end-of-line character.

!*applyhook!*
If this is set it might be supposed to be the name of a function used
by the interpreter as a callbackm but at presnet it does not actually
do anything!

!*break!-loop!*
If the value of this is a symbol that is defined as a function of one
argument then it is called during the processing on an error. This has
not been used in anger and so its whole status may be dubious!

!*carcheckflag
In general CSL arranges that every car or cdr access is checked for
validity. Once upon a time setting this variable to nil turned such
checks off in the hope of gaining a little speed. But it no longer does
that. It may have a minor effect on array access primitives.

!*comp
When set each function is compiled (into bytecodes) as it gets defined.

!*debug!-io!*
An I/O channel intended to be used for diagnostic interactions. The
concept and name is taken from Common Lisp, but there is in fact
no real separation between this and the standard input and output
streams.

!*echo
When this is non-nil characters that are read from an input file are
echoed to the standard output. This gives a more comlete transcript
in a log file, but can sometimes amount to over-verbose output.

!*error!-messages!*
Has the value nil and does not do anything! At one stage the idea

6

had been that CSL’s error messages would be in this table so as to be
available from Lisp, but that never happened.

!*error!-output!*
An I/O channel intended for diagnostic output. The concept comes
from Common Lisp but Standard Lisp (and hence CSL) does not really
exploit it.

!*evalhook!*
See !*applyhook!*. This also does not do anything at present, but it
it did it would be a place to put the name of a function that would be
called by the interpreter when applying a function.

!*gc!-hook!*
If this is set to have as its value that is a function of one argument then
that function is called with nil on every minor entry to the garbage
collection, and with argument t at the end of a “genuine” full garbage
collection. This may sometimes be of interest for those who want to
notice when garbage collection happens but want to control how they
are informed rather than relying on the displayed text that the verbos
function controls.

!*hankaku
This was concerned with internationalisation to support a Japanese
locale but has not been activated for some while. In the fullness of
time I hope to migrate CSL to use an UTF8 representation of Unicode
characters internally, but that upgrade is at present an ideal and a
project not a reality. Volunteers to help welcome!

!*lower
In CSL if the fluid variable !*lower is set (which it is by default) then
when characters are read they are folded to lower case. The related
variable !*raise causes input to be folded to upper case on input.
In the original Standard Lisp the true internal names of all functions
were in upper case, and !*raise was used so that code using it could
be written in mixed or lower case. At some stage it was accepted that
upper case was a throw-back to the days of FORTRAN and punched
cards, so the CSL switched to using lower case internally and the
!*lower flag allowed the existing Reduce sources to survive. At some
time in the future I hope that Reduce will arrange to have both *raise
and !*lower set to nil so that it becomes a case-sensitive system.

Note that the PSL Lisp system once (but not now) used !*lower to
cause internally upper case symbols to be printed in lower case, so that
there it is a control of output rather than input case folding. PSL has
functions input!-case and output!-case that are relevant in this

7

respect. So code that is to be portable between the two Lisps needs
to take care.

!*macroexpand!-hook!*
Common Lisp would like it to be possible to specify a function that
would be called to allow overriding of the normal method of expanding
macros. This variable exists in CSL in case at any stage a serious need
for this capability arises, but at present any use of this variable has no
effect.

!*math!-output!*
In the case that CSL is being used with Reduce and its “fancy” maths
mode display is available in a GUI then this provides a special output
stream that displayable layout information in a TEX-like notation that
is not documented here because it is potentially in the process of being
updated. The tmprint package in Reduce generates this material and
collaborates with the mathematical display parts of CSL.

!*native code
An experimental additional compiler for CSL that maps Lisp directly
onto native code for the current platform has been in development for
some time, but it is not in a state such as to make it useful for other
than people who wish to experiment, extend and debug it. This flag
is to do with enabling it. It is not supported but may possibly become
so one day.

