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1 INTRODUCTION 5

1 Introduction

• Goals of this project:

– Provide support material for teaching FEM. The material provided might help other instructors to
explain or illustrate the methods and effects of finite element algorithms.

– Use Octave to implement first, second and third order triangular elements in 2D for scalar boundary
value problems. For elasticity plane stress and plane strain problems are examined. This leads to the
Octave package FEMoctave.

– Provide examples on how to solve steady state and dynamic heat equations, the wave equation and
2D elasticity equations, all part of FEMoctave.

• Tools provided by this project:

– Find this document on the internet at https://andreasstahel.github.io/FEMoctave/FEMdoc.pdf and the
complete Octave package at https://andreasstahel.github.io/FEMoctave/FEMoctave.tgz.

– Documentation and codes are also on GitHub at https://github.com/AndreasStahel/FEMoctave and
with Octave you should be able to install it by calling
pkg install https://github.com/AndreasStahel/FEMoctave/archive/v2.0.9.tar.gz

– I work exclusively with Unix systems, but it is possible to use the package on other systems by
modifying the Makefile.

– The only external program used in FEMoctave is triangle, an excellent mesh generator. The
source code of triangle is not included. Find source code and documentation at
www.cs.cmu.edu/˜quake/triangle.html.

This is not:

• an introduction to Octave (or MATLAB). Users are assumed to be familiar with the basics of using Octave .
If this is not the case, may I use the occasion for a shameless add for my book Octave and Matlab for
Engineering Applications by Springer.

• an introduction to FEM algorithms. For a basic (and affordable) introdiction consider [TongRoss08]. The
basic concept is not explained in these notes for FEMoctave, but many details are spelled out. I use some
of the presentations for a class Numerical Methods for biomedical engineers at the University of Bern.
There the main ideas of FEM are spelled out. Find the lecture notes for this class on my web site at
https://andreasstahel.github.io/Notes/NumMethods.pdf.

The structure of this document is as follows:

1 Introduction: a self reference.

2 The Problems to be Examined: for each type of problem one example is presented. This is a good starting
point to find out what type of problems are examined in these notes.

3 Illustrative Examples: a few examples are are worked out, code and results shown. Read this section if
you want to start working with FEMoctave.

4 The Commands of FEMoctave: all commands of FEMoctave are briefly explained and some documen-
tation is provided. This is comparable to a manual.
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5 Tools for Didactical Purposes: some results and illustrations that might be useful when teaching FEM are
presented.

6 The Mathematics of the Algorithms: the mathematics of the FEM algorithms is spelled out. Linear,
quadratic and cubic elements on triangles are constructed. A matrix formulation is used wherever possible.

7 Elasticity: the mathematical aspects of an FEM algorithm to solve plane stress and plane strain problems
are presented.

8 Examples, Examples, Examples: as the title says.
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2 THE PROBLEMS TO BE EXAMINED 7

2 The Problems to be Examined

This section consists of a brief list all types of problems that can be solved with this software. A list of the
necessary commands is given in Table 1 on page 9. The instruction on how to use the commands are given in
Section 4. Some typical examples are worked out in Section 3.

2.1 The domain Ω ⊂ R2 and its boundary Γ = ∂Ω = Γ1 ∪ Γ2

Throughout this presentation work with bounded domains Ω ⊂ R2 with two disjoints section Γ1 and Γ2 of the
boundary Γ = ∂Ω.

• On the section Γ1 a Dirichlet boundary condition is applied, i.e. u(x, y) = g1(x, y) for a known function g1.

• On the section Γ2 a Neumann or Robin boundary condition is applied, i.e. the outer normal derivative of u
equals g2 + g3 u for a known functions g2 and g3.

In the example shown in Figure 1 the solution satisfies u = +3 on the circular part Γ1 and ∂
∂yu = −1 along

the x–axis. The solution u(x, y) solves ∆u = ∇ · ∇u = div gradu = 0 and minimizes the functional

F (u) =

∫∫
Ω

1

2
∥∇u∥2 dA−

∫
Γ2

u ds

amongst all functions u which satisfy u(x, y) = +3 on Γ1.

-2 -1 0 1 2
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Figure 1: A semidisk as domain in R2 and a solution of a BVP

2.2 The general elliptic problem

Let Ω ⊂ R2 be a bounded domain with a nice boundary Γ, consisting of two disjoint sections Γ1 and Γ2. For
given functions a, b0, b⃗, f and gi we seek a solution of the second order boundary value problem (BVP)

−∇ · (a∇u− u b⃗) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y) ∈ Γ2

. (1)

It is assumed that there is a unique solution u. Consult your book on the theory of PDEs to determine whether
the BVP has in fact a unique solution. Examples of this type of equation are given in Section 3.1.4.
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2 THE PROBLEMS TO BE EXAMINED 8

2.3 The symmetric elliptic problem

If there is no convection contribution b⃗ in (1) one ends up with a self-adjoint problem.

−∇ · (a∇u) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

a ∂ u
∂n = g2 + g3 u for (x, y) ∈ Γ2

. (2)

The resulting matrix A will be symmetric and if a > 0, b0 ≥ 0 and Γ1 ̸= O or b0 > 0, then the BVP has a unique
solution and the resulting matrix is strictly positive definite.

Using Calculus of Variations one can show that solving (2) is equivalent to minimizing the functional F
below among all functions u vanishing on Γ1.

F (u) =

∫∫
Ω

1

2
a ⟨∇u,∇u⟩+ 1

2
b0 u

2 − f u dA−
∫
Γ2

g2 u+
1

2
g3 u

2 ds .

Examples of this type are given in Sections 3.1.1, 3.1.2, 3.1.3, 8.4 and 8.13.

2.4 The symmetric eigenvalue problem

For given functions a, b0, f and g3 seek values of λ and nontrivial solutions u of the eigenvalue problem below.

−∇ · (a∇u) + b0 u = λ f u for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

a ∂ u
∂n = g3 u for (x, y) ∈ Γ2

(3)

An example of this type is given in Section 3.2.

2.5 The general parabolic problem

If all functions depend on time t and the spacial variables x and y consider the general dynamic heat equation.

ρ ∂
∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (0, T ]

u = g1 for (x, y, t) ∈ Γ1 × (0, T ]

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T ]

u = u0 on Ω at t = 0

(4)

This is an Initial Boundary Value Problem (IBVP). Mathematicians call this a parabolic problem, engineers think
of dynamic heat equations. Examples are shown in Sections 3.3 and 8.10.4.

2.6 The symmetric parabolic problem

Consider the symmetric situation of (4) to find the symmetric parabolic problem below.

ρ ∂
∂t u−∇ · (a∇u) + b0 u = f for (x, y, t) ∈ Ω× (0, T ]

u = g1 for (x, y, t) ∈ Γ1 × (0, T ]

a ∂∇u
∂n = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T ]

u = u0 on Ω at t = 0}

(5)

If u(x, y) and λ are solutions of the eigenvalue problem (3) with f = g1 = g2 = 0, then the dynamic
problem (5) is solved by e−λt u(x, y). See also Section 6.8.2.
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2.7 The hyperbolic problem

Examine an IBVP of hyperbolic type, with the wave equation ü = ∆u as the typical example.

ρ ∂2

∂t2
u+ 2α ∂

∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (0, T ]

u = g1 for (x, y, t) ∈ Γ1 × (0, T ]

n⃗ · (a∇u+ u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T ]

u = u0 on Ω at t = 0
∂
∂t u = v0 on Ω at t = 0

(6)

Examples are shown in Sections 3.4, 8.2 and 8.11. The effect of eigenvalues is described in Section 6.8.4.

command type of problem section

BVP2Dsym() solve a symmetric elliptic BVP 4.3.1

BVP2D() solve a general elliptic BVP 4.3.2

BVP2Deig() solve a symmetric elliptic eigenvalue problem 4.4

IBVP2D() solve a parabolic IBVP 4.5

IBVP2Dsym() solve a symmetric parabolic IBVP 4.5

I2BVP2D() solve a hyperbolic IBVP 4.6

PlaneStress() solve a plane stress problem 4.7

PlaneStrain() solve a plane strain problem 4.7

Table 1: Commands to solve PDEs and IBVPs

2.8 Plane Elasticity

With FEMoctave plane elasticity problems can be examined, either plane stress or plane strain.

2.8.1 Description of strain

The first goal is to determine the displacement function u⃗ = (u1, u2). It describes the displacement of arbitrary
points (x, y) ∈ Ω ⊂ R2. Based on u⃗(x, y) the infinitesimal strain tensor is given by[

εxx εxy

εxy εyy

]
=

 ∂ u1
∂x

1
2

(
∂ u1
∂y + ∂ u2

∂x

)
1
2

(
∂ u1
∂y + ∂ u2

∂x

)
∂ u2
∂y

 .

It contains the essential information of how a small section of the large solid is deformed, see Figure 3. Obviously
this can be used in the space R3 too, leading to the 3× 3 strain matrix (or tensor of order 2)

εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 =


∂ u1
∂x

1
2

(
∂ u1
∂y + ∂ u2

∂x

)
1
2

(
∂ u1
∂z + ∂ u3

∂x

)
1
2

(
∂ u1
∂y + ∂ u2

∂x

)
∂ u2
∂y

1
2

(
∂ u2
∂z + ∂ u3

∂y

)
1
2

(
∂ u1
∂z + ∂ u3

∂x

)
1
2

(
∂ u2
∂z + ∂ u3

∂y

)
∂ u3
∂z


and the geometric interpretations in Table 2.
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~x

~x+ ~u

x⃗ −→ x⃗+ u⃗(
x

y

)
−→

(
x

y

)
+

(
u1(x, y)

u2(x, y)

)

Figure 2: Deformation of an elastic solid
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∂x ∆x
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∂y ∆y

∂ u1
∂y ∆y

Figure 3: Definition of strain: rectangle before and after deformation

symbol formula interpretation

εxx
∂ u1
∂x ratio of change of length divided by length in x direction

εyy
∂ u2
∂y ratio of change of length divided by length in y direction

εzz
∂ u3
∂z ratio of change of length divided by length in z direction

εxy = εyx
1
2

(
∂ u1
∂y + ∂ u2

∂x

)
the angle between the x and y axis is diminished by 2 εxy

εxz = εzx
1
2

(
∂ u1
∂z + ∂ u3

∂x

)
the angle between the x and z axis is diminished by 2 εxz

εyz = εzy
1
2

(
∂ u2
∂z + ∂ u3

∂y

)
the angle between the y and z axis is diminished by 2 εyz

Table 2: Normal and shear strains in space
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2.8.2 Description of stress and Hooke’s law

The deformation of the solid will lead to normal and shearing stress, with the units forces per area. Find a
graphical interpretation of the 6 strains in space R3 in Figure 4 and a description in Table 3.

