/** \page tstcg_out View the output of a conjugate gradient method
************************************************************ OPT++ version 2 Job run at Thu Jan 31 10:03:25 2002 Copyright (c) 2001, Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of this work by or on behalf of the U.S. Government. Export of this program may require a license from the United States Government. This software is distributed under the GNU General Public License. For more information, see the COPYRIGHT and README files in the top OPT++ directory. ************************************************************ Nonlinear CG Iter F(x) ||grad|| ||step|| beta gtp fcn 0 2.4200e+01 2.3287e+02 1 9.7329e+00 1.1628e+02 3.5900e-04 0.0000e+00 -2.7074e+04 7 7 2 5.6267e+00 5.8124e+01 4.0709e-04 0.0000e+00 -6.7587e+03 13 13 3 4.5189e+00 2.9069e+01 4.3850e-04 0.0000e+00 -1.6892e+03 19 19 4 4.2291e+00 1.4557e+01 4.5794e-04 0.0000e+00 -4.2249e+02 24 24 5 4.1540e+00 7.3311e+00 4.7320e-04 0.0000e+00 -1.0596e+02 29 29 6 4.1338e+00 3.7765e+00 5.0090e-04 0.0000e+00 -2.6872e+01 33 33 7 4.1273e+00 2.1381e+00 6.0902e-04 0.0000e+00 -7.1310e+00 37 37 8 4.1220e+00 1.9151e+00 1.5319e-03 3.0226e-01 -2.2858e+00 41 41 9 4.0551e+00 9.6887e+00 2.7114e-02 2.6641e+01 -5.2390e-01 43 43 10 3.6426e+00 1.9105e+01 5.1424e-03 1.9388e+00 -3.2001e+01 47 47 11 2.6331e+00 1.6375e+01 4.4181e-03 0.0000e+00 2.4034e+00 53 53 12 2.4058e+00 8.2417e+00 1.1331e-03 0.0000e+00 -1.3406e+02 58 58 13 2.3431e+00 4.2542e+00 1.2337e-03 0.0000e+00 -3.3963e+01 63 63 14 2.3220e+00 2.4440e+00 1.5617e-03 0.0000e+00 -9.0479e+00 67 67 15 2.3005e+00 2.4415e+00 4.8045e-03 4.9864e-01 -2.9825e+00 71 71 16 2.1587e+00 7.0728e+00 3.0117e-02 9.1680e+00 -1.4135e+00 74 74 17 1.9196e+00 1.0263e+01 5.2994e-03 6.9493e-01 -1.7873e+01 78 78 18 1.2332e+00 3.1613e+00 1.0125e-02 0.0000e+00 -4.5972e+01 82 82 19 1.1994e+00 2.1539e+00 4.5252e-03 0.0000e+00 -4.9936e+00 86 86 20 8.9231e-01 6.8053e+00 1.0028e-01 1.0361e+01 1.7553e+00 90 90 21 8.5092e-01 8.5992e+00 2.7879e-03 3.5541e-01 7.4563e-01 96 96 22 6.7100e-01 3.6985e+00 3.2759e-03 0.0000e+00 -3.6818e+01 101 101 23 6.4475e-01 2.0172e+00 2.5589e-03 0.0000e+00 -6.8395e+00 104 104 24 6.3062e-01 1.4718e+00 4.6347e-03 3.2320e-02 -2.0346e+00 107 107 25 5.1036e-01 3.6399e+00 7.1364e-02 5.8846e+00 -6.8946e-01 110 110 26 3.1985e-01 8.9068e-01 1.6695e-02 1.0818e-02 -8.5786e+00 114 114 27 3.0624e-01 2.5099e+00 2.6718e-02 7.9253e+00 -9.2170e-02 117 117 28 2.2526e-01 5.6981e+00 1.8891e-02 3.0107e+00 -2.5325e-01 124 124 29 1.4071e-01 9.8814e-01 3.7958e-03 0.0000e+00 -1.3853e+01 129 129 30 1.3980e-01 5.6012e-01 1.2439e-03 0.0000e+00 -4.8821e-01 132 132 31 1.3907e-01 5.0172e-01 3.1219e-03 3.0235e-01 -1.5687e-01 135 135 32 1.3133e-01 2.4998e+00 4.9191e-02 2.5969e+01 6.9955e-04 139 139 33 1.0878e-01 4.5479e+00 5.4237e-03 1.5071e+00 -1.5033e+00 143 143 34 7.8216e-02 1.3460e+00 1.8021e-03 0.0000e+00 -1.1441e+01 148 148 35 7.7061e-02 6.9225e-01 8.5013e-04 0.0000e+00 -9.0588e-01 151 151 36 7.6696e-02 3.8851e-01 1.0144e-03 0.0000e+00 -2.3960e-01 154 154 37 7.6433e-02 3.3002e-01 2.3306e-03 2.2156e-01 -7.5469e-02 157 157 38 7.2338e-02 1.8422e+00 5.7121e-02 3.2060e+01 -1.3651e-02 159 159 39 4.6289e-02 3.3866e+00 9.9726e-03 1.5593e+00 -1.0579e+00 163 163 40 3.4409e-02 1.0956e+00 1.2136e-03 0.0000e+00 -6.5565e+00 168 168 41 3.3780e-02 5.5638e-01 6.9950e-04 0.0000e+00 -6.0022e-01 171 171 42 3.3601e-02 2.9620e-01 7.6982e-04 0.0000e+00 -1.5478e-01 174 174 43 3.3524e-02 1.9371e-01 1.1629e-03 