The pbrt Input File Format

This document is a reference to the file format used in the pbrt rendering system de-
scribed in the “Physically Based Rendering” book; see the pbrt website for more infor-
mation about pbrt. Note that this document serves as a comprehensive reference; the
pbrt User’s Guide (which is still yet to be written) will document how to use pbrt with
more focus on how to achieve certain tasks or how to address various issues in the results
it renders.

Note: this document is still in draft form and sections are still, unfortu-
nately, incomplete. The text is currently complete up to the “Materials”; in
that section and beyond, the parameters to the various object implementa-
tions are listed correctly, but the accompanying text hasn’t been written yet.
I will try to have this all finished in the next few days.

Contents:

e General structure of a pbrt input file
— Parameter Lists
— Specifying Transformations
e Specifying Scene-Wide Rendering Options
— Cameras
— Samplers
— Film
Filters
— Renderers

— Surface Integrators
— Volume Integrators
— Accelerators
e Specifying the World
— Attributes
— Shapes
— Object Instancing
— Lights
— Area Lights
Materials

Textures

— Scattering Volumes

http://pbrt.org/

The scene description files used by pbrt are plain text files. The file format was
designed so that it would be both easy to parse and easy for applications to generate
from their own internal representations of scenes. While a binary file format would result
in smaller files and faster parsing, a human-readable format is far easier to edit by
hand. The input file parser is very simple. It contains no logic about the validity of any
statement beyond its basic syntax; it just calls the corresponding API function. (There
was no reason for the parsers to duplicate all of the error-checking logic in the API
implementation.)

A pbrt scene file consists of a series of statements; different statements specify the
geometry and light sources in the scene and set overall rendering parameters (such as
which light transport algorithm to use or the image resolution.) Each statement in these
files corresponds directly to a pbrt API function from Appendix B in the “Physically
Based Rendering” book. For example, when the WorldBegin statement appears in the
input, the pbrtWorldBegin() function is called. To best understand this document, you
should already be familiar with the concepts introduced in Appendix B, though we will
try to re-introduce some key concepts from that appendix here.

Here is a short example of a pbrt input file: Between the start of the file and the
WorldBegin statement, overall options for rendering the scene are specified, including
the camera type and position, the sampler definition, and information about the image
to be generated. After WorldBegin, the lights, geometry, and scattering volumes (if any)
in the scene are defined, up until the WorldEnd statement, which causes the image to
be rendered. The hash character # denotes that the rest of the line is a comment and
should be ignored by the parser.

LookAt 0 10 100 0 -1 0010
Camera "perspective" "float fov" [30]
PixelFilter "mitchell" "float xwidth" [2] "float ywidth" [2]
Sampler "bestcandidate"
Film "image" "string filename" ["simple.exr"]
"integer xresolution" [200] "integer yresolution" [200]

WorldBegin
AttributeBegin
CoordSysTransform "camera"
LightSource "distant"
"point from" [0 O 0] "point to" [0 0 1]
"rgb L" [3 3 3]
AttributeEnd

AttributeBegin
Rotate 135 1 0 0
Texture "checks" "spectrum" "checkerboard"
"float uscale" [4] "float vscale" [4]
"rgb texl" [1 0 0] "rgb tex2" [0 0 1]

Material "matte"
"texture Kd" "checks"
Shape "disk" "float radius" [20] "float height" [-1]
AttributeEnd
WorldEnd

General structure of a pbrt input file

A scene description file starts with a series of directives that describe the camera, film,
and sampling and light transport algorithms to use in rendering the scene. These are fol-
lowed by the WorldBegin directive; after WorldBegin, the world definition block starts,
and it is no longer legal to specify different definitions of any of the objects defined in
the initial section of the file. However, lights, materials, textures, shapes, and volumetric
scattering regions can be defined inside the world block (and can only be defined inside
the world block). The world block ends with the WorldEnd directive; when this is en-
countered, the Renderer defined to render the scene takes control and does the required
rendering computation.

The following section, Specifying Scene-Wide Rendering Options, documents the di-
rectives that are valid outside of the world definition block. The subsequent section,
Specifying the World, documents the directives for defining the shapes, materials, lights,
etc., that define the scene.

Some of the statements in the input file, such as WorldBegin, AttributeEnd, and
so on, have no additional arguments. Others, such as those related to specifying trans-
formations, such as Rotate and LookAt, take a predetermined number of arguments of
predetermined type. (For example, Translate is followed by three floating-point values
that give the x, y, and z components of the translation vector. The remainder of the
statements take a variable number of arguments and are of the form

identifier “type” parameter-list

For example, the Shape identifier describes a shape to be added to the scene, where
the type of shape to create is given by a string (e.g. “sphere”) and is followed a list of
shape-specific parameters that define the shape. For example,

Shape "sphere" "float radius" [5]

defines a sphere of radius 5. (See Shapes for documentation of the parmeters taken by
the various shapes implemented in pbrt.)

Here, the “type” string gives the name of the particular shape, etc., implementation
to use, and parameter-list gives the parameters to pass to the plug-in. With this design,
the parser doesn’t need to know anything about the semantics of the parameters; it just
needs to know how to parse parameter lists and how to initialize a ParamSet from them
(The ParamSet class is described on page 1047 of the PBR book).

Almost all directives in a pbrt input file have a direct correspondence with a function
in the pbrt API, defined in the files core/api.h and core/api.cpp. The only input

file directive that does not directly correspond to a function in the API is the Include
statement, which allows other input files to be parsed. Include behaves similarly to the
#include directive in C+4++, except that only the directory that the currently-being-
processed input file is searched for matching filenames. Of course, a complete pathname
or a path relative to the current directory can be specified if appropriate.

Include "geometry/car.pbrt"

Parameter Lists

Variable-length lists of named parameters and their values are the key meeting ground
between the parsing system and the objects that are created to represent the scene. Each
of these lists holds an arbitrary number of name/value pairs, with the name in quotation
marks and the value or values in square brackets:

“type name” [value or values]

For example,
"float fov" [30]

specifies a parameter “fov” that is a single floating-point value, with value 30. Or,
"float cropwindow" [0 .5 0 .25]

specifies that “cropwindow” is a floating-point array with the given four values. Notice
that values are enclosed in square brackets. Single values (such as the “30” in the “fov”
example above) may be provided with or without square brackets enclosing them, though
arrays of values always must be enclosed in square brackets.

The type of each parameter must always be given along with its name; pbrt has no
built-in knowledge of any parameter names. This simplifies the parsing system, although
it does create a small extra burden for the creator of the input file.

pbrt supports seven basic parameter types: integer, float, point, vector, normal,
spectrum, bool, and string. The point, vector, and normal types all take three
floating-point values to specify each value. string parameters must be inside quotation
marks, and bool parameters are set with the strings "true" and "false", quotation
marks included.

"string filename" "foo.exr"

"point origin" [0 1 2]

"normal N" [01 0 00 1] # array of 2 normal values
"bool renderquickly" "true"

pbrt provides a number of ways of specifying spectral values in scene description files.
RGB values are commonly used, though see Section 5.2.2 on page 273 of the second

edition of “Physically Based Rendering” for discussion of the shortcomings of this repre-
sentation. RGB color values can be specified with the rgb type. (color is also supported
as a synonym for this):

"rgb K" [.2 .5 .3]

specifies the RGB color with red equal to 0.2 and so forth. The FromRGB () method of
the Spectrum implementation being used is used to convert the given RGB colors to the
current spectral representation.

Alternatively, XYZ colors can be used to specify a spectrum:

"xyz Kd" [.4 .6 .7]

General sampled SPDs are specified with a series of (wavelength, value) pairs, where
wavelengths are specified in nm. These SPDs are resampled to the current spectral
representation with its FromSampled () method. For example,

"spectrum Kd" [300 .3 400 .6 410 .65 415 .8 500 .2 600 .1 1]

specifies a piecewise-linar SPD with a value of 0.3 at 300nm, 0.6 and 400nm, and so
forth. Since complex sampled SPDs may have many values, they can also be provided
through a separate file:

"spectrum Kd" "filename"

Where the filename specifies the path to a plain text file with pairs of floating-point
(wavelength, value) as above. The parser for these files allows uses # to denote a comment
that goes to the end of the current line. See the directory scenes/spds in the pbrt
distribution for examples.

Finally, SPDs of blackbody emitters can be specified with two floating-point values,
one giving the blackbody temperature in Kelvin, and the second giving a scale factor.
See the Wikipedia article on blackbody emitters for more information and the formula
used to compute the SPD from the blackbody temperature:

"blackbody L" [6500 1] # daylight, approximately

Specifying Transformations

A series of directives modify the current transformation marix (CTM). (See Section
B.2.2 on page 1053 for more information about how the CTM is maintined during scene
description.) When the scene’s camera is specified, the CTM gives the world to camera
transformation; when a light or shape is created, the CTM specifies the transformation
from object space to world space.