�
�
�

�
��

�
�

�
�

��

�
�

�
�

��

�
�	x

- y

6z

-
6

��	

τyz

σz

τxz

-
6

��	

τyx

τzx

σx

-
6

��	

σy

τzy

τxy

Figure 4: Components of stress in space

symbol description

σx normal stress at a surface orthogonal to x = const

σy normal stress at a surface orthogonal to y = const

σz normal stress at a surface orthogonal to z = const

τxy = τyx
tangential stress in y direction at surface orthogonal to x = const

tangential stress in x direction at surface orthogonal to y = const

τxz = τzx
tangential stress in z direction at surface orthogonal to x = const

tangential stress in x direction at surface orthogonal to z = const

τyz = τzy
tangential stress in z direction at surface orthogonal to y = const

tangential stress in y direction at surface orthogonal to z = const

Table 3: Description of normal and tangential stress in space

With FEMoctave there are three types of boundary conditions to be examined:

u⃗ = g⃗D on Dirichlet boundary Γ1, i.e. prescibed displacement

force density = g⃗N on Neumann boundary Γ2, i.e. prescibed force density

force density = 0⃗ on free boundary Γ3

(7)

The conditions can be set for each component, find the codes in Table 5, to be used when creating meshes by
CreateMeshRect() or CreateMeshTriangle().

For a linear material law the connection between stresses and strains is given by Hooke’s law and uses two
material parameters:

• E: the Young’s modulus of elasticity
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• ν: the Poisson ratio, with 0 ≤ ν ≤ 1
2

FEMoctave is based on the general form of Hooke’s law for homogeneous (independent on position), isotropic
(independent on direction) materials. It is a basic physical law1, confirmed by many measurements. The shown
formulation is valid as long as all stress and strains are small. Hooke’s law is the foundation of linear elasticity
and any book on elasticity will show a formulation, e.g. [Prze68, §2.2]2 ,[Sout73, §2.7], or [Wein74, §10.1].

εxx

εyy

εzz

 =
1

E


1 −ν −ν
−ν 1 −ν
−ν −ν 1

 ·


σx

σy

σz

 ,


εxy

εxz

εyz

 =
1 + ν

E


τxy

τxz

τyz


(8)

or by inverting the matrix
σx

σy

σz

 =
E

(1 + ν) (1− 2 ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

εzz

 ,


τxy

τxz

τyz

 =
E

1 + ν


εxy

εxz

εyz

 .

(9)

This leads to an elastic energy density of

W =
1

2
⟨


σx

σy

σz

 ,


εxx

εyy

εzz

⟩+ ⟨


τxy

τxz

τyz

 ,


εxy

εxz

εyz

⟩ (10)

=
1

2

E

(1 + ν) (1− 2 ν)
⟨


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

εzz

 ,


εxx

εyy

εzz

⟩+ (11)

+
E

1 + ν
⟨


εxy

εxz

εyz

 ,


εxy

εxz

εyz

⟩ .
2.8.3 The plane stress problem

For a plane stress problem it is assumed that there are no stresses in z–direction, i.e.

σz = τxz = τyz = 0 .

1One can verify that for homogeneous, isotropic materials a linear law must have this form, e.g. [Sege77]
2The missing factors 2 are due to the different definition of the shear strains.
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This leads to a simpler version of Hooke’s law
σx

σy

τxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1− ν




εxx

εyy

εxy

 and

εzz = −ν
1−ν (εxx + εyy)

εxz = 0

εyz = 0

. (12)

The energy density given by equation (10) simplifies to

Wstress =
1

2
⟨


σx

σy

0

 ,


εxx

εyy

εzz

⟩+ ⟨


τxy

0

0

 ,


εxy

εxz

εyz

⟩ =
1

2
⟨


σx

σy

2 τxy

 ,


εxx

εyy

εxy

⟩

=
E

2 (1− ν2)
⟨


1 ν 0

ν 1 0

0 0 2 (1− ν)




εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩
=

E

2 (1− ν2)

(
ε2xx + ε2yy + 2 ν εxx εyy + 2 (1− ν) ε2xy

)
. (13)

Since
ε2xx + ε2yy + 2 ν εxx εyy = ν (εxx + εyy)

2 + (1− ν) (ε2xx + ε2yy) ≥ 0

the energy density Wstress is assured to be positive. With this the total energy of a plane stress problem can be
written in the form3

U(u⃗) = Uelast + UV ol + USurf (14)

=

∫∫
Ω

1

2

E

(1− ν2)
⟨


1 ν 0

ν 1 0

0 0 2 (1− ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩ dA−
−
∫∫
Ω

f⃗ · u⃗ dA−
∮
Γ2

g⃗N · u⃗ ds .

Using the Bernoulli principle this energy has to be minimized. It is this minimization problem that is solved,
subject to the boundary conditions (7).

2.8.4 The plane strain problem

For a plane strain problem it is assumed that there are no strains in z–direction, i.e.

εxz = εyz = εzz = 0 .

This leads to a simpler version of Hooke’s law
σx

σy

τxy

 =
E

(1 + ν) (1− 2 ν)


1− ν ν 0

ν 1− ν 0

0 0 1− 2 ν

 ·


εxx

εyy

εxy


σz =

E ν (εxx + εyy)

(1 + ν) (1− 2 ν)
, τxz = τyz = 0

. (15)

3We quietly dropped the constant thickness H from all expressions.
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Observe that

σz =
E ν (εxx + εyy)

(1 + ν) (1− 2 ν)
= ν (σx + σy) .

Modify the material parameters ν and E to

ν⋆ =
ν

1− ν
> ν and E⋆ =

E

1− ν2
> E . (16)

Then use elementary algebra to find

ν =
ν⋆

1 + ν⋆
, 1− ν = 1− ν⋆

1 + ν⋆
=

1

1 + ν⋆

1− 2 ν

1− ν
=

1− 2 ν⋆

1+ν⋆

1− ν⋆

1+ν⋆
= 1− ν⋆ and

ν

1− 2 ν
=

ν⋆

1+ν⋆

1− 2 ν⋆

1+ν⋆
=

ν⋆

1− ν⋆

E = E⋆ (1− ν2)

leading to a different notation for Hooke’s law for the plane strain situation.
σx

σy

τxy

 =
E

1 + ν


1−ν
1−2 ν

ν
1−2 ν 0

ν
1−2 ν

1−ν
1−2 ν 0

0 0 1

 ·


εxx

εyy

εxy

 =
E⋆ (1− ν2)

1 + ν


1

1−ν⋆
ν⋆

1−ν⋆ 0
ν⋆

1−ν⋆
1

1−ν⋆ 0

0 0 1

 ·


εxx

εyy

εxy



=
E⋆

(1− ν⋆) (1 + ν⋆)


1 ν⋆ 0

ν⋆ 1 0

0 0 1− ν⋆

 ·


εxx

εyy

εxy

 .

This is identical to Hooke’s law (12) for the plane stress situation, but with E⋆ and ν⋆ instead of E and ν. The
energy density is in this case given by

Wstrain =
1

2

E

(1 + ν) (1− 2 ν)
⟨


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩
=

E (1− ν)

2 (1 + ν) (1− 2 ν)

(
ε2xx + ε2yy + 2

ν

1− ν
εxxεyy + 2

1− 2 ν

1− ν
ε2xy

)

=
1

2

E⋆

1− (ν⋆)2
⟨


1 ν⋆ 0

ν⋆ 1 0

0 0 2 (1− ν⋆)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩
=

E⋆

2 (1− (ν⋆)2)

(
ε2xx + ε2yy + 2 ν⋆ εxxεyy + 2 (1− ν⋆) ε2xy

)
(17)

Now the plane strain energy density has the same form as the plane stress energy density, but with modified
constants.

Wstress =
E

2 (1− ν2)

(
ε2xx + ε2yy + 2 ν εxx εyy + 2 (1− ν) ε2xy

)
.

For a plane strain problem Bernoulli’s principle is used and the corresponding total energy minimized, similar to
expression (14).
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2.9 Elasticity for solids of revolution with cylindrical coordinates

Examine a domain (x, r) = (r, z) ∈ Ω ⊂ R2 and revolve this domain about the z–axis to generate a volume in
space R3. Assume that the displacements are rotationally symmetric, i.e.

u1(x, y, z)

u2(x, y, z)

u3(x, y, z)

 =


ur(r, z) cosφ

ur(r, z) sinφ

uz(r, z)

 .

To determine the elastic energy in this deformed solid determine4 the strains in the plane φ = 0.

εxx =
∂ u1
∂x

= cos2 φ
∂ ur
∂r

+
sin2 φ

r
ur =

∂ ur
∂r

εyy =
∂ u2
∂y

= sin2 φ
∂ ur
∂r

+
cos2 φ

r
ur =

1

r
ur

εzz =
∂ ur
∂z

2 εxy =
∂ u1
∂y

+
∂ u2
∂x

= cosφ sinφ
∂ ur
∂r
− cosφ sinφ

r
ur + cosφ sinφ

∂ ur
∂r
− sinφ cosφ

r
ur = 0

2 εxz =
∂ u1
∂z

+
∂ u3
∂x

= cosφ
∂ ur
∂z

+ cosφ
∂ uz
∂r
− sinφ

r

∂ uz
∂φ

=
∂ ur
∂z

+
∂ uz
∂z

2 εyz =
∂ u2
∂z

+
∂ u3
∂y

= sinφ
∂ ur
∂z

+ sinφ
∂ uz
∂r

+
cosφ

r

∂ uz
∂φ

= 0

This leads to 

εxx

εyy

εzz

εxy

εxz

εyz


=



∂ ur
∂r
1
r ur
∂ uz
∂z

0
1
2 (

∂ ur
∂z + ∂ uz

∂r )

0


=



εrr

εφφ

εzz

0

εrz

0


.