0.0000e+00 -4.3869e-02 177 177 44 3.2866e-02 5.6145e-01 2.3400e-02 7.9005e+00 -1.8762e-02 180 180 45 3.1048e-02 8.9033e-01 6.8261e-03 3.8729e+00 -6.3102e-02 183 183 46 2.5619e-02 2.6726e+00 8.5502e-03 6.0505e+00 -1.3387e-01 187 187 47 1.3628e-02 2.2243e+00 2.0607e-03 0.0000e+00 -3.9321e+00 192 192 48 1.1437e-02 1.1133e+00 5.9054e-04 0.0000e+00 -2.4738e+00 196 196 49 1.0883e-02 5.5897e-01 5.9547e-04 0.0000e+00 -6.1975e-01 199 199 50 1.0740e-02 2.8413e-01 6.1103e-04 0.0000e+00 -1.5622e-01 202 202 51 1.0699e-02 1.5191e-01 6.7636e-04 0.0000e+00 -4.0365e-02 205 205 52 1.0681e-02 1.0134e-01 1.0537e-03 0.0000e+00 -1.1538e-02 208 208 53 1.0390e-02 3.9813e-01 3.7822e-02 1.4936e+01 -5.1346e-03 211 211 54 9.6328e-03 5.9937e-01 5.6713e-03 3.6499e+00 -2.9311e-02 214 214 55 7.6302e-03 1.7685e+00 7.1975e-03 5.7787e+00 -5.5533e-02 218 218 56 3.0840e-03 1.2820e+00 1.8395e-03 0.0000e+00 -1.6193e+00 223 223 57 2.4209e-03 6.4135e-01 5.3799e-04 0.0000e+00 -8.2170e-01 226 226 58 2.2542e-03 3.2142e-01 5.4045e-04 0.0000e+00 -2.0567e-01 229 229 59 2.2117e-03 1.6221e-01 5.4831e-04 0.0000e+00 -5.1656e-02 232 232 60 2.2003e-03 8.4188e-02 5.8016e-04 0.0000e+00 -1.3155e-02 235 235 61 2.1964e-03 4.9164e-02 7.3466e-04 0.0000e+00 -3.5438e-03 238 238 62 2.1906e-03 7.7773e-02 4.1107e-03 2.3325e+00 -4.1090e-04 242 242 63 1.9999e-03 4.3307e-01 4.7445e-02 3.5323e+01 -9.6520e-04 244 244 64 2.1726e-04 5.5345e-01 1.5167e-02 3.6102e-01 -1.1757e-02 248 248 65 9.1254e-05 2.6591e-01 5.4100e-04 0.0000e+00 -1.5528e-01 251 251 66 6.4457e-05 1.3300e-01 5.0529e-04 0.0000e+00 -3.5355e-02 254 254 67 5.7740e-05 6.6584e-02 5.0636e-04 0.0000e+00 -8.8444e-03 257 257 68 5.6043e-05 3.3462e-02 5.1029e-04 0.0000e+00 -2.2167e-03 260 260 69 5.5601e-05 1.7076e-02 5.2623e-04 0.0000e+00 -5.5985e-04 263 263 70 5.5470e-05 9.2809e-03 5.9693e-04 0.0000e+00 -1.4580e-04 266 266 71 5.5402e-05 6.6973e-03 1.0527e-03 2.0746e-02 -4.3067e-05 269 269 72 2.8937e-05 1.3957e-01 1.0000e+00 4.3458e+02 -6.5711e-06 270 270 73 9.0454e-06 5.0094e-02 1.1902e-03 0.0000e+00 -1.1168e-02 275 275 74 7.8204e-06 8.7563e-03 8.3459e-04 0.0000e+00 -4.2611e-04 279 279 75 7.7798e-06 2.6260e-03 9.0616e-04 0.0000e+00 -1.3034e-05 283 283 76 7.7525e-06 4.2450e-03 5.2612e-03 2.1131e+00 -3.4480e-06 286 286 77 7.6457e-06 1.1287e-02 8.3949e-03 8.8284e+00 -1.5940e-07 288 288 78 7.2319e-06 3.5880e-02 5.8777e-03 6.9650e+00 -1.1899e-05 290 290 79 2.1702e-06 5.3074e-03 4.9336e-03 0.0000e+00 -6.8509e-04 294 294 checkConvg: deltaf = 1.1261e-08 ftol = 1.4901e-08 80 2.1589e-06 2.7389e-03 5.3303e-04 ========= Solution from CG: Fcn not Expensive =========== Optimization method = Nonlinear CG Dimension of the problem = 2 Return code = 2 (Function tolerance test passed) No. iterations taken = 80 No. function evaluations = 297 No. gradient evaluations = 297 ========== Tolerances =========== Machine Epsilon = 2.22045e-16 Maximum Step = 1000 Minimum Step = 1.49012e-08 Maximum Iter = 100 Maximum Backtracks = 5 Maximum Fcn Eval = 1000 Step Tolerance = 1.49012e-08 Function Tolerance = 1.49012e-08 Constraint Tolerance = 1.49012e-08 Gradient Tolerance = 1e-06 LineSearch Tolerance = 0.0001 ========= Solution from CG: Fcn not Expensive =========== i xc grad fcn_accrcy 1 9.9853e-01 1.5625e-03 2.2204e-16 2 9.9706e-01 -2.2495e-03 2.2204e-16 Function Value = 2.1589e-06 Norm of gradient = 2.7389e-03 ============================================== CG 1 PASSED
Next Section: Quasi-Newton Method with trust-region | Back to Conjugate Gradient Page
*/