When parsing begins, the CTM is the identity transformation; furthermore, it is is reset
to the identity when the WorldBegin directive is encountered. The following directives
change the CTM; they are shown with the corresponding pbrt API call:

http://en.wikipedia.org/wiki/Black_body

Input File Syntax API Call

Identity pbrtIdentity()
Translate z ¥y 2 pbrtTranslate()

Scale x y 2 pbrtScale()

Rotate angle x y z pbrtRotate()

LookAt ex ey ez lx ly Iz ux uy uz pbrtLookAt ()
CoordinateSystem “name” pbrtCoordinateSystem()
CoordSysTransform “name” pbrtCoordSysTransform()
Transform m00 ... m33 pbrtTransform()
ConcatTransform m00 .. m33 pbrtConcatTransform()

For example, Translate takes three floating-point values, z, y, and z, and the corre-
sponding values are passed to the pbrtTranslate() API call, which in turn modifies the
CTM by setting it to the product of the CTM with the matrix representing the given
translation.

pbrt supports animated transformations by allowing two transformation matrices to
be specified at different times. The TransformTimes directive, which must be outside of
the world definition block, defines these two times with floating-point vaues:

TransformTimes start end

Then, the ActiveTransform directive indicates whether subsequent directives that
modify the CTM should apply to the transformation at the starting time, the trans-
formation at the ending time, or both. The default is that both matrices should be
updated:

Translate 1 0 O # applies to both, by default
ActiveTransform StartTime

Rotate 90 1 0 O

ActiveTransform EndTime

Rotate 120 0 1 O

ActiveTransform All

Specifying Scene-Wide Rendering Options

This section describes rendering options that must be specified before the WorldBegin
statement. The following sub-sections describe how options related to each of the follow-
ing are set:

e Cameras

e Samplers

e Film

Filters

Renderers

Surface Integrators

Volume Integrators

Accelerators

Cameras

The Camera directive specifies the camera used for viewing the scene.! For example,

Camera "perspective" "float fov" [60]

When the Camera directive is encountered in an input file, the current transformation
matrix is used to initialize the world-to-camera transformation.
pbrt provides three camera implementations:

Name Implementation Class
“environment” EnvironmentCamera
“orthographic” OrthoCamera
“perspective” PerspectiveCamera

The default camera is a PerspectiveCamera with the default values listed below (90
degree field of view, etc.)
A number of parameters are common to all cameras in pbrt:

Type Name Default Description
Value
float shutteropen | 0 The time at which the virtual camera shutter
opens.
float shutterclose | 1 The time at which the virtual camera shutter
closes.
float frameaspectratigsee de- | The aspect ratio of the film. By default, this is
scription) computed from the x and y resolutions of the
film, but it can be overridden if desired.

1 The camera is used when pbrt is used to render an actual image. However, some of pbrt’s Renderer
implementations compute other quantities--for example, AggregateTest tests ray tracing acceleration
structures and CreateRadianceProbes computes spherical harmonic radiance probes at a grid of locations-
-neither one of these uses the camera. See the section on Renderers for more discussion.

Type Name Default Description
Value

float[4] screenwindow | (see de- | The bounds of the film plane in screen space.
scription) By default, this is [-1,1] along the shorter image

axis and is set proportionally along the longer
axis.

(The EnvironmentCamera takes no additional parameters beyond these.)
PerspectiveCamera and OrthoCamera support images rendered with depth of field.
They both use the following two parmaeters to set the lens focus, etc.

Type Name Default Description
Value
float lensradius 0 The radius of the lens. Used to render scenes
with depth of field and focus effects. The default
value yields a pinhole camera.
float focaldistance | 10730 The focal distance of the lens. If “lensradius” is

zero, this has no effect. Otherwise, it specifies
the distance from the camera origin to the focal
plane.

Finally, the perspective camera has two

camera’s field of view.

(semi-redundant) parameters for setting the

Type Name Default Description
Value
float fov 90 Specifies the field of view for the perspective
camera. This is the spread angle of the viewing
frustum along the narrower of the image’s width
and height.
float halffov n/a For convenience to some programs that export

from modeling systems, the camera’s field of
view can also be specified via the half-angle be-
tween the view direction and the edge of the
viewing frustum. If this parameter isn’t pro-
vided, then fov is used to set the field of view
instead.

Samplers

The Sampler generates samples for the image, time, lens, and Monte Carlo integration. A
number of implementations are provided; the default is “lowdiscrepancy”--the LDSampler.
Note that the sampler is only used if SamplerRenderer is the Renderer being used to
render the scene; other renderers have their own sample generation mechanisms internally
and/or don’t need samples in this manner (e.g. AggregateTest).

Name Implementation Class
“adaptive” AdaptiveSampler
“bestcandidate” BestCandidateSampler
“halton” HaltonSampler?
“lowdiscrepancy” LDSampler

“random” RandomSampler?
“stratified” StratifiedSampler?

The AdaptiveSampler takes a minimum number of samples in each pixel and then
performs a test to see if, according to some metric, they vary excessively. If so, it takes
a higher number of samples. The underlying sample generation algorithms are based on
the low-discrepancy patterns used by the LDSampler.

Type Name Default Description
Value
integer minsamples | 4 This is the initial number of samples taken

inside each pixel area.

integer maxsamples | 32 If the variation test indicates that this is a
complex pixel area, then this number of sam-
ples is taken.

2 (1, 2) The HaltonSampler and StratifiedSampler are not as effective as the LDSampler, AdaptiveSampler,
or BestCandidateSampler; the sample points they generate aren’t as good and thus more samples will
generally be required to get a similar result.

3 The RandomSampler generates particularly ineffective sampling patterns. It is really only useful for
comparison against more sophisticated approaches and shouldn’t otherwise be used.

Type Name Default Description
Value
string method contrast This parameter sets which test to use to see

if a pixel is varying excessively. The two sup-
ported values are “contrast”, which indicates
that the color contrast between the sample
values should be compared toa threshold, and
“shapeid”, which indicates that if different
shapes are visible in the pixel area, additional
samples should be taken.

The “bestcandidate”, “lowdiscrepancy”, “halton”, and “random” samplers all take a
single parameter, “pixelsamples”, which sets the number of samples to take in each pixel

area.
Type Name Default Description
Value
integer pixelsamples | 4 The number of samples to take, per pixel.

Note that the number of samples is taken
per pixel on average; depending on the ac-
tual sampling algorithm being used, individ-
ual pixel areas may have slightly more or
slightly fewer.

The “stratified” sampler has three parameters that control its behavior.

Type Name Default | Description
Value

bool jitter “true” Whether or not the generated samples should
be jittered inside each stratum; this is gener-
ally only worth setting to “false” for comparisons
between jittered and uniform sampling--uniform
sampling will almost always give a worse result.

integer xsamples 2 The number of samples per pixel to take in the
x direction.

integer ysamples 2 The number of samples per pixel to take in the y
direction. In general, “xsamples” and “ysamples”
should be set to the same value for best results.

10

Film

The Film directive specifies the characteristics of the image being generated by the ren-
derer. Note that only the SamplerRenderer and the MetropolisRenderer use the film;
the other renderers don’t generate an image per se and thus ignore the film definition.

The only Film implementation currently available in pbrt is ImageFilm which is

specified as "image" in input files. For example:

Film "image" "string filename"
"float cropwindow"

["out.exxr"]

[.2 .5 .3 .8]

The “image” film takes a handful of parameters:

Type

Name

Default
Value

Description

integer

xresolution

640

The number of pixels in the x direction.

integer

yresolution

480

The number of pixels in the y direction.

float[4]

cropwindow

[0101]

The subregion of the image to render. The four
values specified should be fractions in the range
[0,1], and they represent x_min, x_max, y_min,
and y_max, respectively. These values are in
normalized device coordinates, with (0,0) in
the upper-left corner of the image.

string

filename

“pbrt.exr”

The output filename. The ImageFilm uses the
suffix of the given filename to determine the
image file format to use. All builds of pbrt
support PFM and TGA format images; those
configured to use the OpenEXR libraries sup-
port EXR as well.

Filters

The implementation of ImageFilm uses an instance of the abstract Filter class to filter
sample values to compute final pixel values. (Thus, as only the SamplerRenderer and
the MetropolisRenderer use ImageFilm, the filter setting is only relevant when one of
those renderers is being used.

pbrt provides a number of filter implementations, listed below. The default is “box”;
while the box filter has a number of known shortcomings, it is the most effective filter
when the low-discrepancy sampler is being used (recall the illustration in Figure 7.37 on
page 392 of PBR).

11

Name Implementation Class
“box” BoxFilter

“gaussian” GaussianFilter
“mitchell” MitchellFilter

“sinc” LanczosSincFilter
“triangle” TriangleFilter

All filter implementations take two parameters that set the filter width in each direc-
tion. Typically, these two parameters will have the same value.