!*notailcall
The CSL compiler normally tries to detect patterns of recursion that it
can convert into iteration. This can dramatically reduce stack use and
so allow calculations to succeed when otherwise they would have failed.
This flag can disable that optimisation. The most plausible reason to
want to do that would be if there was serious cause to believe that the
code performorming the optimisation was faulty, and results without
it were needed as part of the process of tracking down the bug.

!*package!*
Interrnally CSL stores the table that maps names into symbols in a
way following the style of the Common Lisp package system. When
used as a Standard Lisp there is only one package and no distinction
between internal and external name visibility, but this name provides
access to the main tdata-structure involved. It is in general expected
that this will be used via the oblist function, not directly be users.

!*pgwd
See !*plap.

8

!*plap
When the CSL compiler runs to generate byte-codes if !*plap or
!*pgwd is set then the generated code is displayed. This may be of
interest when debugging or for anybody who wants to explore the Lisp
bytecode model that is used. If at some stage a full native compiler
is released then !*plap will control display of any intermediate Lisp-
specific material and !*pgwd will control display of the final generated
platform dependent machine code.

!*pretty!-symmetric
The prettyprint function displays a Lisp expression neatly indended.
If this variable is set (which by default it is) symbols and strings are
shown with escape characters and quotation marks so that the in-
dented form could be re-input. If this variable is set to nil that does
not happen – the output may not be re-readable by CSL but in some
cases it may be easier for a human reader to decipher.

!*prinl!-fn!*
Used internally by the functions prinl and princl that can print data
structures that are re-entrant or looped. Not for use by end-users.

!*prinl!-index!*
Used internally by the functions prinl and princl that can print data
structures that are re-entrant or looped. Not for use by end-users.

!*prinl!-visited!-nodes!*
Used internally by the functions prinl and princl that can print data
structures that are re-entrant or looped. Not for use by end-users.

!*print!-array!*
In prinl if this variable is nil arrays and structures are not printed
in full. In some cases this merely loses valuable information, while in
others it leads to output that is more concise and legible and hence
nore useful.

!*print!-length!*
In prinl if this variable is set to an integer then that specifies the
largest number of items in a list that will be displayed.

!*print!-level!*
In prinl if this variable is set to an integer then that specifies the
greatest depth of nesting of lists before the printing gives up. This
and !*print!-length!* may very occasionally be useful when faced
with huge lists of whihc only the top few layers are relevant.

!*pwrds
This is normally set, and it causes the compiler to display a message

9

commenting on how many bytes were used in the compiled version of
each function that is processed.

!*query!-io!*
An I/O channel intended to be used for query interactions. The con-
cept and name is taken from Common Lisp, but there is in fact no real
separation between this and the standard input and output streams.

!*quotes
Used in the prettyprinter to determine whether the form (quote x)
should be displayed as ’x. By default it is.

!*raise
See !*lower.

!*redefmsg
If this is set a message is displayed when a function is redefined.

!*resources!*
See the resource!-limit function.

!*savedef
If this variable is set then when you define a function and compile it
the original interpratable Lisp form of the defintion is saved under the
property-name !*savedef so that it could be recovered using get. If
the function is being compiled into a fasl-file for later reloading the
lisp form of the definition is saved there so that when load!-module
or load!-source is used it can be retrieved. This facility is activated
when the “bootstrap” version of Reduce is built so that in effect the
full source code is available at run-time. The availability of source
in that way can be useful for forms of global analysis or optimisation
of the code – for instance Reduce uses it to find the definitions of
functions that it wants to optimise int C code rather than the slower
(but more compact) bytecodes it uses for most things.

!*spool!-output!*
The spool function or the command-line option -l can establish a file
that normal output is copied to as a log. This variable holds a handle
to that file.

!*standard!-input!*
Standard Lisp specifies that to select input from the “standard” source
one goes (rds nil). In CSL this is underpinned by having an input
stream as stored in this variable following the naming convention used
by Common Lisp.