Observe that the angular strain εφφ is given by the displacement εφφ = 1
r ur. The energy density (10) in the

rz–plane is given by

W (r, z) =
1

2
⟨


σx

σy

σz

 ,


εxx

εyy

εzz

⟩+ ⟨


τxy

τxz

τyz

 ,


0

εxz

0

⟩

=
1

2

E

(1 + ν) (1− 2 ν)
⟨


1− ν ν ν

ν 1− ν ν

ν ν 1− ν




εrr
1
r ur

εzz

 ,


εrr
1
r ur

εzz

⟩+ E

1 + ν
ε2rz

4For functions f(x, y, z) = F (r, φ, z) (i.e. the identical function written in Cartesian and polar coordinates) use the computational
rule (chain rule) to conclude

∂f

∂x
= cosφ

∂F

∂r
− sinφ

r

∂F

∂φ
and

∂f

∂y
= sinφ

∂F

∂r
+

cosφ

r

∂F

∂φ
.
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=
1

2

E

(1 + ν) (1− 2 ν)

(
(1− ν) (ε2rr + ε2zz +

1

r2
u2r) + 2 ν (εrrεzz +

1

r
ur (εrr + εzz))

)
+

+
E

1 + ν
ε2rz .

To find the elastic energy in the deformed solid this expression can be integrated with respect to the angle φ,
leading to an integral over the domain Ω ⊂ R2. The contributions to the total energy by the volume and surface
forces lead to similar expression, and finally to the total energy, similar to (14).

U(u⃗) = Uelast + UV ol + USurf (18)

=

∫∫
Ω

2π r E

2 (1 + ν) (1− 2 ν)

(
(1− ν) (ε2rr + ε2zz +

1

r2
u2r) + 2 ν (εrrεzz +

1

r
ur (εrr + εzz))

)
+

+
2π r E

1 + ν
ε2rz dA−

∫∫
Ω

2π r f⃗ · u⃗ dA−
∮
Γ2

2π r g⃗N · u⃗ ds .

Using the Bernoulli principle this energy has to be minimized. It is this minimization problem that is solved,
subject to the boundary conditions (7).
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3 Illustrative Examples

Solving a BVP (Boundary Value Problem) or an IBVP (Initial Boundary Value Problem) with the FEM usually
involves three steps:

1. Generate the mesh to be used for the problem. With this step the type of element can be selected,i.e. linear,
quadratic or cubic.

2. Define the functions describing the problem and then apply the finite element algorithm to generate an
approximate solution.

3. Visualize and analyze the obtained solution.

For all three steps FEMoctave provides tools and the following examples illustrate the procedures.

3.1 Solving elliptic problems, static heat equation

3.1.1 A symmetric problem

On a rectangle Ω = [0, 1]× [0, 2] with Dirichlet boundary Γ1 at x = 0 and at y = 0 and thus Neumann boundary
Γ2 at x = 1 and at y = 2 seek a solution of

−∆u = 0.25 for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

∂ u
∂n = 0 for (x, y) ∈ Γ2

.

The solution is computed and displayed with the help of three commands.

• Divide the x and y axis in subintervalls of length 0.1 and generate the resulting rectangular mesh using
CreateMeshRect(). Use the options ...,-1,-2,-1,-2) to indicate the boundary conditions at
the four edges in order lower, upper, left and right. In this example use the order Dirichlet, Neumann,
Dirichlet, Neumann.

• Use BVP2Dsym() with constant coefficients to generate and solve the system of linear equation by the
FEM.

• Use FEMtrimesh() to display the solution.

LaplaceRectangle.m
FEMmesh = CreateMeshRect([0:0.1:1],[0:0.1:2],-1,-2,-1,-2);
%%FEMmesh = MeshUpgrade(FEMmesh,’quadratic’); %% uncomment to use quadratic elements
%%FEMmesh = MeshUpgrade(FEMmesh,’cubic’); %% uncomment to use cubic elements

u = BVP2Dsym(FEMmesh,1,0,0.25,0,0,0);

figure(1); FEMtrimesh(FEMmesh,u);
xlabel(’x’); ylabel(’y’);

Find the result in Figure 5. The above code is using linear elements. To use quadratic or cubic elements uncom-
ment one of the lines with MeshUpgrade().
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Figure 5: Solution of −∆u = 0.25 on a rectangle

3.1.2 Laplace equation in cylindrical coordinates

The Laplace operator in cylindrical coordinates is given by

∆u =
∂2 u

∂x2
+

∂2 u

∂y2
+

∂2 u

∂z2
=

1

ρ

∂

∂ρ

(
ρ
∂ u

∂ρ

)
+

1

ρ2
∂2 u

∂θ2
+

∂2 u

∂z2
.

Assuming that the solution is independent on the angle θ, then the Laplace equation −∆u(ρ, z) + b0(ρ, z) =
f(ρ, z) is given by

− ∂

∂ρ

(
ρ
∂ u

∂ρ

)
− ∂

∂z

(
ρ
∂ u

∂z

)
+ ρ b0(ρ, z) = ρ f(ρ, z) .

Thus it is in the form of equation (2), with x = ρ and y = z. As an example consider b0(ρ, z) = 10 and
f(ρ, z) = 2 z . If the domain Ω to be examined is given by 0 ≤ ρ ≤ 2 and −1 ≤ z ≤ 2 and the boundary
conditions are

∂ u(0, z)

∂ρ
= 0 symmetry for −1 < z < 2

ρ
∂ u(2, z)

∂ρ
= −1 flux out of domain for −1 < z < 2

u(ρ,−1) = u(ρ, 2) = 0 given value for 0 < ρ < 2 .

Since the coefficient functions in (2) are not constants define these functions in Octave and then use BVP2Dsym()
to solve the problem. Observe that both Neumann boundary conditions are described by the same function
g2(ρ, z) =

−ρ
2 , since g2(0, z) = 0 and g2(2, z) = −1. The code is shown below and find the result in Figure 6.

LaplaceCylindrical.m
FEMmesh = CreateMeshRect(linspace(0,2,20),linspace(-1,2,30),-1,-1,-2,-2);
%%FEMmesh = MeshUpgrade(FEMmesh,’quadratic’); %% uncomment to use quadratic elements

function res = f(rz,dummy) res = rz(:,1)*2.*rz(:,2); endfunction
function res = b0(rz,dummy) res = 10*rz(:,1); endfunction
function res = a(rz,dummy) res = rz(:,1); endfunction
function res = g2(rz) res = -1*rz(:,1)/2; endfunction

u = BVP2Dsym(FEMmesh,’a’,’b0’,’f’,0,’g2’,0);
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Figure 6: Solution of Lapalce equation in cylindrical coordinates

FEMtrimesh(FEMmesh,u);
xlabel(’\rho’); ylabel(’z’);

3.1.3 Diffusion on an L-shaped domain

Examine a BVP on an L-shaped domain, as created in Section 4.1. The equation to be solved is

−∆u = 1 for (x, y) ∈ Ω
∂ u
∂n = −2u for (x, y) ∈ Γ

.

For this problem there is no Dirichlet condition and it is solved in three steps.

• Generate the L-shaped domain with the help of CreateMeshTriangle().

• Solve the equations with BVP2Dsym().

• Display the result with FEMtrimesh() and FEMtricontour().

• The code below uses linear elements. Uncommenting the line with MeshUpgrade() will solve the same
problem using second or third order elements.

Find the code below and the result in Figure 7.

DiffusionLshape.m
nodes = [0,0,-2;1,0,-2;1,1,-2;-1,1,-2;-1,-1,-2;0,-1,-2];
FEMmesh = CreateMeshTriangle(’Ldomain’,nodes,0.02);
FEMmesh = MeshUpgrade(FEMmesh,’cubic’); %% uncomment to use cubic elements

u = BVP2Dsym(FEMmesh,1,0,1,0,0,-2);

figure(1); FEMtrimesh(FEMmesh,u);
xlabel(’x’); ylabel(’y’); view(-30,30)

figure(2); FEMtricontour(FEMmesh,u);
xlabel(’x’); ylabel(’y’);
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Figure 7: Solution of a diffusion problem on a L-shaped domain

3.1.4 A diffusion convection problem

Examine a steady state heat problem on the square Ω = [0, 2] × [0, 2] with constant heating (f(x, y) = +0.1)
and a strong convection in x direction (bx(x, y) = 10) and a weaker convection in y direction (by(x, y) = 5) we
end up with the PDE

−∆u+ 10
∂ u

∂x
+ 5

∂ u

∂y
= 0.1 .

The temperature on all of the boundary vanishes. This is a problem of type (1). Solve the BVP with the code
below and find the resulting level curves of the temperature in Figure 8.
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0.008
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0.012

Figure 8: Solution of a diffusion convection problem

DiffusionConvection.m
FEMmesh = CreateMeshRect(linspace(0,2,51),linspace(0,2,51),-1,-1,-1,-1);
u = BVP2D(FEMmesh,1,0,10,5,0.1,0,0,0);
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figure(1); FEMtricontour(FEMmesh,u,10);
colorbar(); xlabel(’x’); ylabel(’y’); grid on

The above code uses elements of order 1. To use elements of order 2 on a similar mesh one can first generate
a mesh with linear elements and then use MeshUpgrade() to generate a finer mesh with elements of order 2.
Convert the mesh back to linear elements, but with the identical nodes, i.e. use MeshQuad2Linear() and
then display.

DiffusionConvection.m
FEMmesh = CreateMeshRect(linspace(0,2,26),linspace(0,2,26),-1,-1,-1,-1);
FEMmesh = MeshUpgrade(FEMmesh, ’quadratic’); %% make a mesh with elements of order 2
u = BVP2D(FEMmesh,1,0,10,5,0.1,0,0,0);
FEMmesh = MeshQuad2Linear(FEMmesh); %% convert to identical mesh with linear elements

figure(1); FEMtricontour(FEMmesh,u,10);
colorbar(); xlabel(’x’); ylabel(’y’); grid on

3.2 Solving eigenvalue problems

As a first eigenvalue problem compute the eigenvalues and eigenfunctions of the Laplace operator on the unit
disc with Dirichlet boundary conditions, i.e. determine a scalar λ and nontrivial function u such that

−∆u = λu on unit disc

and u has to vanish on the boundary. The goal is to compute the first four eigenvalues and display the fourth
eigenfunction. Proceed in three steps.

• Use CreateTriangleMesh() to generate the mesh on the unit disc.

• Use BVP2Deig() with constant coefficients to generate and solve the eigensystem.