Type Name Default Value Description

float xwidth 2 (0.5 for box, 4 | The width of the filter in the x direc-
for sinc) tion.

float ywidth 2 (0.5 for box, 4 | The width of the filter in the y direc-
for sinc) tion.

The “gaussian” filter takes an additional parameter that adjusts the rate of Gaussian
falloff; see page 397 for more information.

Type Name Default Description
Value
float alpha 2 alpha controls the falloff rate of the Gaussian
filter. Smaller values give a blurrier image.

Two parameters set the shape of the “mitchell” filter; see the equation on the top of

page 400.
Type Name Default | Description
Value
float B 1/3
float C 1/3 These parameters control the shape of the

Mitchell filter. The best results are generally
obtained when B4+2C=1.

Finally the sinc filter takes a value tau that sets the number of cycles of the sinc

function.

12

Type Name Default | Description
Value
float tau 3 tau controls how many cycles the sinc function
passes through before it is clamped to zero by
the windowing function.
Renderers

The renderer, defined with the Renderer directive, selects the rendering algorithm used
to render the scene.* For example:

Renderer "metropolis" "integer samplesperpixel" [4096]

The default renderer is “sampler”; corresponding to the SamplerRenderer. The fol-
lowing Renderer implementations are currently available in pbrt.

Name Implementation Class
“aggregatetest” AggregateTest
“createprobes” CreateRadianceProbes
“metropolis” MetropolisRenderer
“sampler” SamplerRenderer
“surfacepoints” SurfacePointsRenderer

The “aggregatetest” renderer is one that doesn’t create an image. Instead, it traces
a number of random rays using the current acceleration structure (see Accelerators for
information about how the accelerators are selected) and checks the results to the result
from an exhaustive intersection of each ray with all of the triangles in the scene. This
renderer can thus be used to find bugs in the implementation of accelerators; see Section
4.6 on page 245 for more information.

Type Name Default Description
Value
integer niters 100000 Number of random rays to generate to use for
testing the aggregate.

The “createprobes” renderer computes a series of spherical harmonic radiance probes;

4

pbrt sometimes has a somewhat broad uage for “render the scene” in that some of the Renderer
implementations don’t actually generate images.

13

see Section 17.3 on page 956 for more information. This renderer uses whichever surface
and volume integrators are specified in the input file; see the following sections, Surface
Integrators and Volume Integrators for more information.)

Type

Name

Default
Value

Description

float[6]

bounds

(none)

Bounding box (x0, y0, z0) - (x1, y1, z2) within
which to compute radiance probes. If this is not
specified, then the entire scene bounding box is
used.

bool

directlightingrue

Determines whether direct illumination should be
included in the computed incident radiance func-
tion. Some applications only include indirect radi-
ance in the probes and use conventional techniques
to render direct illumination.

string

filename

“probes.ol

1tFilename of file in which to store SH coeflicients of

radiance probes.

bool

indirectlightitgne

In a similar fashion, this parameter determines
whether indirect illumination should be included
in the radiance probes.

integer

Imax

Number of spherical harmonic bands to use to rep-
resent the incident radiance function.

integer

indirectsam

phek2

Number of Monte Carlo samples to use to compute
indirect illumination at each probe point.

float

samplespacing

Desired, in world space distance, between the radi-
ance probes. The resolution of the grid of sample
points is set so that the distance between samples
is no greater than this distance along any of the x,
Yy, OT z axes.

float

time

Time at which to sample the incident radiance to
compute the probes.

The “metropolis” renderer implements the Metropolis light transport algorithm; it is
defined in Section 15.7 of the PBR book.

14

Type

Name

Default
Value

Description

float

largestepprob

A 1011265

Probability of the mutation strategy proposing
a mutation where all of the sample values are
replaced with completely new samples (versus a
“small step” where the current sample values are
only perturbed). In general, this value should be
in the range 0.05 and 0.5. For scenes with partic-
ularly difficult-to-sample light transport paths,
lower values may be more effective.

integer

samplesperpixel 00

Average number of samples per pixel to take. (In
other words, the total number of samples taken
is the product of the image resolution and this
parameter’s value.)

integer

bootstrapsam

1580000

Number of Monte Carlo samples to take to com-
pute the estimate of the overall image brightness.
For scenes with difficut-to-sample light transport
paths, increasing this value may give better re-
sults, particularly when rendering animations.
(Otherwise, if there is too much variance in this
estimate, some frames may be too bright and
others too dark.)

integer

directsamples

If direct lighting is being performed separately
from Metropolis sampling, this gives the number
of samples per pixel to take to compute the direct
lighting component.

bool

dodirectseparsi

vtalye

Whether or not direct lighting should be in-
cluded Metropolis sampling. For scenes where
the direct lighting is handled well with conven-
tional techniques, then it will often be more
efficient to handle it separately, allowing the
use of variance reduction approaches like low-
discrepancy sampling patterns. For scenes with
difficult-to-sample direct lighting, it’s better to
use Metropolis for this as well.

integer

maxconsecutiy

vereiects

Maximum number of repeated rejections of a
proposed sample mutation. If this many rejec-
tions occur in a row, the next sample is uncon-
ditionally accepted. This can prevent the system
from getting stuck in a subset of the overall path
space.

15

Type Name Default | Description

Value
integer maxdepth 7 Maximum number of light scattering bounces to
follow when tracing paths through the scene.
bool bidirectional | true Indicates whether bidirectional path tracing

should be used (versus standard path tracing.)
It’s almost always worthwhile to use bidirec-
tional path tracing.

The “sampler” renderer uses the defined Sampler to provide samples that it in turn uses
to generate camera rays and then call the SurfaceIntegrator and VolumeIntegrator
to compute the radiance along those rays. This is the default renderer in the system. In
general, parameters that control its operation are set indirectly via parameters to the
Sampler, SurfacelIntegrator, and VolumeIntegrator.

Type Name Default | Description
Value
bool visualizeobjeqtidalse” This renderer can optionally ignore the surface

and volume integrators and randomly shade
objects based on their shape and primitive
id values. This can be useful to visualize the
tessellation of complex objects and search for
problems in geometric models.

The “surfacepoints” renderer computes a set of sample points on the surfaces of ob-
jects in the scene that have BSSRDF materials (i.e. that exhibit subsurface scattering).
These sample points are distributed on the surface according to a Poisson sphere cri-
terion so that no two of them are too close together. Because the generation of these
points can be computationally complex, it’s often worth doing it in a preprocess; the
DipoleSubsurfacelIntegrator can then read these files of sample points and use them
at rendering time.

Type Name Default Description
Value

float minsampledistaf@d

string filename (none)

16

Surface Integrators

The surface integrator implements the light transport algorithm that computes re-
flected radiance from surfaces in the scene. Recall that surface integrators are only used
by the SamplerRenderer and CreateRadianceProbes renderer; if another renderer is
specified, then the surface integrator is ignored. The default surface integrator is the

DirectLightingIntegrator:

SurfaceIlntegrator "directlighting" "integer maxdepth" [5]
"string strategy" "all"

A number of other surface integrators are available in the system.

Name Implementation Class
“ambientocclusion” AmbientOcclusionIntegrator
“diffuseprt” DiffusePRTIntegrator
“dipolesubsurface” DipoleSubsurfaceIntegrator
“directlighting DirectLightingIntegrator
“glossyprt” GlossyPRTIntegrator

“igi” IGIIntegrator
“irradiancecache” IrradianceCacheIntegrator
“path” PathIntegrator

“photonmap” PhotonIntegrator

“useprobes” UseRadianceProbes

“whitted” WhittedIntegrator

A greyscale ambient occlusion image is computed by the “ambientocclusion” integrator;
it takes a number of samples over the hemisphere of each visible point and computes the
fraction of them that are unoccluded.

Type Name Default Description
Value
integer nsamples 2048 Number of samples to take in computing

the ambient occlusion value. Lower values
will be faster, but may lead to noisy images.

17

Type Name Default Description
Value
float maxdist (infinite) Distance beyond which to ignore any inter-

sections for the ambient occlusion compu-
tation. Often, considering only nearby oc-
cluders gives good results and can be much
more efficient, as the rays to be traced are
shorter.

The “diffuseprt” integrator implements the diffuse precomputed radiance transfer al-
gorithm implemented in Section 17.4 of PBR. At each point, it projects the transfer
function (Equation 17.20) into the SH basis and uses the efficient dual-product integral
approach to compute the reflected light due to incident illumination. (Recall that in
practice, one would generally want to precompute the projection of the transfer function
and store it and then do the reflected light computation in real-time.)

Type Name Default Description
Value
integer Imax 4 Maximum spherical harmonic band [
to use; the total number of SH co-
efficients used at each point will be
(Imax+1)*(Imax+1).
integer nsamples 4096 Number of Monte Carlo samples to use

when computing the projection of the
transfer function T (Equation 17.20) into
the spherical harmonics basis.