!*standard!-output!*
As !*standard!-input!* but for output.

10

!*terminal!-io!*
A Common Lisp motivated variable which is intended to provide access
to the “terminal”. In Standard Lisp you are expected to use rds and
the precise concept of a terminal is not really defined.

!*trace!-output!*
The Lisp trace facility tends to send output to this which is a synonym
for the original standard output.

!@cslbase
This variable is not actually predefined, but I will nevertheless give
some explanation of how it is used during the bootstrapping process
that makes a CSL or a Reduce image. When you attempt to open
a file you mau give a path starting with an initial “$word/. . . ” or
“${word}/. . . ”. these notations of course model typical Unix-style
parameter substitution. The expansion proceeds by first checking if a
Lisp variable “@word” exists with a string or a symbol as its name. If
so that value is used as the expansion. If that scheme fails the system
next looks for an environment variable and uses its value. This the use
of a Lisp variable “@word” takes priority over the system environment.
Finally if there is no environment variable available a Lisp variable
with name “$word” is checked and if its value is a string or symbol
that is the expansion, otherwise the expansion will be empty.

This is used in the build sequences by passing a command-line option
-D@cslbase=... that predefines @cslbase to refer to a key direc-
tory where necessary files can be found. By defining this rather than
$cslbase there is no chance that any odd values in the (shell) environ-
ment will cause trouble, and the lines such as (rdf "$cslbase/compat.lsp")
can appear in the build code without any need for absolute path names
or any reliance on the setting of a current directory.

In a file-name a path that starts with !∼/ or !∼name/ tries to identify
the home directory of the current or named user.

blank
The value of this variable is an space or blank character. This might
otherwise be written as ”! ”.

common!-lisp!-mode
The CSL Lisp system was designed so that if necessary much of the
code could be shared with a version that met the Common Lisp Stan-
dard. At no stage has there been anything like a complete Common
version. This is both because the main use of CSL has been to sup-
port Reduce and that wants Standard (not Common) Lisp, and be-
cause providing complete support for all the functionality in Common
Lisp would be a lot of work and would tend to make the code bulkier

11

(and hence necessarily less reliable) and slower. However various key
underpinnings for Common Lisp are present in the C-coded sources,
generally guarded by “#ifdef COMMON”. If the Lisp has been built in
this way then this variable will be set in order that users can readily
detect the situation. At one stage the Axiom algebra system could
be built using the limited Common Lisp compatibility mode, but the
recent Open Source versions of Axiom have probably changed leaving
that not an easy option.

crbuf!*
This is a variable used by the Reduce parser, and as a matter of caution
it is to be treated as reserved in the Lisp system.

emsg!*
After a call (error nn msg) this variable gets set to the value of the
second argument (msg). This may help if you have had a failure and
want to see if it resulted from a call to the error function and if so
what message had been used with it!

eof!*
Used in Reduce in association with detecting and handling end-of-file
conditions, and reserved in the Lisp to avoid potential interference
with that.

esc!*
The value of this variable is the character “escape”. As a non-printing
character use of this is to be viewed as delicate.

lispsystem!*
This variable is initialised at the start of any run of Lisp to hold
information about the computer in use and the collection of features
available in the Lisp. The items that might be present are explained
further in Section 4.

load!-source
The function load!-source will load data from a fasl file and is in-
tended to make it possible to have saved uncompiled Lisp forms for
functions there – and to be able to reload then in a selective way. The
load!-source variable can tune this behaviour. See the explanation
of the function for further details.

nil
nil is the fundamental Lisp atom used to stand for “false”, used to
terminate lists and generally something that every Lisp programmer
will already understand about. In Standard Lisp nil is a symbol and
as such you may not take car or cdr of it. So any code that had been