• Use FEMtrimesh() to display the fourth eigenfunction. Find the result in Figure 9.

• To use second order element, use MeshUpgrade().

The computed eigenvalues are λ1 ≈ 5.7857, λ2 = λ3 ≈ 14.6959 and λ4 ≈ 26.4169. These values coincide
nicely with the squares of the first zeros of the Bessel functions J0(r), J1(r) and J2(r), the values of the exact
problem.

EigenvaluesDisc.m
%% create a disc with mesh
xM = 0; yM = 0; R = 1; N = 160;
alpha = linspace(0,N/(N+1)*2*pi,N)’;
xy = [xM+R*cos(alpha),yM+R*sin(alpha),-ones(size(alpha))];

FEMmesh = CreateMeshTriangle(’circle’,xy,0.0005);
%%FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);

%%%%%%% solve the eigenvalue problem, show the eigenvalues
%%[la,ve] = BVP2Deig(FEMmesh,1,0,1,0,4);
[la,ve,errorbound] = BVP2Deig(FEMmesh,1,0,1,0,4);
eigenvalues = la
errorbound
exact_values = [fsolve(@(x)besselj(0,x),2.3), fsolve(@(x)besselj(1,x),3.8),...
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Figure 9: The fourth eigenfunction of ∆u = λu on a disc

fsolve(@(x)besselj(2,x),5)].ˆ2
figure(1); FEMtrimesh(FEMmesh,ve(:,4));

xlabel(’x’); ylabel(’y’);

The result shows the first 4 eigenvalues and their corresponding error bounds. The error bounds of 10−28 for the
first eigenvalue is not to be taken too seriously, it just means accurate up to machine precision as eigenvalue of
the global stiffness matrix. Observe that these are the eigenvalues of the FEM approximation to the boundary
value problem. They are close to the eigenvalues of the continuous problem, i.e. the squares of the zeros of the
Bessel functions.

Octave
eigenvalues = 5.7857

14.6959
14.6961
26.4169

errorbound = 2.5479e-12 1.6604e-28
2.9179e-12 7.0763e-16
3.2020e-12 7.2782e-15
3.5589e-12 2.3726e-28

exact_values = 5.7832 14.6820 26.3746

3.3 Solving parabolic problems, dynamic heat equations

As an example solve the dynamic heat equation

∂ u

∂t
−∆u+ 10

∂ u

∂x
+ 5

∂ u

∂y
= 0.1 for 0 < x, y < 2

with zero Dirichlet boundary conditions and the initial temperature

u(0, x, y) = u0(x, y) = 0.005x (2− x)2 y (2− y) .
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The solution is computed at 7 equally spaced times ti between 0 and 0.1. In-between 10 steps are taken, but the
solution is not returned. Find the result of the code below in Figure 10. At time 0 the maximal value is attained
at (x, y) = (23 , 1). The convection term +10 ∂ u

∂x + 5 ∂ u
∂y then moves the point of maximal temperature to the

upper right section of the square. For large times t the solution will converge to the steady state solution shown
in Figure 8 in Section 3.1.4.

HeatDynamic.m
%% generate the mesh
FEMmesh = CreateMeshRect(linspace(0,2,31),linspace(0,2,31),-1,-1,-1,-1);
x = FEMmesh.nodes(:,1);y = FEMmesh.nodes(:,2);
%% setup and solve the initial boundary value problem
m=1; a=1; b0=0; bx=10; by=5; f=0.1; gD=0; gN1=0; gN2=0;
t0=0; tend=0.1 ; steps = [6,10];
u0 = zeros(length(FEMmesh.nodes),1);
u0 = 0.005*(2-x).ˆ2.*x.*y.*(2-y);
[u_dyn,t] = IBVP2D(FEMmesh,m,a,b0,bx,by,f,gD,gN1,gN2,u0,t0,tend,steps);
%% show the animation on screen
u_max = max(u_dyn(:));
for t_ii = 1:length(t)
figure(2); FEMtrimesh(FEMmesh,u_dyn(:,t_ii))
xlabel(’x’); ylabel(’y’); caxis([0,u_max]); axis([0 2 0 2 0 u_max]); drawnow();
figure(3); tricontour(FEMmesh.elem,x,y,u_dyn(:,t_ii),linspace(0,0.99*u_max,11))
xlabel(’x’); ylabel(’y’); caxis([0,u_max]); drawnow();
pause(1)

endfor

3.4 Solving hyperbolic problems, wave equations

As an example solve the wave equation

∂2 u

∂t2
−∆u = 0 for x2 + y2 < 6

with zero Dirichlet boundary conditions, the initial displacement

u(0, x, y) = u0(x, y) = 0.1 exp(−(x− 1)2 − y2) (R2 − x2 − y2)/R2

and zero initial velocity v0 = 0. This assures compatible initial values, i.e. the boundary condition is satisfied
at time t = 0. The solution is computed at 15 equally spaced times ti between 0 and 7. In-between 30 steps
are taken, but the solution is not returned. The solution is returned at 15 times, leading to Figure 11. This initial
hump is traveling towards the boundary of the circle with speed 1, where it is reflected. More examples are shown
in Sections 8.2 and 8.12.

WaveDynamic.m
%% generate a circle
alpha = linspace(0,2*pi,101)’; alpha = alpha(1:end-1); R = 6;
xy = [R*cos(alpha),R*sin(alpha),-ones(size(alpha))];
if 1 %% linear elements
FEMmesh = CreateMeshTriangle(’Circle’,xy,0.03);

else %% quadratic elements
FEMmesh = CreateMeshTriangle(’Circle’,xy,4*0.03);
FEMmesh = MeshUpgrade(FEMmesh);

endif

x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
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Figure 10: Solution of a dynamic heat equation
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v0 = zeros(size(x));
u0 = 0.1*exp(-1*((x-1).ˆ2+y.ˆ2)); u0 = u0.*(Rˆ2-x.ˆ2-y.ˆ2)/Rˆ2;
%% setup and solve the initial boundary value problem
m=1; d=0; a=1; b0=0; bx=0; by=0; f=0; gD=0; gN1=0; gN2=0;
t0=0; tend=7 ; steps=[14,30];
tic();
[u_dyn,t] = I2BVP2D(FEMmesh,m,d,a,b0,bx,by,f,gD,gN1,gN2,u0,v0,t0,tend,steps);
toc()

figure(1) %% show the animation on screen
for t_ii = 1:length(t)
FEMtrimesh(FEMmesh,u_dyn(:,t_ii))
xlabel(’x’); ylabel(’y’); axis([-R R -R R -0.05 0.05])
caxis([-0.05 0.05]); text(4,-2,0.04,sprintf(’t=%2.1f’,t(t_ii)))
drawnow(); pause(0.3)

endfor
-->
Elapsed time is 0.93231 seconds.

3.5 Plane elasticity

In this section a typical plane stress situation is examined and the related commands illustrated. This is followed
by a similar plane strain situation.

3.5.1 A plane stress example

On a trapezoidal domain visible in Figure 12(a) a plane stress problem is set up.

• The material parameters E and ν describe copper.

• At the lower edge at y = 0 the displacements are zero, i.e. u1(x, 0) = u2(x, 0) = 0 for −0.05 ≤ x ≤
+0.05.

• The other edges are force free.

• On all of the domain a force density of f⃗ = (0 , 100
0.3·0.1) ≈ (0 , 3333) is given.

• An initial mesh is generated with the help of triangle and then upgraded to a mesh with second order
elements.

With a call of PlaneStress() the displacements u⃗1 and u⃗2 are computed and then displayed, leading to
Figure 12.

PlainStressExample.m
W = 0.1; H = 0.3; Load = 100; E = 110e9; nu = 0.35; %% copper

FEMmesh = CreateMeshTriangle(’Example1’,...
[-W/2 0, -11; +W/2 0 -22; W/4 H -22; -W/4 H -22],0.0001);

figure(1); FEMtrimesh(FEMmesh)
xlabel(’x’); ylabel(’y’); axis equal

FEMmesh = MeshUpgrade(FEMmesh,’quadratic’); %% uncomment for second order elements

f = {0,Load/(H*W)}; gD = {0,0}; gN = {0,0};
[u1,u2] = PlaneStress(FEMmesh,E,nu,f,gD,gN);
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Figure 11: Solution of a wave equation
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Figure 12: The computational domain and the two displacement functions u1 and u2

figure(2); FEMtrimesh(FEMmesh,u1)
xlabel(’x’); ylabel(’y’); zlabel(’u_1’); view([50,30])

figure(3); FEMtrimesh(FEMmesh,u2)
xlabel(’x’); ylabel(’y’); zlabel(’u_2’); view([50,30])

With EvaluateStrain() the three strains εxx, εyy and εxy are determined at the nodes and displayed,
leading to Figure 13. The Saint–Venant’s principle at the lower edge y = 0 is clearly visible.

Figure 13: The normal strains εxx, εyy and the shearing strain εxy

PlainStressExample.m
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
figure(4);
subplot(1,3,1); FEMtrimesh(FEMmesh,eps_xx)

xlabel(’x’); ylabel(’y’); zlabel(’\epsilon_{xx}’); view([50,30])
subplot(1,3,2); FEMtrimesh(FEMmesh,eps_yy)

xlabel(’x’); ylabel(’y’); zlabel(’\epsilon_{yy}’); view([50,30])
subplot(1,3,3); FEMtrimesh(FEMmesh,eps_xy)

xlabel(’x’); ylabel(’y’); zlabel(’\epsilon_{xy}’); view([50,30])

With EvaluateStress() the three stresses σx, σy and τxy are determined at the nodes and displayed,
leading to Figure 14. The Saint–Venant’s principle at the lower edge y = 0 is again clearly visible.

PlainStressExample.m
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Figure 14: The normal stresses σx and σy and the shearing stress τxy

[sigma_x,sigma_y,tau_xy] = EvaluateStress(FEMmesh,u1,u2,E,nu);
figure(5);
subplot(1,3,1); FEMtrimesh(FEMmesh,sigma_x)

xlabel(’x’); ylabel(’y’); zlabel(’\sigma_x’); view([50,30])
subplot(1,3,2); FEMtrimesh(FEMmesh,sigma_y)

xlabel(’x’); ylabel(’y’); zlabel(’\sigma_y’); view([50,30])
subplot(1,3,3); FEMtrimesh(FEMmesh,tau_xy)

xlabel(’x’); ylabel(’y’); zlabel(’\tau_{xy}’); view([50,30])

With the two commands EvaluateVonMises() andEvaluateTresca() the von Mises stress and the
Tresca stress are computed and displayed, leading to Figure 15. At the end of the code the two principal stresses
σ1 and σ2 are computed, but not displayed.