The “dipolesubsurface” integrator implements the subsurface scattering rendering al-
gorithm described in Section 16.5. It is otherwise similar to the direct lighting integrator,
in that it follows specularly reflected and transmitted rays and uses standard algorithms
to compute direct lighting.

Type Name Default Description
Value
integer maxdepth 5 The maximum recursion depth for specular

reflection and transmission.

18

Type

Name

Default
Value

Description

float

maxerror

0.05

Maximum value of the error term used to
determine whether to traverse deeper into
the irradiance sample octree or to use the
current node for illumination. (This is the
maxError value in the second code fragment
from the top of page 911.)

float

minsampledistah@d

Minimum distance between the point sam-
ples generated on translucent objects at
which to compute the incident irradiance.
In general, this value should be around half
of the mean free path of light inside the scat-
tering medium. The value of this parame-
ter is ignored if the “pointsfile” parameter is
provided.

string

pointsfile

(none)

File from which to read precomputed
sample points (as generated by the
SurfacePointsRenderer, for example.) If
a file is provided, the points to be used will
be read from the file. Otherwise, the point
generation step will be performed using the
provided “minsampledistance” before ren-
dering.

There are two parameters for the “directlighting” integrator.

Type Name Default | Description
Value
integer maxdepth | 5 The maximum recursion depth.
string strategy “all” The strategy to use for sampling direct light-

ing. Valid options are “all”, which samples all
the lights uniformly and averages their contri-
butions, and “one”, which chooses a single light
uniformly at random.

The “glossyprt” integrator implements the glossy precomputed radiance transfer al-
gorithm described in Section 17.5 of PBR. As with the “diffuseprt” integrator, it both
computes the SH representation of scattering at each point and then computes the ef-
fect of this scattering with the light in the scene. In general, one would precompute the

19

scattering properties and then compute the scattering in a real-time renderer.
Furthermore, note that this integrator ignores the properties of the materials bound

to objects in the scene but instead uses a simple parameterized material model for all

scene objects. The reasons for this, and alternative approaches are discussed at the top

of page 980.
Type Name Default Description
Value

integer Imax 4 Maximum SH band number [to use.
Given a particular value of Imax,
(Imax+1)*(Imax+1) SH coefficients will
be used.

integer nsamples 4096 Number of Monte Carlo samples to use in
the various computations projecting quanti-
ties into SH.

spectrum Kd 0.5 Diffuse reflectance spectrum of surfaces.

spectrum Ks 0.25 Glossy reflectance of surfaces.

float roughness 0.1 Surface roughness, for use with the Blinn mi-

crofacet distributions.

The “instant global illumination” algorithm is implemented by the “igi” integrator.

Type Name Default Description
Value

integer maxdepth) The maximum recursion depth for specular
reflection and transmission.

integer nlights 64 The number of virtual light paths to follow
for each of the light sets. The more paths
followed, the better the result in general,
though the longer rendering takes.

integer nsets 4 The number of independent virtual light

sets to compute. In general, this number
should be equal to the number of pixel sam-
ples taken by the sampler; this should ensure
that in each pixel area, each of the light sets
is used exactly one time. If this number is
larger than the number of pixel samples, the
image may be noisy, as different pixels will
use different virtual lights.

Type Name Default Description
Value

float rrthreshold 0.0001 Russian roulette threshold for terminating
shadow rays that connect the point being
shaded to a virtual light source.

float glimit 10 Maximum allowed value of the geomet-
ric coupling term G; see Equations 15.11
through 15.12 on pages 782-783. If images
have unexpected bright regions, reducing
this value should cause them to disappear.

integer gathersamples 16 Number of “final gather” samples to take at

points where the G limit was applied.

The irradiance caching integrator is used when the “irradiancecache” SurfaceIntegrator

is specified.

Type

Name

Default
Value

Description

float

minweight

0.5

Minimum weight for the interpolated irradi-
ance samples. If the sum of interpolated sample
weights is less than this value, a new sample is
computed.

float

minpixelspadi

Minimum distance, in pixels, between irradiance
samples. No samples nearer this distance will be
generated.

float

maxpixelspa

i

Maximum distance, in pixels, between irradiance
samples. Even if the other error terms indicate
that a sample can be used at a point being
shaded, if it is more than this many pixels away
on the image plane, it is ignored.

float

maxangledifferddhce

Maximum allowed difference in the angle be-
tween the surface normal at an irradiance lookup
point and the surface normal of an irradiance
sample.

integer

maxspecular

d&pth

Maximum recursion depth for tracing specular
reflection and refraction rays.

integer

maxindirect

lepth

Maximum recursion depth for tracing paths to
compute irradiance estimates.

integer

nsamples

4096

How many rays are used to estimate the irradi-
ance value at a point.

21

The “path” integrator takes just a single parameter.

Type Name Default Description
Value
integer maxdepth 5 The maximum length of a path.

Photon mapping is implemented by the “photonmap” integrator.

Type

Name

Default
Value

Description

integer

causticphota2($,000

The number of photons required to build the caustic
photon map. The more caustic photons traced, the
more accurately caustics will be represented in the
scene, though the more memory will be required to
store them.

integer

indirectphd

t008,000

The number of photons required to build the indirect
illumination map. As with caustic photons, increasing
the number of photons improves the result at the cost
of more memory.

integer

nused

50

The number of photons to use in density estimation.

integer

maxspeculs

arblepth

The maximum number of levels of specular reflection
and refraction.

integer

maxphoton

depth

The maximum number of levels of scattering to follow
when tracing photon paths from light sources.

float

maxdist

0.1

The maximum distance between a point being shaded
and a photon that can contribute to that point.

bool

finalgather

true

If true, do a final gather when estimating the indirect
illumination. Otherwise, just use the photon map at
the hit point. (In general, final gathering gives sub-
stantially better results, but is much more computa-
tionally intensive.)

integer

finalgather

sadfiples

Number of samples to use when performing the final
gather. In general, a few thousand or so final gather
samples are needed in each pixel area to give good
results. However, it’s the product of the number of
pixel samples and the number of final gather samples
that matters; for 32 or 64 pixel samples at each pixel,
this default generlaly works well.

22

Type Name Default| Description
Value
float gatherangle 10 The photons around the point being shaded are used

to construct an importance sampling distribution for
final gathering by computing small cones around the
incident direction of each one. (The notion being that
these directions indicate the important directions for
incident indirect illumination at the point.) This pa-
rameter sets the spread angle of these cones. Too nar-
row an angle may miss important indirect illumina-
tion directions, while too wide an angle may reduce

the effectiveness of this small optimization.

The “useprobes” integrator uses a set of radiance probes encoded in spherical harmon-
ics, such as those computed by the CreateRadianceProbes renderer. At each point being
shaded, it computes the diffuse reflectance and then uses the SH convolution formula to
compute the outgoing scattered radiance due to the incident illumination in the scene.

Type Name Default Description
Value
string filename “probes.out’

The “whitted” integrator takes a single parameter that sets the maximum ray tree
depth. In general, the “directlighting” integrator should be used in preference to the
“whitted” integrator, as it uses better sampling algorithms for direct lighting from area
light sources. (The “whitted” integrator is simplified in this respect for better clarity of
presentation of the basic ray tracing algorithm.)

Type Name Default Description
Value
integer maxdepth 5 The maximum recursion depth.

Volume Integrators

pbrt provides two volume integrators; the default is EmissionIntegrator, which only
accounts for volumetric attenuation and emission. The SingleScatteringIntegrator
computes the effect of single scattering and can thus render volumetric shadows, though
it can be substantially more computationally intensive.

23

Name Implementation Class

“emission” EmissionIntegrator

“single” SingleScatteringIntegrator

Both volume integrators take a single parameter, which specifies the distance in world
space along the ray to go forward at each step. In general, smaller values will cause ren-
dering to take longer, but will better resolve fine-scale details in the volume description.

Type Name Default Description
Value
float stepsize 1 The stepping distance along a ray when do-
ing ray marching.

Accelerators

The type of aggregate to use for efficiently finding ray-shape intersections is defined with
the Accelerator directive:

Accelerator "kdtree" "float emptybonus" [0.1]

The default accelerator, “bvh”, is generally a good choice; it is rarely worthwhile to
specify a different accelerator or to need to change the accelerator’s parameters to im-
prove performance.

Three accelerator implementations are available in pbrt:

Name Implementation Class
“bvh” BVHAccel

“grid” GridAccel

“kdtree” KdTreelAccel

The “bvh” accelerator, the default, takes just two parameters. This accelerator is effi-
ciently constructed when the scene description is processed, while still providing highly
efficient ray-shape intersection tests.