12

developed for Common Lisp and relies on being able to treat it as if it
was a non-empty list will need revision. CSL always checks for valid
access so not only would (car nil) be a mistake, but any attempt to
do it will lead to an exception being raised. nil must not be used as a
name of an argument or a prog variable or in any other context that
could attempt to alter its value.

ofl!*
Used in Reduce in association with tracking output files, and reserved
in CSL to avoid conflict with that.

program!*
Used by the Reduce parser to hold a command that has just been
parsed, and reserved in CSL in order to ensure that there is no conflict
with that.

s!:bn
Used internally by the prettyprint function.

s!:bufferi
Used internally by the prettyprint function.

s!:bufferp
Used internally by the prettyprint function.

s!:gensym!-serial
internal variable used by dated!-name.

s!:indblanks
Used internally by the prettyprint function.

s!:indentlevel
Used internally by the prettyprint function.

s!:initialblanks
Used internally by the prettyprint function.

s!:lmar
Used internally by the prettyprint function.

s!:pendingrpars
Used internally by the prettyprint function.

s!:rmar
Used internally by the prettyprint function.

s!:rparcount
Used internally by the prettyprint function.

13

s!:stack
Used internally by the prettyprint function.

t
The Lisp value that stands for “true”. Any attempt to reset or rebind
t will be an error. The value of t is itself. Yoy may recall that in
Lisp 1.5 the value of t had been *t*, but Standard Lisp mandates the
behaviour implemented here. As far as truth values are concerned,
nil is treated as meaning “false” and anything that is non-nil is true,
including as an obvious special case t.

tab
The value of this variable is a tab character.

thin!*
In the prettyprinter if thin!* values (default 5) can be fitted on a
single line. The idea behind this is so that long lists can in relevant
cases be displayed almost horizontalloy rather than vertically, as in

(one two three four five (one

six seven eight nine ten vs. two

eleven twelve) three

...

ttype!*
Used by the Reduce parser, and so best not used for other purposes.

4 Items that can appear in lispsystem!*

There is a global variable called lispsystem!* whose value is reset in the
process of CSL starting up. An effect of this is that if the user changes
its value those changes do not survice a preserving and re-loading a heap
image: this is deliberate since the heap image may be re-loaded on a different
instance of CSL possibly on a quite different computer of with a different
configuration. The value of lispsystem!* is a list of items, where each item
is either an atomic tag of a pair whose first component is a key. In general
it would be unwise to rely on exactly what information is present without
review of the code that sets it up. The information may be of interest to
anybody but some tags and keys are reflections of experiments rather than
fully stable facilities.

(c!-code . count) This will be present if code has been optimised into
C through the source files u01.c to u60.c, and in that case the value
tells you how many functions have been optimised in this manner.

common!-lisp For a project some while ago a limited Common Lisp com-
patibility mode was being developed, and this tag indicated that it

14

was active. In that case all entries are in upper case and the variable
is called *FEATURES* rather than lispsystem!*. But note that this
Lisp has never even aspired to be a full Common Lisp, since its author
considers Common Lisp to have been a sad mistake that must bear
significant responsibility for the fact that interest in Lisp has faded
dramatically since its introduction.

(compiler!-command . command) The value associated with this key is a
string that was used to compile the files of C code making up CSL. It
should contain directives to set up search paths and predefined sym-
bols. It is intended to be used in an experiment that generates C code
synamically, uses a command based on this string to compile it and
then dynamically links the resulting code in with the running system.

csl A simple tag intended to indicate that this Lisp system is CSL and
not any other. This can of course only work properly if all other Lisp
systems agree not to set this tag! In the context of Reduce I note that
the PSL Lisp system sets a tag psl on lispsystem!* and the realistic
use of this is to discriminate between CSL and PSL hosted copies of
Reduce.

debug If CSL was compiled with debugging options this is present, and one
can imagine various bits of code being more cautious or more verbose
if it is detected.

(executable . name) The value is the fully rooted name of the exe-
cutable file that was launched.

fox Used to be present if the FOX GUI toolkit was detected and incorpo-
rated as part of CSL, but now probably never used!