(a) von Mises stress (b) Tresca stress

Figure 15: The von Mises and Tresca stress

PlainStressExample.m
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy);
figure(6); FEMtrimesh(FEMmesh,vonMises)

xlabel(’x’); ylabel(’y’); zlabel(’von Mises stress’); view([120,30])
Tresca = EvaluateTresca(sigma_x,sigma_y,tau_xy);
figure(7); FEMtrimesh(FEMmesh,Tresca)
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xlabel(’x’); ylabel(’y’); zlabel(’Tresca stress’); view([120,30])
[s1,s2] = EvaluatePrincipalStress(sigma_x,sigma_y,tau_xy);

3.5.2 A plane strain example

On the trapezoidal domain visible in Figure 12(a) a plane strain problem is set up.

• The material parameters E and ν describe copper.

• At the lower edge at y = 0 the displacements are zero, i.e. u1(x, 0) = u2(x, 0) = 0 for −0.05 ≤ x ≤
+0.05.

• At the upper edge at y = 0.3 the horizontal displacements is set to +0.01 and the vertical displacement is
zero.

• The edges on the side are force free.

• The is no volume force applied to the domain, i.e. f⃗ = 0⃗ .

• An initial mesh is generated by deforminag a regular, rectangular mesh, and then upgraded to a mesh with
second order elements.

With a call of PlaneStrain() the displacements u⃗1 and u⃗2 are computed and then displayed, leading to
Figure 16. A corser mesh on the same domain is generated and then used to display the original and deformed
domain. Find the result in Figure 16(a) with the original domain in green and the deformed domain in red.
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(c) the displacement u2

Figure 16: The computational domain and the two displacement functions u1 and u2

PlainStrainExample.m
W = 0.1; H = 0.3; E = 110e9; nu = 0.35; %% copper

FEMmesh = CreateMeshRect(linspace(-W/2,W/2,10),linspace(0,H,30),-11,-11,-22,-22);
function xy_new = Deform(xy)
xy_new = [xy(:,1).*(1-0.5/0.3*xy(:,2)) , xy(:,2)];

endfunction
FEMmesh = MeshDeform(FEMmesh,’Deform’);
CMesh = CreateMeshRect(linspace(-W/2,W/2,6),linspace(0,H,20),-11,-11,-22,-22);
CMesh = MeshDeform(CMesh,’Deform’); %% create a course mesh on the same domain
FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);
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f = {0,0}; gN = {0,0};
function res = gD(xy)
res = +(xy(:,2)>0.1)*0.01;

endfunction

[u1,u2] = PlaneStrain(FEMmesh,E,nu,f,{’gD’,0},gN);

u1i = FEMgriddata(FEMmesh,u1,CMesh.nodes(:,1),CMesh.nodes(:,2));
u2i = FEMgriddata(FEMmesh,u2,CMesh.nodes(:,1),CMesh.nodes(:,2));
factor = 2;
figure(11); trimesh(CMesh.elem,CMesh.nodes(:,1)+factor*u1i,...

CMesh.nodes(:,2)+factor*u2i,’color’,’red’,’linewidth’,2);hold on ;
trimesh(CMesh.elem,CMesh.nodes(:,1),...

CMesh.nodes(:,2),’color’,’green’,’linewidth’,1);
hold off; axis equal; xlabel(’x’); ylabel(’y’); ylim([0,0.35])

figure(2); FEMtrimesh(FEMmesh,u1)
xlabel(’x’); ylabel(’y’); zlabel(’u_1’); view([50,30])

figure(3); FEMtrimesh(FEMmesh,u2)
xlabel(’x’); ylabel(’y’); zlabel(’u_2’); view([50,30])

With EvaluateStrain() the three strains εxx, εyy and εxy are determined at the nodes and displayed,
leading to Figure 17.

Figure 17: The normal strains εxx, εyy and the shearing strain εxy

PlainStrainExample.m
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
figure(4);
subplot(1,3,1); FEMtrimesh(FEMmesh,eps_xx)

xlabel(’x’); ylabel(’y’); zlabel(’\epsilon_{xx}’); view([50,30])
subplot(1,3,2); FEMtrimesh(FEMmesh,eps_yy)

xlabel(’x’); ylabel(’y’); zlabel(’\epsilon_{yy}’); view([50,30])
subplot(1,3,3); FEMtrimesh(FEMmesh,eps_xy)

xlabel(’x’); ylabel(’y’); zlabel(’\epsilon_{xy}’); view([50,30])

With EvaluateStress() the three stresses σx, σy and τxy are determined at the nodes and displayed,
leading to Figure 18. Observe that the function EvaluateStress() is called with for four return arguments,
including σz . This assures that the plain strain expressions are used for the computations.
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Figure 18: The normal stresses σx and σy and the shearing stress τxy

PlainStrainExample.m
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(FEMmesh,u1,u2,E,nu);
figure(5); title(’stress’)
subplot(1,3,1); FEMtrimesh(FEMmesh,sigma_x)

xlabel(’x’); ylabel(’y’); zlabel(’\sigma_x’); view([50,30])
subplot(1,3,2); FEMtrimesh(FEMmesh,sigma_y)

xlabel(’x’); ylabel(’y’); zlabel(’\sigma_y’); view([50,30])
subplot(1,3,3); FEMtrimesh(FEMmesh,tau_xy)

xlabel(’x’); ylabel(’y’); zlabel(’\tau_{xy}’); view([50,30])

With the two commands EvaluateVonMises() andEvaluateTresca() the von Mises stress and the
Tresca stress are computed and displayed, leading to Figure 15. Observe that four input arguments are given for
the functions EvaluateVonMises() and EvaluateTresca(), including σz . This assures that the plain
strain expressions are used for the computations. At the end of the code the two unknown principal stresses σ1
and σ2 are computed, but not displayed.

(a) von Mises stress (b) Tresca stress

Figure 19: The von Mises and Tresca stress

PlainStrainExample.m
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy,sigma_z);
figure(6); FEMtrimesh(FEMmesh,vonMises)
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xlabel(’x’); ylabel(’y’); zlabel("von Mises stress"); view([120,30])
Tresca = EvaluateTresca(sigma_x,sigma_y,tau_xy,sigma_z);
figure(7); FEMtrimesh(FEMmesh,Tresca)

xlabel(’x’); ylabel(’y’); zlabel("Tresca stress"); view([120,30])

[s1,s2] = EvaluatePrincipalStress(sigma_x,sigma_y,tau_xy);
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4 The Commands of FEMoctave

In this section find the documentation for the commands provided by FEMoctave.

4.1 Commands for meshes: creation, evaluation, modification, integration

4.1.1 Structure of a mesh

The main information of a mesh, as shown in Section 6.1 is given by the position of the nodes (points), the
corresponding triangles and the boundary edges. A mesh consists of

Nn nodes, with their (x, y) coordinates,

Ne elements, with 3 (or 6) nodes forming one triangle,

Nb boundary edges, with 2 (or 3) nodes forming one edge.

In FEMoctave this information is stored as a structure with an arbitrary name, but the elements of the structure
require specific names, as shown in Table 4. The first 6 of these elements can be modified by the user and contain
all the necessary information on the mesh to be used.

• type: a string indicating the order of the element, currently linear, quadratic or cubic.

• nodes: this Nn× 2 matrix contains the coordinates (xi, yi) of the nodes numbered by 1 ≤ i ≤ Nn. The
entries are real numbers.

• nodesT: this Nn vector of integers contains the information of the type of nodes. If the entry in row i
equals 0 then node i is a DOF, i.e. the value of the solution is not prescribed. If the entry in row i equals
1 then node i is a Dirichlet node and the value of the solution is determined by the given function. For
elasticity problems this is a Nn× 2 matrix with the information on both components.

• elem: for first order meshes this Ne × 3 matrix of integers contains in each row the numbers of three
nodes forming one linear element (triangle). The triangles have a positive orientation. For second order
elements it is a Ne× 6 matrix of integers. For third order elements it is a Ne× 10 matrix of integers.

• elemT: types of elements is not used yet.

• edges: this Nb× 2, Nb× 3 or Nb× 4 matrix of integers contains in each row the numbers of two, three
or four nodes forming a boundary edge.

• edgesT: this Nb vector of integers contains the information of the type of edges. If the entry in row i
equals −1 then edge i is part of the Dirichlet boundary, i.e. the value of the solution is prescribed. If the
entry in row i equals −2 then edge i is part of the Neumann boundary, i.e. the value of the solution is not
yet known. For elasticity problems this is a Nb× 2 matrix with the information on both components. See
Table 5 for the codes.

All other elements of a mesh structure can be derived or computed from the above data.

• elemArea: this vector of real numbers contains the area of the individual triangles.

• GP: this matrix of reals contains the coordinates of all Gauss points for the numerical integration. There
are 3 (or 7) Gauss points for each triangle.

• GPT: this vector of integer contains the type for each Gauss point. Currently not used.

• nDOF: this integer gives the total number of degrees of freedom (DOF) for the system to be solved.

SHA 17-11-22



4 THE COMMANDS OF FEMOCTAVE 34

Name Size Information

type string type of element, “linear”, “quadratic” or “cubic”

nodes Nn× 2 coordinates of nodes

nodesT Nn× {1, 2} type of nodes, either 0 (free) or 1 (fixed)

elem Ne× {3, 6, 10} list of nodes that make up the triangles

Ne× 3 for first order elements

Ne× 6 for second order elements

Ne× 10 for third order elements

elemT Ne× 1 type of elements

edges Nb× {2, 3, 4} list of nodes that make up the boundary edges

edgesT Nb× {1, 2} type of boundary edge, Dirichlet, Neumann or elasticity

elemArea Ne× 1 area of the triangles

GP coordinates of the Gauss integration points

3 ·Ne× 2 for first order elements

7 ·Ne× 2 for second and third order elements

GPT (3 or 7) ·Ne× 1 type of the Gauss integration points

nDOF 1× {1, 2} total number of DOF of the system

node2DOF Nn× {1, 2} renumbering from nodes to DOF

Table 4: Elements of a mesh structure

• node2DOF: This vector (or matrix for elasticity problems) gives for each node the number of the corre-
sponding DOF. If the number equals 0 then it is a Dirichlet node.