Type Name Default| Description
Value
integer maxnodeprins Maximum number of primitives to allow in a node in

the tree. Once the primitives have been split to groups
of this size or smaller, a leaf node is created.

24

Type Name Default| Description
Value
string splitmethod‘sah” Method to use to partition the primitives when build-

ing the tree. The default, “sah”, denotes the surface area
heuristic; the default should almost certainly be used.
The other options--“middle”, which splits each node at
its midpoint along the split axis, or “equal”, which splits
the current group of primitives into two equal-sized sets-
-are slightly more efficient to evaluate at tree construc-
tion time, but lead to substantially lower-quality hier-
archies.

The “grid” accelerator takes only a single parameter. While this accelerator is ex-
tremely efficient to create, it is substantially lower performance than the others at ray-
shape intersection time.

Type Name Default| Description
Value
bool refineimmedulbely | If true, primitives are fully refined as soon as they are

added to the grid. Otherwise, they are not refined until
a ray enters a voxel that contains the primitive.

Finally, the “kdtree” accelerator takes a number of parameters that control its con-
struction. This accelerator takes substantially longer to create than “bvh” at scene def-
inition time, but it can be marginally faster at finding ray-shape intersections. It tends

to require less memory than “bvh”.

See page 234 of the second edition of the book for the details of the cost function used
for building kd-trees (and thus the use of some of the the various parameters below.)

Type Name Default| Description
Value

integer intersectcos80 The value of the cost function that estimates the ex-
pected cost of performing a ray-object intersection, for
use in building the kd-tree.

integer traversalcost Estimated cost for traversing a ray through a kd-tree
node.

float emptybonu$.2 “Bonus” factor for kd-tree nodes that represent empty

space.

25

Type

Name

Default
Value

Description

integer

maxprims

1

Maximum number of primitives to store in kd-tree node.
(Not a hard limit; more may be stored if the kd-tree
can’t find splitting planes that reduce the number of
primitives when refining a node.)

integer

maxdepth|

Maximum depth of the kd-tree. If negative, the kd-tree
chooses a maximum depth based on the number of prim-

itives to be stored in it.

Specifying the World

After the camera, film, and rendering options have been set, the WorldBegin directive
marks the start of the scene definition (the “world block”). In the world block, the lights,
materials, and geometric shapes that make up the scene are defined. After WorldBegin,
the directives described in the Specifying Scene-Wide Rendering Options section are all
illegal; an error message will be printed if one is encountered. (Similarly, the directives
documented in this section are illegal outside of the world block.) The end of the world
block is denoted by the WorldEnd directive; when it is encountered, the chosen Renderer
takes over and does the requested rendering computation.

e Attributes

e Shapes

e Object Instancing
e Lights

e Area Lights

e Materials

o Textures

e Scattering Volumes

Attributes

A number of directives modify the current graphics state--examples include the transfor-
mation directives (Specifying Transformations), and the directive that sets the current
material. The current graphics state (including the current transformation matrix) can
be saved and restored using the AttributeBegin and AttributeEnd directives:

Material "matte"

AttributeBegin
Material "plastic"
Shape "sphere"

26

AttributeEnd # back to the "matte" material
Shape "cone"

The transformation matrix can be saved and restored independently of the graphics
state using TransformBegin and TransformEnd.

Scale 2 2 2
TransformBegin
Translate 1 0 1
Shape "sphere"
TransformEnd # Translate no longer applies here

In addition to the current transformation matrix and material, the reverse-orientation
setting, specified by the ReverseOrientation directive, is part of the graphics state.
This directive, when active, flips the surface normal of the shapes that follow it; it can
be useful when specifying area light sources, which only emit light from the side their
surface normal points from, and when specifying transparent materials, where the surface
normal is used to determine whether rays are entering or exiting the refractive medium.

Shapes

Shapes are specified with the Shape directive; it takes the name of a shape implementa-
tion and a parameter list used to define the shape’s properties:

Shape “name” parameter-list
For example,
Shape "sphere" "float radius" [0.25]

When a Shape directive is encountered, the current transformation matrix defines the
object to world transformation for the shape.

A number of shapes are provided by pbrt; this list shows the mapping from shape
names to implementation class in the system.

Name Implementation Class
“cone” Cone

“cylinder” Cylinder

“disk” Disk

“hyperboloid” Hyperboloid
“heightfield” Heightfield
“loopsubdiv” LoopSubdiv

“nurbs” NURBS

“paraboloid” Paraboloid

27

Name Implementation Class
“sphere” Sphere
“trianglemesh” TriangleMesh

The extent of the “cone” shape is defined by three parameters; note that the cone is
oriented along the z axis in object space; the current transformation matrix can be used
to orient it differently in the scene’s world space.

Type Name Default Description
Value
float radius 1 The cone’s radius.
float height 1 The height of the cone along the z axis.
float phimax 360 The maximum extent of the cone in phi (in
spherical coordinates).

Similarly, “cylinder” is oriented along the z axis as well. It takes four parameters.

Type Name Default | Description
Value

float radius 1 The cylinder’s radius.

float zmin -1 The height of the cylinder’s bottom along the
7 axis.

float zmax 1 The height of the cylinder’s top along the z
axis.

float phimax 360 The maximum extent of the cylinder in phi (in
spherical coordinates).

The “disk” is perpendicular to the z axis, with its center at x=0 and y=0.

Type Name Default Description
Value
float height 0 The location of the disk along the z axis.
float radius 1 The outer radius of the disk.
float innerradius | 0 The inner radius of the disk (if nonzero, the
disk is an annulus).

28

Type Name Default Description
Value
float phimax 360 The maximum extent of the disk in phi (in
spherical coordinates).

The “heightfield” shape isn’t described in the pbrt book text; it’s essentially a compact
way to describe a regular triangulated mesh. The user provides resolutions in the u and
v directions and then a series of height values. The height values give the z values for a
series of vertices over [0,1]°2 in (z,y).

Type Name Default Description
Value
int nu, nv none Number of sample values in each direction.
The total number of triangles in the mesh
is 2 * (nu-1) * (nv-1).
float[nu*nv] Pz none Array of height values to specify the hieight-
field.

“hyperboloid” takes two points to define the line of revolution that sweeps out its
surface.
Type Name Default | Description
Value

point pl 000 The first end point of the hyperboloid’s line of
revolution.

point p2 111 The second end point of the hyperboloid’s line
of revolution.

float phimax 360 The maximum extent of the hyperboloid in phi
(in spherical coordinates).

The “loopsubdiv” shape corresponds to a subdivision surface evaluated with Loop’s
subdivision rules.

Type Name Default Description
Value
integer nlevels 3 The number of levels of refinement to compute in
the subdivision algorithm.

29

Type Name Default Description
Value
integer|n] indices required-- Indices for the base mesh. Indexing is the same
no default as for the triangle mesh primitive. (See “trian-
glemesh” below).
point[n] P required-- Vertex positions for the base mesh. This is the
no default same as for the triangle mesh primitive. (See “tri-
anglemesh” below).

“nurbs” can be used to define a NURBS surface. The current implementation does a
fixed-rate tessellation, with tesselation rate provided directly by the user.

Type Name Default Description
Value
integer nu, nv none--must | Number of control points for NURBS patch in the
be specified | u and v parametric directions.
integer uorder, see descrip- | Order of NURBS surface in u and v directions.
vorder tion (Order is equal to one plus the surface’s degree.)

float[nu+uo]

raekmhots

none--must
be specified

Knot vector for NURBS in the u direction.

float[nv+vo

rddehots

none--must
be specified

Knot vector for NURBS in the v direction.

be specified

float u0, v0 none--must Starting u and v parametric coordinates at which
be specified | to evaluate NURBS.
float ul, vl none--must | Ending u and v parametric coordinates at which

to evaluate NURBS.

point[nu*nv] P none Either the P or Pw parameter must be specified to
give the surface’s control points. P gives regular
control points.

float[4*nu*nvlPw none Specifies rational control points, with an addi-

tional per-vertex weight value.

Here are the parameters for “paraboloid”.

Type Name Default | Description
Value
float radius 1 The paraboloid’s radius.

30

Type Name Default | Description
Value

float zmin 0 The height of the lower clipping plane along the
Z axis.

float zmax 1 The height of the upper clipping plane along the
z axis.

float phimax 360 The maximum extent of the paraboloid along
phi (in spherical coordinates).

And these are the “sphere” parameters.

Type Name Default Description
Value

float radius 1 The sphere’s radius.

float zmin radius The height of the lower clipping plane along
the z axis.

float zmax radius The height of the upper clipping plane along
the z axis.

float phimax 360 The maximum extent of the sphere in phi (in
spherical coordinates).

An arbitrary triangle mesh is defined by the “trianglemesh” shape. The mesh’s topology
is defined by the indices parameter, which is an array of integer indices into the vertex
arrays. Each successive triplet of indices defines the offsets to the three vertices of one
triangle; thus, the length of the indices array must be a multiple of three.