(linker . type) Intended for use in association with compiler!-command,
the value is win32 on Windows, x86 64 on 64-bit Linux and other
things on other systems, as detected using the program objtype.c.

(name . name) Some indication of the platform. For instance on one sys-
tem I use it is linux-gnu:x86 64 and on anther it is just win32.

(native . tag) One of the many experiments within CSL that were ac-
tive at one stage but are not current involved compilation directly into
machine code. The strong desire to ensure that image files coudl be
used on a cross-platform basis led to saved compiled code being tagged
with a numeric “native code tag”, and this key/value pair identified
the value to be used on the current machine.

(opsys . operating-system) Some crude indication of the host operat-
ing system.

15

operating system identity The name of the current operating system is
put on the list. Exactly what form is not explicitly defined!

pipes In the earlier days of CSL there were computers where pipes were
not supported, so this tag notes when they are present and hance the
facility to create sub-tasks through them can be used.

record get An an extension to the CSL profiling scheme it it possible to
compile a special version that tracks and counts each use of property-
list access functions. This can be useful because there are ways to give
special treatment to a small number of flags and a small number of
properties. The special-case flage end up stored as a bitmap in the
symbol-header so avoid need for property-list searching. But of course
recording this extra information slows things down. This tag notes
when the slow version is in use. It might be used to trigger a display
of statistics at the end of a calculation.

reduce This is intended to report if the initial heap image is for Reduce
rather than merely for Lisp.

(shortname . name) Gives the short name of the current executable, with-
out its full path.

showmath If the “showmath” capability has been compiled into CSL this
will be present so that Lisp code can know it is reasonable to try to
use it.

sixty!-four Present if the Lisp was compiled for a 64-bit computer.

termed Present if a cursor-addressable console was detected.

texmacs Present if the system was launched with the --texmacs flag. The
intent is that this should only be done when it has been launched with
texmacs as a front-end.

(version . ver) The CSL version number.

win32, win64 Any windows system puts win32 in lispsystem!*. If 64-bit
windows is is use then win64 is also included

windowed Present if CSL is running in its own window rather than in console
mode.

5 Flags and Properties

Most of tags here are probably not much use to end-users, but I am noting
them as a matter of completeness.

16

lose If a name is flagged as ttfamily lose then a subsequent attempt to
define or redefine it will be ignored.

s!:ppchar and s!:ppformat These are used in the prettyprint code found
in extras.red. A name is given a property s!:ppformat if in pret-
typrinted display its first few arguments should appear on the same
line as it if at all possible. The s!:ppchar property is used to make
the display of bracket characters a little more tidy in the source code.

switch In the Reduce parser some names are “switches”, and then directives
such as on xxx and off xx have the effect of setting or clearing the
value of a variable !*xxx. This is managed by setting the switch flag
om xxx. CSL sets some things as switches ready for when they may
be used by the Reduce parser.

!∼magic!-internal!-symbol!∼ CSL does not have a clear representation
for functions that is separated from the representation of an identifier,
and so when you ask to get the value of a raw function you get an
identifier (probably a gensym) and this tag is used to link such values
with the symbols they were originally extracted from.

6 Functions and Special Forms

Each line here shows a name and then one of the words expr, fexpr or macro.
In some cases there can also be special treatment of functions by the compiler
so that they get compiled in-line.

abs expr
This takes one argument that should be a number – and returns its
absolute value. In Common Lisp mode it would find the magnitude of
a complex number, but in normal Standard Lisp mode the only cases
that arise are integers are floating point values.