The commands CreateMeshRect() and CreateMeshTriangle() create meshes with this structure.
The codes for the boundary conditions in Table 5 for elasticity problems might ask for a few examples of

boundary conditions.

-11 : at this node the displacements are given by u1(x, y) = gD1(x, y) and u2(x, y) = gD2(x, y).

-22 : at this node there are no surface forces, i.e. the node is on a free section of the boundary.

-12 : at this node the x–displacement u1(x, y) = gD1(x, y) is given and there is no surface force in y–direction.

-31 : at this node the y–displacement u2(x, y) = gD2(x, y) is given and surface force in x–direction is given
by gN1(x, y).

-23 : at this node there is no surface force in x–direction and the surface force in y–direction is given by
gN2(x, y).

4.1.2 Create a uniform mesh on a rectangle: CreateMeshRect()

With the command CreateMeshRect(x,y,Blow,Bup,Bleft,Bright) you can create a mesh on a
rectangle. The function takes 6 input arguments.

• The ordered vectors x and y contain the x and y coordinates of the mesh to be generated.
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code for scalar problems

-1 Dirichlet condition , u = g1 given

-2 Neumann condition , ∂
∂n u = g2 + g2 u

for elasticity problems

code in x–direction in y-direction

-1* displacement u1 = gD1 given *

-*1 * displacement u2 = gD2 given

-2* force free section *

-*2 * force free section

-3* force density gN1 given *

-*3 * force density gN2 given

Table 5: Codes for the boundary conditions

• For scalar problems the variables Blow, Bup, Bleft and Bright indicate the boundary condition on
the corresponding edges. If the index is -1 then the edge is part of the Dirichlet boundary Γ1 and thus the
value of the function is prescribed. If the index is -2 then the edge is part of the Neumann boundary Γ2 and
thus information about the outer normal derivative is known, but not the value of the solution.

• For elasticity problems the variables Blow, Bup, Bleft and Bright indicate the boundary condition
according to the codes in Table 5.

Examples of the usage are given in Sections 3.1.1 and 3.1.2.

CreateMeshRect()
Mesh = CreateMeshRect(X,Y,BLOW,BUP,BLEFT,BRIGHT)

Create a rectangular mesh nodes at (x_i,y_j)

parameters:

* X,Y are the vectors containing the coodinates of the nodes to be generated.

* BLOW, BUP, BLEFT, BRIGHT indicate the type of boundary condition at lower,
upper, left and right edge of the rectangle

* for scalar problems

* B* = -1: Dirichlet boundary condition

* B* = -2: Neumann or Robin boundary condition

* for elasticity problems

* bi = -xy : with two digits for x and y directions

* x/y = 1 : given displacement

* x/y = 2 : force free

* x/y = 3 : given force density

return values

* MESH is a a structure with the information about the mesh.
The mesh consists of n_e elements, n_n nodes and n_ed edges.

* MESH.TYPE a string with the type of triangle: linear

* MESH.ELEM n_e by 3 matrix with the numbers of the nodes forming triangular elements

* MESH.ELEMAREA n_e vector with the areas of the elements

* MESH.ELEMT n_e vector with the type of elements (not used)

* MESH.NODES n_n by 2 matrix with the coordinates of the nodes
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* MESH.NODEST n_n vector with the type of nodes

* MESH.EDGES n_ed by 2 matrix with the numbers of the nodes forming edges

* MESH.EDGEST n_ed vector with the type of edge

* MESH.GP n_e*3 by 2 matrix with the coordinates of the Gauss points

* MESH.GPT n_e*3 vector of integers with the type of Gauss points

* MESH.NDOF number of DOF, degrees of freedom

* MESH.NODE2DOF n_n vector or n_n by 2 matrix of integers, mapping nodes to DOF

Sample call:
Mesh = CreateMeshRect(linspace(0,1,10),linspace(-1,2,20),-1,-1,-2,-2)

will create a mesh with 200 nodes and 0<=x<=1, -1<=y<=+2

With CreateMeshRect() one can only generate meshes with elements of order 1. With the help of
MeshUpgrade() (Section 4.1.4) you can upgrade to the same mesh with elements of order 2 or 3.

4.1.3 Using triangle: CreateMeshTriangle() and ReadMeshTriangle()

With the command CreateMeshTriangle(name,xy,area) you can create a mesh with the outer borders
given in xy. The function takes 3 or 4 input arguments.

• The string ’name’ is the file name to be used to store the information.

• The matrix xy contains the edge points of the domain and the information on the boundary conditions.

• area is the typical are of the triangles to be used.

• The optional argument options can specify more flags to the external call of the program triangle.

The mesh can then be read by calling Mesh = ReadMeshTriangle(’name.1’). Examples of the usage
are given in Sections 3.1.3 and 3.2.

CreateMeshTriangle()
MESH = CreateMeshTriangle(NAME,XY,AREA,OPTIONS)

Generate files with a mesh using the external code triangle

parameters:

* NAME the base filename: the file NAME.poly will be generated
then triangle will generate files NAME.1.* with the mesh

* XY vector containing the coordinates of the nodes forming the outer boundary.
The last given node will be connected to the first given node
to create a closed curve. Currently no holes can be generated.

The format for XY is [x1,y1,b1;x2,y2,b2;...;xn,yn,bn] where

* xi x-coordinate of node i

* yi y-coordinate of node i

* bi boundary marker for segment from node i to node i+1

* for scalar problems

* bi = -1 Dirichlet boundary condition

* bi = -2 Neumann or Robin boundary condition

* for elasticity problems

* B* = -xy : with two digits for x and y directions

* x/y = 1 : given displacement

* x/y = 2 : force free

* x/y = 3 : given force density
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* AREA the typical area of he individual triangles to be used

* OPTIONS additional options to be used when calling triangle the options
"pa" and the area will be added automatically.
Default options are "q" resp. "qpa"
to suppress the verbose information use "Q"

The information on the mesh generated is written to files and returned in the structure
MESH, if the return argument is provided.

* The information can then be read and used by Mesh = ReadMeshTriangle(’NAME.1’);

* MESH is a a structure with the information about the mesh.
The mesh consists of n_e elements, n_n nodes and n_ed edges.

* MESH.TYPE a string with the type of triangle: linear

* MESH.ELEM n_e by 3 matrix with the numbers of the nodes forming triangular elements

* MESH.ELEMAREA n_e vector with the areas of the elements

* MESH.ELEMT n_e vector with the type of elements (not used)

* MESH.NODES n_n by 2 matrix with the coordinates of the nodes

* MESH.NODEST n_n vector with the type of nodes (not used)

* MESH.EDGES n_ed by 2 matrix with the numbers of the nodes forming edges

* MESH.EDGEST n_ed vector with the type of edge

* MESH.GP n_e*3 by 2 matrix with the coordinates of the Gauss points

* MESH.GPT n_e*3 vector of integers with the type of Gauss points

* MESH.NDOF number of DOF, degrees of freedom

* MESH.NODE2DOF n_n vector or n_n by 2 matrix of integers, mapping nodes to DOF

• If a return argument for MeshGenerateTriangle() is provided, the mesh is returned.

• If no return argument is provided, the information is written to files. The generated mesh is the read by
calling the function ReadMeshTriangle().

This function can also be used to read meshes generated by direct call of the external program triangle. This
allows to use all features of triangle and not only the very restricted setup used by CreateMeshTriangle().
To find more about the features of triangle use the web page www.cs.cmu.edu/˜quake/triangle.html or com-
pile and install the code and then run triangle -h to examine the built-in help.

ReadMeshTriangle()
FEMMESH = ReadMeshTriangle(NAME.1)
read a mesh generated by CreateMeshTriangle(NAME)
parameter: NAME.1 the filename
return value: FEMMESH the mesh stored in NAME

Sample call:
CreateMeshTriangle(’Test’,[0,-1,-1;1,-1,-2;1,2,-1;0,2,-2],0.01)
Mesh = ReadMeshTriangle(’Test.1’);

will create a mesh with 0<=x<=1, -1<=y<=+2
and a typical area of 0.01 for each triangle

Find an example in Section 8.8.
With CreateMeshTriange() and ReadMeshTriangle() one can only generate meshes with ele-

ments of order 1. With the help of MeshUpgrade() (Section 4.1.4) you can upgrade to the same mesh with
elements of order 2 or 3.

4.1.4 Converting meshes: upgrading and downgrading

Given a mesh MeshLinwith first order elements one can generate the same mesh with elements of order 2 by the
command MeshUpgrade(MeshLin,’quadratic’). The numbering of the nodes of the linear elements is
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preserved in the mesh with the quadratic elements. The new nodes are placed at the midpoints of the edges of
the triangles. With MeshUpgrade(MeshLin,’cubic’) a mesh with 10 node cubic elements is generated.
Examine Figure 42 on page 85 on how the nodes are placed within the triangles.

MeshUpgrade()
MESHNEW = MeshUpgrade(MESHLIN,TYPE)

convert a mesh MESHLIN of order 1 to a mesh MESHNEW of order 2 or 3
parameters:

* MESHLIN the input mesh of order 1

* TYPE is a string, either ’quadratic’ or ’cubic’
the default is ’quadratic’

return value: MESHNEW the output mesh of order 2 or 3

As example generate a mesh with elements of order 1 on the rectangle 0 ≤ x, y ≤ 2 with Dirichlet conditions
on three edges and a Neumann condition on the upper edge at y = 2. In Figure 20 find the mesh with the types
of nodes indicated and the numbering of the resulting degrees of freedom.

N = 3;
FEMmesh1 = CreateMeshRect(linspace(0,2,N+1),linspace(0,2,N+1),-1,-2,-1,-1);
FEMmeshQ = MeshUpgrade(FEMmesh1,’quadratic’);
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(a) linear elements
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(b) quadratic elements

Figure 20: The same mesh with linear or quadratic elements. The types of the nodes are marked in green.
Dirichlet nodes are marked by −1, Neumann nodes by −2 and interiour nodes by +1. The numbering of the
resulting degrees of freedom is shown in blue. For Dirichlet nodes a DOF of 0 is used.

Using MeshQuad2Linear() one can convert a mesh of order 2 to a mesh of order 1. The nodes will
remain unchanged, but there will be a factor of 4 more elements. With this function one can compare results
based on first or second order elements, using exactly the same degrees of freedom.