Here is an example of a small triangle mesh:

Shape "trianglemesh"
"point P" [550 0 O

"integer indices" [0 2 1 0 3 2]

00O

0 0 560 550 0 560]

Here, we have an array of four vertices in the P parameter. The indices array defines

two triangles that use these vertices--the first one has vertex positions (550,0,0), (0,0,560),
and (0,0,0). Note that both triangles use vertices 0 and 2. Because the triangle mesh is
specified in a way that makes this vertex reuse explicit, the in-memory representation
of the triangle mesh can be more compact than if each triange had to explicitly and
privately store all of its per-vertex data.

31

Type Name Default Description
Value
integer|n] indices required--no The array of integer offsets into the per-
default vertex data arrays (P, and any of N, S, or
uv that are present.)
point[n] P required--no The vertex positions of the triangle mesh.
default
normal[n] N none-- Per-vertex normals. If present, shading
optional normals will be computed from these val-
ues.
vector[n] S none-- Per-vertex tangents.
optional
float[2*n] uv none-- Per-vertex texture coordinates.
optional
float texture | alpha none Optional “alpha” texture. (See the Tex-
tures section for more information about
textures in pbrt.) When provided, at any
point on the triangle where the alpha tex-
ture evaluates to have the value zero, the
triangle is cut away and any ray intersec-
tion is ignored.

Object Instancing

If a complex object is used repeatedly in a scene, object instancing may be desirable; this
lets the system store a single instance of the object in memory and just record multiple
transformations to place it in the scene. Object instances are created via named objects.

To create a named object, its definition should be placed within an ObjectBegin/ObjectEnd
pair:

ObjectBegin "name"
Shape ...
Shape ...
ObjectEnd

When a named object is defined, the current transformation matrix defines the trans-
formation from object space to the instance’s coordinate space.

After a named object has been defined, it can be instantiated with the ObjectInstance
directive. The current transformation matrix then defines the instance space to world
space transformation; thus, the final transformation for a shape in an object instance
definition is the composition of the CTM when the instance was defiend and the CTM
when the instance was instantiated.

Thus, two instances of an object named “foo” are instantiated in the following:

32

ObjectInstance "foo"
Translate 1 0 O
ObjectInstance "foo"

Lights

Light sources are of course required to cast illumination in the scene. pbrt provides two
types of lights: lights that exist in the scene without any geometry associated with them,
and lights that describe emission from one or more shapes in the scene (area lights).

The first type of light is defined with the LightSource directive. There are 6 light
sources of this type that are currently available in pbrt.

Name Implementation Class
“distant” DistantLight
“goniometric” GonioPhotometricLight
“infinite” InfiniteArealight
“point” PointLight

“projection” ProjectionLight

“spot” SpotLight

For example, the following defines a point light source with RGB intensity of (0.5, 0.5,
0.5):

LightSource "point" "rgb I" [.5 .5 .5]

When a light source definition is encountered, the current transformation matrix is
used to define the light-to-world transformation. Many of the light sources also take
parameters to place it in the scene; both ways of placing lights can be useful.

all lights have a spectrum scale 1 1 1

The “distant” light source represents a directional light source “at infinity”; in other
words, it illuminates the scene with light arriving from a single direction. It takes these
parameters:

Type Name Default | Description
Value
spectrum L rgb (1 1 | The radiance emitted from the light source.
1)
point from (0,0,0) “from” and “to” define the direction vector along
which illumination from the light arrives at the
scene. The defaults give a light that shines along
the z axis.

33

Type Name Default | Description
Value
point to (0,0,1)

The “goniometric” light represents a point light source with directionally-varying emis-
sion, where the emission distribution is represented by a texture map. This representation
can be useful for modeling many real-world light sources, where measurements of this
distribution may be available.

Given a normalized outgoing direction w from the goniometric light source to a point
in the scene, the image coordinates in the goniometric diagram file are found using a
(theta, phi) parameterization in spherical coordinates. Here, the theta angle is measured
with respect to the y axis, and z and z define phi. (Elsewhere in pbrt, the z axis is

generally used to measure theta.)

Type Name Default Description
Value
spectrum I rgb (111) A radiant intensity scale-factor; the radi-
ant intensity in a particular direction is
computed as the product of this value and
the appropriate value from the goniomet-
ric diagram table.
string mapname required--no The filename of the image file that stores
default a goniometric diagram to use for the light-
ing distribution.

The “infinite” light represents an infinitely far away light source that potentially casts

illumination from all directions. It is useful for modeling incident light in complex real
environments (“HDR lighting”). It takes an environment map with a “latitude-longitude”
parameterization, where given a direciton vector w, the spherical (theta, phi) coordinates
are found, and then the u coordinate of the environment map is indexed by the phi value
and v is indexed by theta. (If needed, the environment map can be reoriented with the
light to world transformaiton.)

Type Name Default | Description
Value
spectrum L rgb (1 1 | A radiance scale factor for the light; final emitted
1) radiance values for a particular direction are com-
puted as the product of this value and the radiance
value found from the environment map.

34

Type

Name

Default
Value

Description

integer

nsamples

1

Suggested number of shadow samples to take when
computing illumination from the light. Depending
on the number of pixel samples being taken, this
value may need to be increased to reduce noise in
the illumination computation for the light.

string

mapname

none

The environment map to use for the infinite area
light. If this is not provided, the light will be a solid
color.

“point” defines a simple point light that casts the same amount of illumination in all
directions. It takes two paramters:

Type Name Default Description

Value
spectrum I rgb (1 1 1) | The light’s emitted radiant intensity.
point from 000 The location of the light.

The “projection” light acts like a slide projector; the given image is used to define a 2D
emission distribution that is projected with a center of projection at the light’s position.
Directions outside the frustum of light projection receive no emitted illumination.

Type Name Default Description
Value
spectrum I rgb (1 11) | Radiant intensity scale factor; the intensity in
a given direction is the product of this value
and the value from the image map for the cor-
responding direction.
float fov 45 The spread angle of the projected light, along
the shorter image axis.
string mapname | required-- The image to project into the scene.
no default

A spotlight is defined by the “spot” light source. The spotlight is defined by a lighting
direction and then two angles that specify a cone of directions in which light is emitted.

35

Type

Name

Default
Value

Description

spectrum

rgb (111)

Maximum radiant intensity of the light; this is
the emitted radiant intensity in the center of
the illumination cone. It falls off to zero outside
of the cone.

point

from, to

see descrip-
tion

Two points defining the lighting vector. The de-
faults are (0,0,0) and (0,0,1), respectively. This
gives a light that is pointing down the z axis.

float

coneangle

30

The angle that the spotlight’s cone makes with
its primary axis. For directions up to this angle
from the main axis, the full radiant intensity
given by “I” is emitted. After this angle and up
to “coneangle” + “conedeltaangle”, illumination
falls off until it is zero.

float

conedeltaan

gle

The angle at which the spotlight intensity be-
gins to fall off at the edges.

Area Lights

Area lights have geometry associated with them; the shape and size of the emitting
shapes have a substantial effect on the resulting emitted radiance distribution. After an
AreaLlightSource directive, all subsequent shapes emit light from their surfaces accord-
ing to the distribution defined by the given area light implementation.

The current area light is saved and restored inside attribute blocks; typically area
light definitions are inside an AttributeBegin/AttributeEnd pair in order to control
the shapes that they are applied to.

AttributeBegin
ArealightSource "diffuse" "rgb L" [.5 .5 .5]
Translate 0 10 O

Shape "sphere" "float radius"

AttributeEnd
area light is out of scope, subsequent shapes aren’t emitters

[.25]

pbrt currently only includes a single area light implementation, “diffuse”.

Name

Implementation Class

“diffuse”

DiffuseArealight

The “diffuse” area light defines an emitter that emits radiance uniformly over all direc-

36

tions in the hemisphere around the surface normal at each point on the surface. Thus, the
orientation of the surface normal is meaningful; by default, an emitting sphere emits in
the directions outside the sphere and there’s no illumination inside of it. If this is not the
desired behavior, the ReverseOrientation directive can be used to flip the orientation
of the surface normal of subsequent shapes:

AttributeBegin
ArealightSource "diffuse"
ReverseOrientation # illuminate inside the sphere
Shape "sphere"

AttributeEnd

The “diffuse” area light takes just two parameters.

Type Name Default | Description
Value

spectrum L rgb (1 1 | The amount of emitted radiance at each point
1) and emitted direction..

integer nsamples 1 Suggested number of shadow samples to take

when computing illumination from the light. (In-
tegrators may use a value close to but not neces-
sarily equal to this value or may ignore it com-
pletely.)