binary close input expr
Not yet written

binary close output expr
Not yet written

binary open input expr
Not yet written

binary open output expr
Not yet written

binary prin1 expr
Not yet written

17

binary prin2 expr
Not yet written

binary prin3 expr
Not yet written

binary prinbyte expr
Not yet written

binary princ expr
Not yet written

binary prinfloat expr
Not yet written

binary read2 expr
Not yet written

binary read3 expr
Not yet written

binary read4 expr
Not yet written

binary readbyte expr
Not yet written

binary readfloat expr
Not yet written

binary select input expr
Not yet written

binary terpri expr
Not yet written

bps!-getv expr
Not yet written

bps!-putv expr
Not yet written

bps!-upbv expr
Not yet written

break!-loop expr
Not yet written

c out expr
Not yet written

18

caaaar expr
see caar.

caaadr expr
see caar.

caaar expr
see caar.

caadar expr
see caar.

caaddr expr
see caar.

caadr expr
see caar.

caar ...cddddr expr
Names that start with c, then have a sequence of a or ds and finally r
provide shorthand functions for chains of uses of car and cdr. Thus for
instance (cadar x) has the same meaning as (car (cdr (car x))).

cadaar expr
see caar.

cadadr expr
see caar.

cadar expr
see caar.

caddar expr
see caar.

cadddr expr
see caar and fourth.

caddr expr
see caar and third.

cadr expr
see caar and second.

car expr
For a non-empty list the function car will return the first element.
For a dotted pair (created using cons) it extracts the first component.
This is the fundamental low-level data structure access function in
Lisp. See cdr for the function that returns the tail or a list or the

19

second component of a dotted pair. In CSL any attempt to take car
of an atom should be detected and will be treated as an error. If CSL
had been compiled in Common Lisp mode (which is now not probable)
a special exemption would apply and car and cdr of the empty lisp
nil would be nil.

car!* expr
This function behaves like car except that if its argument is atomic
then the argument is returned unaltered rather than that case being
treated as an error.

cdaaar expr
see caar.

cdaadr expr
see caar.

cdaar expr
see caar.

cdadar expr
see caar.

cdaddr expr
see caar.

cdadr expr
see caar.

cdar expr
see caar.

cddaar expr
see caar.

cddadr expr
see caar.

cddar expr
see caar.

cdddar expr
see caar.

cddddr expr
see caar.

cdddr expr
see caar.

20

cddr expr
see caar.

cdr expr
See car.

char!-code expr
Not yet written

char!-downcase expr
Not yet written

char!-upcase expr
Not yet written

check!-c!-code expr
Not yet written

cl!-equal expr
Not yet written

close!-library expr
Not yet written

code!-char expr
Not yet written

compile!-all expr
Not yet written

convert!-to!-evector expr
Not yet written

copy!-module expr
Not yet written

copy!-native expr
Not yet written

create!-directory expr
Not yet written

dated!-name expr
Not yet written

define!-in!-module expr
Not yet written

delete!-file expr
Not yet written

21

delete!-module expr
Not yet written

do!* macro
Not yet written

double!-execute expr
Not yet written

enable!-backtrace expr
Not yet written

enable!-errorset expr
Not yet written

eq!-safe expr
Not yet written

eval!-when fexpr
Not yet written

file!-length expr
Not yet written

file!-readablep expr
Not yet written

file!-writeablep expr
Not yet written

flagp!*!* expr
Not yet written

fp!-evaluate expr
Not yet written

funcall!* expr
Not yet written

get!* expr
Not yet written

get!-current!-directory expr
Not yet written

get!-lisp!-directory expr
Not yet written

hash!-table!-p expr
Not yet written

22

hashtagged!-name expr
Not yet written

input!-libraries fexpr
Not yet written

instate!-c!-code expr
Not yet written

internal!-open expr
Not yet written

is!-console expr
Not yet written

let!* fexpr
Not yet written

library!-members expr
Returns a list of all the modules that could potentially be loaded using
load!-module. See list!-modules to get a human readable display
that looks more like the result of listing a directory, or modulep for
checking the state of a particular named module.