MeshQuad2Linear()
MESHLIN = MeshQuad2Linear(MESHQUAD)

convert a mesh MESHQUAD of order 2 to a mesh MESHLIN of order 1
parameter: MESHQUAD the input mesh of order 2
return value: MESHLIN the output mesh of order 1

An example is shown in Section 3.1.4.
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Using MeshCubic2Linear() one can convert a mesh of order 3 to a mesh of order 1. The nodes will
remain unchanged, but there will be a factor of 9 more elements. With this function one can compare results
based on first or third order elements, using exactly the same degrees of freedom.

MeshCubic2Linear()
MESHLIN = MeshCubic2Linear(MESHCUBIC)

convert a mesh MESHCUBIC of order 3 to a mesh MESHLIN of order 1
parameter: MESHCUBIC the input mesh of order 3
return value: MESHLIN the output mesh of order 1

4.1.5 Use delaunay() to create a mesh: Delaunay2Mesh()

It is possible to use the Octave command delaunay() to generate a triangulation of a convex domain and then
Delaunay2Mesh() to generate a mesh to be used by FEMoctave.

• The generated mesh consists of elements of order one. Use MeshUpgrade() to work with elements of
order two or three.

• At first all boundary points are marked as Dirichlet points. Change the type description in the mesh if you
want Neumann points.

Delaunay2Mesh()
FEMMESH = Delaunay2Mesh(TRI,X,Y)

generate a mesh with elements of order 1, using a Delaunay triangulation
parameters:

* TRI the Delaunay triangulation

* X,Y the coodinates of the points
return value

* FEMMESH is the mesh to be used by FEMoctave

Observe that the quality of the mesh might be very poor, e.g. triangles with very small angles. As example
have a look at the upper edge on the right of the mesh in Figure 21. For almost all cases triangle will generate
meshes of better quality. To generate the domain and the solution in Figure 21 use the code below.

TestDelaunay.m
[x,y] = meshgrid(linspace(-1,1,20)); x = x(:); y = y(:);
ind = find(y<1-0.5*x+0.001); x = x(ind); y = y(ind);
ind = find(x+y>-0.001); x = x(ind); y = y(ind);

tri = delaunay(x,y);
figure(1); triplot(tri,x,y);

hold on; plot(x,y,’*’); hold off
xlabel(’x’); ylabel(’y’);

FEMmesh = Delaunay2Mesh(tri,x,y); FEMmesh = MeshUpgrade(FEMmesh);

u = BVP2Dsym(FEMmesh,1,0,4,0,0,0);
figure(2); FEMtrimesh(FEMmesh,u)

label(’x’); ylabel(’y’); view([100,45])
figure(3); FEMtricontour(FEMmesh,u);

xlabel(’x’); ylabel(’y’);

4.1.6 Deforming meshes by MeshDeform()

With the function MeshDeform() the nodes of a linear mesh can be deformed.

MeshDeform()
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Figure 21: A mesh generated by a Delaunay triangulation and the solution of a BVP

MeshDeformed = MeshDeform(MESH,DEFORM)
Deform the nodes of MESH by the transformation DEFORM
parameters:

* MESH the initial mesh with linear elements
this has to be a mesh with linear elements

* DEFORM the transformation formula
the function DEFORM takes one argument XY, a n by 2 matrix with the
x and y components in colums and returns the result in a n by 2 matrix.

return value

* DEFORMEDMESH the deformed mesh consistes of linear elements
use MESHUPGRADE to generate quadratic or cubic elements

To generate the quarter of a ring in Figure 35 on page 72 use polar coodinates(
x

y

)
=

(
r · cosφ
r · sinφ

)
with 1 ≤ r ≤ 2 and 0 ≤ φ ≤ π

2
.

FEMmesh = CreateMeshTriangle(’Test’,[1,0,-1;2,0,-1;2,pi/2,-2;1,pi/2,-1],0.1ˆ2);

function xy_new = Deform(xy) %% use polar coordinates
xy_new = [xy(:,1).*cos(xy(:,2)), xy(:,1).*sin(xy(:,2))];

endfunction

FEMmesh = MeshDeform(FEMmesh,’Deform’);
FEMtrimesh(FEMmesh)

Find an example in Section 8.1.

4.1.7 Display results on meshes, FEMtrimesh(), FEMtrisurf() and FEMtricontour()

To display the results of the computations very elementary wrappers around trimesh(), trisurf() and
tricontour() are provided.5

• With FEMtrimesh() display a function u as a 3D mesh. If no values for u are provided, the 2D mesh is
displayed.

• With FEMtrisurf() display a function u as a 3D surface. The syntax is identical to FEMtrimesh().
5It is obviously possible to improve the wrappers, as non of the advanced features of trimesh() or trisurf() is passed through.

If you want to use those, have a look at the elementary code in the FEMtri* functions and copy the necessary lines in to your code.
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• With FEMtricontour() display level curves of a function u. The syntax similar to the above.

All functions accept meshes with linear, quadratic or cubic elements. For quadratic elements the 6 nodes in each
element are connected by straight lines, i.e. as if one second order triangle would be composed of 4 first order
triangles. For cubic elements the 10 nodes in each element are connected by straight lines, i.e. as if one third
order triangle would be composed of 9 first order triangles.

FEMtrimesh()
FEMtrimesh (MESH, U)
display a solution U on a triangular mesh
parameters:

* MESH is the mesh

* U values of the function to be displayed
if U is not given, then the mesh is displayed in 2D

FEMtricontour()
FEMtricontour (MESH, U, V)

display contours of a solution U on a triangular mesh
parameters:

* MESH is the mesh

* U values of the function to be displayed

* V contours to be used, default value is 21
if V is scalar, it is the number of contours
if V is a vector, it is the levels of the contours

4.1.8 Evaluate the gradient of a function at the nodes: FEMEvaluateGradient()

Given the values u of a function at the nodes, the two components of the gradient can be computed with the
function FEMEvaluateGradient().

FEMEvaluateGradient()
[UX,UY] = FEMEvaluateGradient(MESH,U)

evaluate the gradient of the function u at the nodes
parameters:

* MESH is the mesh describing the domain and the boundary types

* U vector with the values of the function at the node
return value

* UX x component of the gradient of u

* UY y component of the gradient of u

the values of the gradient are determined on each element
at the nodes the average of the gradient of the elements is used

The gradient is determined on each of the elements, using either linear, quadratic or cubic interpolation. Then
at each node the average of the values of the gradient of the neighboring triangles is returned. This is different
from the results generated by FEMgriddata(). Examples are given in Sections 5.1, 8.3, 8.4, 8.5 and 8.9. Due
to using broadcasting in the Octave code (bsxfun()) the code is fast! This function could be used (or is that
abused?) to evaluate derivatives of functions given on an irregular grid!

4.1.9 Evaluate a function and its gradient at the Gauss points: FEMEvaluateGP()

Given the values u of a function at the nodes, the values of u and its gradient can be computed at the Gauss
points by calling FEMEvaluateGP(). For first order elements a piecewise linear interpolation is used, thus
the gradients will be constant on each triangular element. For second order elements a quadratic interpolation is

SHA 17-11-22



4 THE COMMANDS OF FEMOCTAVE 42

used. For third order elements a cubic interpolation is used.

FEMEvaluateGP()
[UGP,GRADUGP] = FEMEvaluateGP(MESH,U)

evaluate the function and gradient at the Gauss points
parameters:

* MESH is the mesh describing the domain and the boundary types

* U vector with the values of at the nodes
return values

* UGP values of u at the Gauss points

* GRADUGP matrix with the values of the gradients in the columns

Examples are given in Sections 8.7 and 8.9.

4.1.10 Integrate a function over the domain: FEMIntegrate()

Given a function name, the values of a function at the nodes or at the Gauss points one can integrate this function
over the domain given by the mesh. There are different methods used, all based on the Gauss integration presented
in Section 6.3.2.

• If a function name is specified, then this function will be evaluated at the Gauss points and then integrated.

• If a scalar value is given, then the function is assumed to be constant.

• If a column vector is given with as many components as nodes in the mesh, then an element wise interpo-
lation is used to obtain the values at the Gauss points. The function FEMEvaluateGP() is used.

• If a column vector is given with as many components as Gauss points in the mesh, then these are used as
values at the Gauss points.

FEMIntegrate()
NUMINTEGRAL = FEMIntegrate(MESH,U)

integrate a function u over the domain given in Mesh
parameters:

* MESH is the mesh describing the domain

* U the function to be integrated
can be given as function name to be evaluated or as scalar
value, or as a vector with the values at the nodes or the Gauss points.

return value

* NUMINTGERAL the numerical approximation of the integral

As a simple example integrate the function u(x, y) = x y3 over the unit square 0 ≤ x, y ≤ 1. The exact
integral equals 1

8 , but you have to subtract the exact value to see the difference to the numerical evaluation with
the Gauss points. This is not unusual, since the Gauss integration leads to very accurate approximations, if the
function is smooth. Linear elements use 3 integration points in each triangle, quadratic and cubic meshes use 7
integration points in each triangle. Thus integration’s using a linear mesh might not be as accurate.

N = 40; Mesh = CreateMeshRect(linspace(0,1,N),linspace(0,1,N),-2,-2,-2,-2);
function res = f_int(xy) res = xy(:,1).*xy(:,2).ˆ3; endfunction

integral1 = FEMIntegrate(Mesh,’f_int’) % using the function name
uGP = feval(’f_int’,Mesh.GP);
integral2 = FEMIntegrate(Mesh,uGP) % using the values at the Gauss points
-->
integral1 = 0.12500
integral2 = 0.12500
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To determine the area of a domain Ω ⊂ R2 one can integrate the constant 1 over the domain. More examples
are given in Sections 5.1, 8.1, 8.7 and 8.9.

4.1.11 Evaluation at arbitrary points or along curves, integration along curves: FEMgriddata()

Given a function by the values at the nodes of a mesh use the command FEMgriddata() to evaluate the
function at arbitrary points.

• The value of the function and the partial derivatives can be evaluated.

• Depending on the mesh provided either a piecewise linear, quadratic or cubic interpolation is used.

• If a point (xi, yi) is on the edge of a triangle is a matter of rounding which of the neighboring triangles is
used for the interpolation. Since all elements use are C0 conforming this has no influence on the value of
the function. The elements are not C1 conforming and thus the partial derivatives will jump across element
boundaries. See also Section 5.3 starting on page 67.