Materials

Materials specify the light scattering properties of surfaces in the scene. The Material
directive specifies the current material, which then applies for all subsequent shape def-
initions (until the end of the current attribute scope or until a new material is defined:

Material "matte" "rgb Kd" [.7 .2 .2 1]

Many parameters to materials are distinctive in that textures can be used to specify
spatially-varying values for the parameters. For example, the above material definition
defines diffuse surface with the same reddish color at all points. Alternatively, we might
want to use an image map to define the color as a function of (u,v) on the surface. This
is done by defining a texture with a user-defined name (below, “lines-tex”), and then
binding that to the desired parameter of the material. For example, the following sets
the “Kd” parameter of the “matte” material to be computed via lookups to the “lines.exr”
image map.

Texture "lines-tex" "spectrum" "imagemap" "string filename" "textures/lines.exr"
Material "matte" "texture Kd" "lines-tex"

37

Note that for each parameter (for example, “Kd” in the above), a value for the pa-
rameter can either be bound with a constant value, in which case the given type of the
parameter should be “float”, “rgh”, “spectrum?”, etc., as appropriate, or a texture value, in
which case the given type of the parameter should be “texture” and the parameter value
bound is the name of a texture. (The next section of this document, Textures, describes
the textures available in pbrt as well as their parameters.)

Finally, it is sometimes useful to name a material. A named material is a material and
a set of parameter bindings (to constant values or to textures). It is defined with the
MakeNamedMaterial directive. A named material can be set to be the current material
with the NamedMaterial directive.

MakeNamedMaterial "myplastic" "plastic" "float roughness" [0.1]
Material "matte" # current material is "matte"
NamedMaterial "myplastic" # current material is "plastic" as above

This table lists the materials available in pbrt and the corresponding class in the
source code distribution that implements each of them.

Name Implementation Class
“glass” GlassMaterial
“kdsubsurface” KdSubsurfaceMaterial
“matte” MatteMaterial
“measured” MeasuredMaterial
“metal” MetalMaterial
“mirror” MirrorMaterial

“mix” MixMaterial

“plastic” PlasticMaterial
“shinymetal” ShinyMetal

“substrate” SubstrateMaterial
“subsurface ” SubsurfaceMaterial
“translucent” TranslucentMaterial
“uber” UberMaterial

All of the above materials take a texture that can be used to specify a bump map.

Type Name Default Description
Value
float texture bumpmap None The floating-point texture to be used as a
bump map.

38

The “glass” material has parameters that specify the reflectivity and transmissivity.
These values are both modulated by the Fresnel equations for dielectric materials, which
also ensure energy conservation (as long as neither “Kr” nor “Kt” is ever greater than
one.)

Type Name Default Description
Value

spectrum tex- | Kr 1 The reflectivity of the surface.

ture

spectrum tex- | Kt 1 The transmissivity of the surface.

ture

float texture index 1.5 The index of refraction of the inside of the
object. (pbrt implicitly assumes that the
exterior of objects is a vacuum, with IOR
of 1.)

The “kdsubsurface” material provides a convenient way to specify the scattering ma-
terials of a material that exhibits subsurface scattering. (The parameters to the “subsur-
face” material, below, are often difficult to set to achieve a desired visual result.) Here,
the user can specify a diffuse reflection color, “Kd”, and the mean free path--the average
distance that light travels in the medium before scattering. (The smaller the mean free
path, the thicker the medium is.) These two values are then used to derive scattering
coefficients for the medium.)

Type Name Default | Description

Value
spectrum tex- | Kd 0.5 Diffuse scattering coefficient used to derive
ture scattering properties.
float texture | meanfreepath 1 Average distance light travels in the medium

before scattering.

float texture | index 1.3 The index of refraction inside the object.
spectrum tex- | Kr 1 Specular reflection term; this coefficient is
ture modulated with the dielectric Fresnel equation

to give the amount of specular reflection.

The “matte” material defines an object with simple Lambertian scattering. It takes
two parameters.

39

Type Name Default Description

Value
spectrum tex- | Kd 0.5 The diffuse reflectivity of the surface.
ture
float texture sigma 0 The sigma parameter for the Oren-Nayar

model, in degrees. If this is zero, the surface
exhibits pure Lambertian reflection.

The “measured” material can be used with files that store measured reflection data.
(pbrt supports two file formats for measured BRDF data; see the comments in the file
src/materials/measured.cpp for discussion of their formats.)

Type Name Default Description
Value
string filename none Name of file with measured reflection data
to be loaded.

The “metal” material describes scattering from metals, where the index of refraction
(eta) and the absorption coefficient (k) describe metals’ reflectance spectra. These and
a roughness parameter, which adjusts the microfacet distributions roughness, describe
the overall material. See the scenes/spds/metals directory in the pbrt distribution for
spectra of the IOR and absorption coefficients of a variety of metals.

Type Name Default | Description
Value

spectrum tex- | eta (copper) Index of refraction to use in computing the ma-

ture terial’s reflectance.

spectrum tex- | k (copper) | Absorption coefficient to use in computing the

ture material’s reflectance.

float texture | roughness 0.01 Roughness of the material’s microfacet dis-
tribution. Smaller values become increasingly
close to perfect specular reflection. This value
should be between zero and one.

The “mirror” material is a simple specular reflector. The amount of reflection isn’t
modified by the Fresnel equations.

40

Type Name Default Description

Value
spectrum tex- | Kr 0.9 The reflectivity of the mirror. This value can
ture be used to make colored or dim reflections.

The “mix” material interpolates between two previously-named materials using a tex-
ture. This allows spatially-varying variation between two materials.

Type Name Default Description

Value
spectrum tex- | amount 0.5 Weighting factor for the blend between ma-
ture terials. A value of zero corresponds to just

“namedmateriall”, a value of one corred-
ponds to just “namedmaterial2”, and values
in between interpolate linearly.

string namedmaterigl (none) Name of first material to be interpolated
between.

string namedmateriglZnone) Name of second material to be interpolated
between.

“plastic” defines a simple plastic material, described by diffuse and specular reflection
coefficients as well as a roughness value that describes how much variation there is in
the microfacet distribution that models glossy specular reflection.

Type Name Default Description
Value

spectrum tex- | Kd 0.25 The diffuse reflectivity of the surface.

ture

spectrum tex- | Ks 0.25 The specular reflectivity of the surface.

ture

float texture roughness 0.1 The roughness of the surface, from 0 to 1.
Larger values result in larger, more blurry
highlights.

The “shinymetal” material is only present for backwards compatibility with scenes from
pbrt-v1. It shouldn’t be used for any new scenes; the new “metal” material provides a
much more accurate model of reflection from metals.

41

Type Name Default Description

Value
float texture roughness 0.1 The roughness of the surface.
spectrum tex- | Ks 1 The coefficient of glossy reflection.
ture
spectrum tex- | Kr 1 The coefficient of specular reflection.
ture

The “substrate” material mixes between diffuse and glossy reflection based on the
viewing angle--this models many realistic materials, which become increasingly specular
as the viewing angle approaches grazing. It also supports anisotropic microfacet models,
with two roughness parameters.

Type Name Default Description
Value

spectrum tex- | Kd 0.5 The coefficient of diffuse reflection.

ture

spectrum tex- | Ks 0.5 The coefficient of specular reflection.

ture

float texture uroughness 0.1 The roughness of the surface in the u direc-
tion.

float texture vroughness 0.1 The roughness of the surface in the v direc-
tion.

The “subsurface” material is another material that describes subsurface scattering.
It allows directly setting the absorption coefficient and reduced scattering coefficient.
(These values are generally difficult to set manually to achieve a desired look; the “kd-
subsurface” material is usually better for that. However, if measured data is available,
this material is the appropriate one.) This material also supports setting the scattering
properties using values that have been measured by various researchers.

Type Name Default Description
Value

string name none Name of measured subsurface scattering co-
efficients. See the file src/core/volume.cpp
in the pbrt distribution for all of the mea-
surements that are available.

spectrum sigma._a (.0011, .0024, | Absorption coefficient of the volume, mea-

texture .014) sured in mm”™-1.

42

Type Name Default Description
Value

spectrum sigma_prime| §2.55, 3.12, | Reduced scattering coefficient of the vol-

texture 3.77) ume, measured in mm”-1.

float scale 1 Scale factor that is applied to sigma_a and
sigma_prime_s. This is particularly useful
when the scene is not measured in mm and
the coefficients need to be scaled accord-
ingly. For example, if the scene is modeled
in meters, then a scale factor of 0.001 would
be appropriate.

float texture | index 1.3 Index of refraction of the scattering volume.

The “translucent” material models transmission through thin objects (like leaves).

Type Name Default Description
Value
spectrum tex- | Kd 0.25 The coefficient of diffuse reflection and
ture transmission.
spectrum tex- | Ks 0.25 The coefficient of specular reflection and
ture transmission.
spectrum tex- | reflect 0.5 Fraction of light reflected.
ture
spectrum tex- | transmit 0.5 Fraction of light transmitted.
ture
float texture roughness 0.1 The roughness of the surface. (This value
should be between 0 and 1).