library!-name expr
Not yet written

list!* fexpr
Not yet written

list!-directory expr
Not yet written

list!-modules expr
This prints a human-readable display of the modules present in the
current image files. This will include “InitialImage” which is the heap-
image loaded at system startup. For example

> (list!-modules)

File d:\csl\csl.img (dirsize 8 length 155016, Writable):

compat Sat Jul 26 10:20:08 2008 position 556 size: 9320

compiler Sat Jul 26 10:20:08 2008 position 9880 size: 81088

InitialImage Sat Jul 26 10:20:09 2008 position 90972 size: 64040

nil

See library!-members and modulep for functions that make it pos-
sible for Lisp code to discover about the loadable modules that are
available.

23

list!-to!-string expr
Not yet written

list!-to!-symbol expr
Not yet written

list!-to!-vector expr
Not yet written

list2!* expr
Not yet written

list3!* expr
Not yet written

load!-module expr
Not yet written

load!-source expr
Not yet written

lose!-precision expr
Not yet written

macro!-function expr
Not yet written

macroexpand!-1 expr
Not yet written

make!-bps expr
Not yet written

make!-function!-stream expr
Not yet written

make!-global expr
Not yet written

make!-native expr
Not yet written

make!-random!-state expr
Not yet written

make!-simple!-string expr
Not yet written

make!-special expr
Not yet written

24

math!-display expr
Not yet written

member!*!* expr
Not yet written

rplaca expr
This is a destructive function in that it alters the data structure that
it is given as its first argument by updating its car component. The
result is the updated object. See rplacd for the corresponding function
for updating the cdr component.

rplacd expr
See rplaca

!∼block fexpr
Not yet written

!∼let fexpr
Not yet written

!∼tyi expr
Not yet written

25

Index

(executable . name), 15
(name . name), 15
(native . tag), 15
(opsys . operating-system), 15
(shortname . name), 16
(version . ver), 16
cadr expr, 19
common!-lisp, 14
record get, 16
sixty!-four, 16
!∼block fexpr, 25
!∼let fexpr, 25
!∼magic!-internal!-symbol!∼, 17
!∼tyi expr, 25
!*applyhook!*, 6
!*break!-loop!*, 6
!*carcheckflag, 6
!*comp, 6
!*debug!-io!*, 6
!*echo, 6
!*error!-messages!*, 6
!*error!-output!*, 7
!*evalhook!*, 7
!*gc!-hook!*, 7
!*hankaku, 7
!*lower, 7
!*macroexpand!-hook!*, 8
!*math!-output!*, 8
!*native code, 8
!*notailcall, 8
!*package!*, 8
!*pgwd, 8
!*plap, 9
!*pretty!-symmetric, 9
!*prinl!-fn!*, 9
!*prinl!-index!*, 9
!*prinl!-visited!-nodes!*, 9
!*print!-array!*, 9
!*print!-length!*, 9
!*print!-level!*, 9
!*pwrds, 9

!*query!-io!*, 10
!*quotes, 10
!*raise, 10
!*redefmsg, 10
!*resources!*, 10
!*savedef, 10
!*spool!-output!*, 10
!*standard!-input!*, 10
!*standard!-output!*, 10
!*terminal!-io!*, 11
!*trace!-output!*, 11
!@cslbase, 11
!$cslbase, 6
!$eof!$, 6
!$eol!$, 6
!fleps, 5
(c!-code . count), 14
(compiler!-command . command),

15
(linker . type), 15
--help, 1
--my-path, 1
--texmacs, 2
--, 1
-a, 2
-b, 2
-c, 2
-d, 2
-e, 2
-f, 2
-g, 2
-h, 3
-i, 3
-j, 3
-k, 3
-l, 3
-m, 3
-n, 4
-o, 4
-p, 4
-q, 4