Finally, the “uber” material is a “kitchen
specular, and specular reflection.

sink” material that supports diffuse, glossy

Type Name Default | Description

Value
spectrum tex- | Kd 0.25 The coefficient of diffuse reflection.
ture
spectrum tex- | Ks 0.25 The coefficient of glossy reflection.
ture

43

ture

Type Name Default | Description
Value

spectrum tex- | Kr 0 The coefficient of specular reflection.

ture

float texture | roughness 0.1 The roughness of the surface.

float texture | index 1.5 Index of refraction of the surface. This value is
used in both the microfacet model for specular
reflection as well as for computing a Fresnel
reflection term for perfect specular reflection.

spectrum tex- | opacity 1 The opacity of the surface. Note that when less

than one, the uber material transmits light
without refracting it.

Textures

Texture “name” “type

For example,

class” [parameter-list J

Texture "mydiffuse" "spectrum" "imagemap" "string filename" "image.tga"
Material "matte" "texture Kd" "mydiffuse"

The Texture statement creates a named texture of a particular type. Currently, the
only types that are supported are spectrum (color can be used a synonym for this) and

float.

pbrt provides the following texture implementations:

Name Implementation Class
“bilerp” BilerpTexture
“checkerboard” Checkerboard2DTexture
“checkerboard” Checkerboard3DTexture
“constant” ConstantTexture

“dots” DotsTexture

“hbm” FBmTexture

“imagemap” ImageTexture

“marble” MarbleTexture

“mix” MixTexture

“scale” ScaleTexture

“uav” UVTexture

44

Name Implementation Class
“windy” WindyTexture
“wrinkled” WrinkledTexture

In the below, note that a number of textures (e.g. “mix”) themselves take textures as
parameters; thus, one can build up small “trees” of computation to compose a series of
texture functions.

Textures can be separated into three categories: any-D, 2D, and 3D. Any-D textures
are ConstantTexture, ScaleTexture, and MixTexture. These kinds of textures do not
have a specific dimensionality and have no common arguments.

2D textures use the (u,v) parametric coordinates on a surface for evaluation. They are
BilerpTexture, ImageTexture, UVTexture, CheckerboardTexture, and DotsTexture.
2D textures have the following common parameters:

Type

Name

Default
Value

Description

string

mapping

[43 2

uv

A string specifying the kind of texture coordinate
YV RIS

mapping to use. Legal values are: “uv”, “spherical”,
“cylindrical”; or “planar”.

float

cale

uscale, vs-

Scaling factors to be applied to the u and v tex-
ture coordinates, respectively. These parameters
are only meaningful if the texture coordinate map-
ping type has been set to “uv”.

float

udelta,
vdelta

An offset to be applied to the u and v texture co-
ordinates, respectively. These parameters are only
meaningful if the texture coordinate mapping type
has been set to “uv” or “planar”.

vector

vl, v2

see de-
scription

vl and v2 are two vectors that define a planar map-
ping. The defaults are (1,0,0) and (0,1,0), respec-
tively. These parameters are only meaningful if the
texture coordinate mapping type has been set to
“planar”.

3D textures use a texture space point location to evaluate themselves. The current
transformation matrix at the time they are created gives the transformation from object
space. They are CheckerboardTexture, FBmTexture, WrinkledTexture, MarbleTexture,
and WindyTexture. Note that CheckerboardTexture is the only texture that can be ei-
ther a 2D or 3D texture (see its plug-in specific parameter settings in the following). 3D

textures have no common parameters.

Most of the provided textures can generate either Spectrum or float values, which is

45

why many of the following descriptions have the spectrum/float type.
The “constant” texture is just a convenience that always returns a given constant value.

Type Name Default Description

Value
spectrum/float | value 1 The constant value of this texture.
texture

“scale” takes two textures as parameters, evaluates each of them, and returns their
product. It is often convenient to scale a texture used as a bump map by a constant
float value to modulate the perceived height of the bumps, for example.

Type Name Default | Description

Value
spectrum/float | tex1, tex2 1 These two textures will be multiplied together
texture by the ScaleTexture.

“mix” takes two textures and lienarly interpolates between their values according to
the “amount” parameter (which may itself be a texture).

Type Name Default | Description
Value
spectrum/float | texl 0 One of the two textures to be mixed.
texture
spectrum/float | tex2 1 The other texture to be mixed. These two tex-
texture tures must be of the same type.
float texture amount 0.5 The amount to use when linearly interpolating
between the two mix textures.

“bilerp” bilinearly interpolates between the four textures using the (u,v) parametric
coordinate. The v0O parameter represents the texture to use at (0,0), and so forth.

Type Name Default Description
Value
spectrum/float | v00, v01, | see de- | The four values to be bilinearly interpo-
texture v10, v11 scription lated between. They default to 0, 1, 0, and
1, respectively.

46

Image maps can be provided with the “imagemap” texture.

Type

Name

Default
Value

Description

string

filename

required--
no default

The filename of the image to load. Currently
pbrt supports TGA, PFM, and EXR format
images.

string

wrap

“repeat”

What to do with texture coordinates that fall
outside the legal [0,1] range. Legal values are
“repeat”, which simply tiles the texture; “black”,
which returns black when outside the legal
range; and “clamp”, which always returns the
nearest border texel.

float

maxanisotr

1%y

The maximum elliptical eccentricity for the
EWA algorithm.

bool

trilinear

false

If true, perform trilinear interpolation when
looking up pixel values. Otherwise, pbrt uses
the EWA algorithm for texture filtering. EWA
gives much better results, but is slower.

float

scale

Scale factor to apply to value looked up in tex-
ture.

float

gamma

“Gamma’” value for optional gamma correction
to looked-up values. This is useful for textures
that aren’t encoded in a linear color space.

The “checkerboard” texture is a simple texture that alternates between two other

textures.
Type Name Default | Description
Value
integer dimension | 2 Sets the dimension of the checkerboard texture.

Legal values are 2 and 3.

spectrum/float| texl 1 The texture to use for even checks.

texture

spectrum/float| tex2 0 The texture to use for odd checks.

texture

string aamode “closedformBet the antialiasing mode for the checkerboard

texture. Legal values are “closedform” or “none”.
This parameter is only legal for 2D checker-
boards.

47

The “dots” texture generates a random collection of polka dots.

Type Name Default | Description
Value
spectrum/float | inside, out- | see de- | The textures to use for coloring the dots and
texture side scription | the background. The defaults are 1 and 0, re-
spectively.

“fbm” and “wrinkled” are two textures based on the Perlin noise function. They are 3D
textures, so the scale of the features of the texture can be adjusted by setting accordingly
the CTM when the texture is defined.

Type Name Default | Description
Value
integer octaves 8 The maximum number of octaves of noise to

use in spectral synthesis.

float roughness 0.5 The “bumpiness” of the resulting texture.

Finally, “marble” is a simple approximation to a layered marble texture, based on
using Perlin noise to create stochastic variation in the result.

Type Name Default | Description
Value

integer octaves 8 The maximum number of octaves of noise to
use in spectral synthesis.

float roughness 0.5 The “bumpiness” of the resulting texture.

float scale 1 A scaling factor to apply to the noise function
inputs.

float variation 0.2 A scaling factor to apply to the noise function
output.

Scattering Volumes

Finally, there are three scattering volume implementations available for specifying spatially-
varying scattering volumes to model objects like smoke and clouds or atmospheric scat-
tering.

48

Name Implementation Class
“exponential” ExponentialDensity
“homogeneous” HomogeneousVolumeDensity
“volumegrid” VolumeGridDensity

All of these take a number of common parameters. (And for the “homogeneous” volume,

these are the only parameters available.)

Type Name Default Description
Value
spectrum sigma._a 0 The absorption cross section.
spectrum sigma.s 0 The scattering cross section.
float g 0 The phase function asymmetry parameter.
spectrum Le 0 The volume’s emission spectrum.
point pO 000 One corner of the volume’s bounding box.
point pl 111 The other corner of the volume’s bounding
box.

The “exponential” volume decreases the density of the volume as a function of height.
See the discussion of its implementation on page 594 of the second edition of “Physically

Based Rendering”.

Type Name Default Description
Value
float a,b 1 The parameters in the exponential volume’
a e”(-bh) formula.
vector updir (0,1,0) The “up” direction along which to compute
height.

And the “volumegrid” allows specification of a sampled volume density on a regular
grid. Final scattering properties at points inside the volume are computed by trilinearly
interpolating the adjacent sample values and then scaling the sigma_a, sigma._s, etc.,

parameter values by the result.

49

Type Name Default Description
Value
integer nx,ny,nz 1 The number of voxels in the x, y, and z di-
rections, respectively.
float[nx*ny*nz|| density 0 The array of density values.

50