26

-r, 4
-s, 4
-t, 4
-u, 4
-v, 4
-w, 5
-x, 5
-y, 5
-z, 5
abs expr, 17
binary close input expr, 17
binary close output expr, 17
binary open input expr, 17
binary open output expr, 17
binary prin1 expr, 17
binary prin2 expr, 18
binary prin3 expr, 18
binary prinbyte expr, 18
binary princ expr, 18
binary prinfloat expr, 18
binary read2 expr, 18
binary read3 expr, 18
binary read4 expr, 18
binary readbyte expr, 18
binary readfloat expr, 18
binary select input expr, 18
binary terpri expr, 18
blank, 11
bps!-getv expr, 18
bps!-putv expr, 18
bps!-upbv expr, 18
break!-loop expr, 18
c out expr, 18
caaaar expr, 19
caaadr expr, 19
caaar expr, 19
caadar expr, 19
caaddr expr, 19
caadr expr, 19
caar ...cddddr expr, 19
cadaar expr, 19
cadadr expr, 19
cadar expr, 19
caddar expr, 19

cadddr expr, 19
caddr expr, 19
car!* expr, 20
car expr, 19
cdaaar expr, 20
cdaadr expr, 20
cdaar expr, 20
cdadar expr, 20
cdaddr expr, 20
cdadr expr, 20
cdar expr, 20
cddaar expr, 20
cddadr expr, 20
cddar expr, 20
cdddar expr, 20
cddddr expr, 20
cdddr expr, 20
cddr expr, 21
cdr expr, 21
char!-code expr, 21
char!-downcase expr, 21
char!-upcase expr, 21
check!-c!-code expr, 21
cl!-equal expr, 21
close!-library expr, 21
code!-char expr, 21
common!-lisp!-mode, 11
compile!-all expr, 21
convert!-to!-evector expr, 21
copy!-module expr, 21
copy!-native expr, 21
crbuf!*, 12
create!-directory expr, 21
csl, 15
dated!-name expr, 21
debug, 15
define!-in!-module expr, 21
delete!-file expr, 21
delete!-module expr, 22
do!* macro, 22
double!-execute expr, 22
emsg!*, 12
enable!-backtrace expr, 22
enable!-errorset expr, 22

27

eof!*, 12
eq!-safe expr, 22
esc!*, 12
eval!-when fexpr, 22
file!-length expr, 22
file!-readablep expr, 22
file!-writeablep expr, 22
flagp!*!* expr, 22
fox, 15
fp!-evaluate expr, 22
funcall!* expr, 22
get!* expr, 22
get!-current!-directory expr, 22
get!-lisp!-directory expr, 22
hash!-table!-p expr, 22
hashtagged!-name expr, 23
input!-libraries fexpr, 23
instate!-c!-code expr, 23
internal!-open expr, 23
is!-console expr, 23
let!* fexpr, 23
library!-members expr, 23
library!-name expr, 23
lispsystem!*, 12
list!* fexpr, 23
list!-directory expr, 23
list!-modules expr, 23
list!-to!-string expr, 24
list!-to!-symbol expr, 24
list!-to!-vector expr, 24
list2!* expr, 24
list3!* expr, 24
load!-module expr, 24
load!-source, 12
load!-source expr, 24
lose!-precision expr, 24
lose, 17
macro!-function expr, 24
macroexpand!-1 expr, 24
make!-bps expr, 24
make!-function!-stream expr, 24
make!-global expr, 24
make!-native expr, 24
make!-random!-state expr, 24

make!-simple!-string expr, 24
make!-special expr, 24
math!-display expr, 25
member!*!* expr, 25
nil, 12
ofl!*, 13
operating system identity, 16
pipes, 16
program!*, 13
reduce, 16
rplaca expr, 25
rplacd expr, 25
s!:gensym!-serial, 13
s!:ppchar and s

:ppformat, 17
showmath, 16
switch, 17
tab, 14
termed, 16
texmacs, 16
thin!*, 14
ttype!*, 14
t, 14
win32, win64, 16
windowed, 16

28