• If a point (xi, yi) is not in a triangle, then NaN is returned.

• The evaluation is very fast, even for large numbers of elements and interpolation points.

• Evaluation along arbitrary curves is possible, and fast. Then use trapz() to integrate along curves. Find
examples in Sections 8.5 and 8.13.

FEMgriddata()
[UI,UXI,UYI] = FEMgriddata(MESH,U,XI,YI)
evaluate the function (and gradient) at given points by interpolation
parameters:

* MESH is the mesh describing the domain
If MESH consists of linear elements, piecewise linear interpolation is used.
If MESH consists of quadratic elements, piecewise quadratic interpolation is used.
If MESH consists of cubic elements, piecewise cubic interpolation is used.

* U vector with the values of the function at the nodes

* XI, YI coordinates of the points where the function is evaluated
return values:

* UI values of the interpolated function u

* UXI x component of the gradient of u

* UYI y component of the gradient of u

The values of the function and the gradient are determined on each element by
a piecewise linear, quadratic or cubic interpolation.
If a point is not inside the mesh NaN is returned.

This function is similar to FEMEvaluateGradient(), but allows to evaluate at arbitrary points. At the
nodes the value of the gradient in one of the triangles is returned. As a consequence the results generated by
FEMEvaluateGradient() look smoother on occasion.

The code below evaluates a function on an L-shaped domain on a rectangular grid. Find the result in Fig-
ure 22.
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nodes = [0,0,-2;1,0,-2;1,1,-2;-1,1,-2;-1,-1,-2;0,-1,-2];
Mesh = CreateMeshTriangle(’Ldomain’,nodes,0.002);
x = Mesh.nodes(:,1); y = Mesh.nodes(:,2);

function res = f_int2(xy) res = sin(pi*xy(:,1)).ˆ2.*xy(:,2)+1; endfunction

u = feval(’f_int2’,Mesh.nodes);
N = 51; [xi,yi] = meshgrid(linspace(-1,1,N));
tic(); ui3 = FEMgriddata(Mesh,u,xi,yi); toc()

figure(1); mesh(xi,yi,ui3)
xlabel(’x’); ylabel(’y’); zlabel(’u’)

-->
Elapsed time is 0.0075829 seconds.
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Figure 22: A function evaluated on a uniform grid

Examples are given in Sections 5.3, 8.3, 8.5, 8.8, 8.10 and 8.13.

4.2 How to define functions

There are three basic techniques to define functions in Octave to be used with FEMoctave.

• If the function is a constant you can simply use this scalar as input argument.

• You may provide the function name of the function to be called to compute the values of the function.
Observe that the function has to be vectorized6. Due to a recent change in Octave the script versions
should use a dummy second argument7. The function can be implemented as a name.m Octave function
or as dynamically linked function name.oct, written in C++.

• You can provide a vector of the correct size with all the values of the function at the Gauss integration
points of the mesh.

Section 3 contains many examples or you may examine the examples below.
6Function on the boundary are actually called for one point at a time, but this might change. Thus it is advisable to write all functions

vectorized.
7In the script files (FEMEquationM() and similar) the function is called with the nodes types as second argument, to be used for

different sections in the domain. If you only use the compiled versions (FEMEquation() and similar) the dummy argument is not
required. I might remove this “feature” in a next release.
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4.2.1 Functions for static problems

The functions BVP2D(), BVP2Dsym() and BVP2Deig() accept the coefficient functions as input parameters.
These functions accept (currently) one parameter, a matrix with two columns. The first (resp. second) column
contains the x (resp. y) coordinates of the points at which the function is to be evaluated.

As a first example consider the function f(x, y) = 7. There are three options:

1. Pass the constant 7 as scalar to the FEMoctave function. This is the preferred approach.

2. Define a function

Octave
function res = ff(xy,dummy)
res = 7*ones(size(yz)(1),1);

endfunction

and then pass the string ’ff’ to the FEMoctave function.

3. Determine the vector of the correct size by

Octave
ffVec = 7 * ones(size(mesh.GP)(1),1);

and then pass the vector ffVec to the FEMoctave function.

For the second example function
f(x, y) = 7 + 2x

the option constant is not available. There are two equally valid methods.

1. Define a function

Octave
function res = ff(xy,dummy)
res = 7 + 2*xy(:,1);

endfunction

and then pass the string ’ff’ to the FEMoctave function.

2. Determine the vector of the correct size by

Octave
ffVec = 7 + 2*xy(:,1);

and then pass the vector ffVec to the FEMoctave function.

To implement the function
f(x, y) = J0(r) = J0(

√
x2 + y2)

to be passed to the FEMoctave command use

Octave
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function y = f(xy)
y = besselj(0,sqrt(xy(:,1).ˆ2+xy(:,2).ˆ2));

endfunction

With this definition pass the string ’f’ to the FEMoctave function. Alternatively you can first compute the
column vector fVec of this function at the Gauss points of the mesh by

Octave
fVec = f(mesh.GP);

and then pass the vector fVec to the FEMoctave function.

4.2.2 Functions for dynamic problems

The only change is the additional time t, to be passed as a second argument, i.e. f(xy,t)=... .

4.3 Solving elliptic problems

The first few commands shown in Table 1 can be used to solve elliptic problem on a bounded domain Ω ⊂ R2.
In the next two section the commands to solve a symmetric and a non-symmetric elliptic BVP are shown.

4.3.1 Symmetric elliptic problems: BVP2Dsym()

Equations given in the form of (2)

−∇ · (a∇u) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

a ∂ u
∂n = g2 + g3 u for (x, y) ∈ Γ2

may be solved by

Octave
u = BVP2Dsym(mesh,a,b0,f,g1,g2,g3)

where the coefficient functions can be given as described in Section 4.2.1, as constants, strings or vectors. The
return value u is a vector with the values of the solution at the nodes.

BVP2Dsym()
U = BVP2Dsym(MESH,A,B0,F,GD,GN1,GN2)

Solve a symmetric, elliptic boundary value problem

-div(a*grad u)+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u) = gN1+gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* A,B0,F,GD,GN1,GN2 are the coefficients and functions describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0 and F may also be given as vectors with the
values of the function at the Gauss points.

return value

* U is the vector with the values of the solution at the nodes

Find examples in Sections 3.1.1, 3.1.2, 3.1.3, 8.4, 8.5, 8.7 and 8.13.
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4.3.2 General elliptic problems: BVP2D()

Equations given in the form of (1)

−∇ · (a∇u− u b⃗) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y) ∈ Γ2

may be solved by

Octave
u = BVP2D(mesh,a,b0,bx,by,f,g1,g2,g3)

where the coefficient functions can be given as described in Section 4.2.1, as constants, strings or vectors. The
expressions bx and by denote the two components of the convection vector b⃗. The return value u is a vector with
the values of the solution at the nodes. Find an example in Section 3.1.4.

BVP2D()
U = BVP2D(MESH,A,B0,BX,BY,F,GD,GN1,GN2)

Solve an elliptic boundary value problem

-div(a*grad u - u*(bx,by))+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u - u*(bx,by)) = gN1+gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

return value

* U is the vector with the values of the solution at the nodes

4.4 Solving eigenvalue problems: BVP2Deig()

To solve an eigenvalue problem of the form (3)

−∇ · (a∇u) + b0 u = λ f u for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

a ∂ u
∂n = g3 u for (x, y) ∈ Γ2

use

Octave
[Eval,Evec,errorbound] = BVP2Deig(mesh,a,b0,f,gN2,nVec,tol);

where the coefficient functions can be given as described in Section 4.2.1, as constants, strings or vectors.

• The function can be called with one (Eval) or two ([Eval,Evev]) return arguments. A possible third
return argument ([Eval,Evec,errorbound]) is of limited use, since with newer versions of FEMoc-
tave eigs() is used, instead of an inverse power iteration.
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– The first return value Eval is a column vector containing the estimated values of the eigenvalues λi.

– If the second return value Evec is asked for, then a matrix will be returned. Each column contains
the values of a normalized eigenfunction at the nodes.

– The third return argument errorbound will return a matrix with two columns, containing infor-
mation on the error bound of the eigenvalues. Observe the the error of the eigenvalue computation
is given, not the error of the overall FEM problem. The error of the FEM discretization has to be
estimated by other tools. Some mathematical details are given in Section 6.9.

* The first column contains a conservative error estimate. The actual error of the eigenvalue is
guaranteed to be smaller.

* The second column contains a more aggressive error estimate. Under most circumstances the
estimate is valid. For highly clustered eigenvalues the error is overestimated.. There are cir-
cumstances when the error of the largest eigenvalues is underestimated. If the error is extremely
small, the estimate might indicate an even smaller error. Keep in mind the the error is always
larger than machine accuracy permits.

• The integer parameter nVec indicated the number of smallest eigenvalues to be be computed.

• The parameter tol will lead to the iteration stopping if the relative change from one step to the next is
smaller than tol. If the parameter is not given, then a default value of 10−5 is used.

An example of an eigenvalue problem is given in Section 3.2.

BVP2Deig()
[EVAL,EVEC,ERRORBOUND] = BVP2Deig(MESH,A,B0,W,GN2,NVEC)

determine the smallest eigenvalues EVAL and eigenfunctions EVEC for the BVP

-div(a*grad u)+ b0*u = Eval*w*u in domain
u = 0 on Dirichlet boundary

n*(a*grad u) = gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* A,B0,W,GN2 are the coefficients and functions describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0 and W may also be given as vectors with the
values of the function at the Gauss points.

* NVEC is the number of smallest eigenvalues to be computed
return values:

* EVAL is the vector with the eigenvalues

* EVEC is the matrix with the eigenvectors as columns

* ERORBOUND is a matrix with error bound of the eigenvalues

In Sections 6.8.2 and 6.8.4 find the consequences of the eigenvalues to solutions of dynamic heat and wave
equations.
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4.5 Solving parabolic problems: IBVP2D() and IBVP2Dsym()

To solve an initial boundary value problem (IBVP) of the form (4)

ρ ∂
∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (0, T ]

u = g1 for (x, y, t) ∈ Γ1 × (0, T ]

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T ]

u = u0 on Ω at t = 0

use the command IBVP2D(). Find an example in Section 3.3 and a description of the algorithm in Section 6.8.1.

IBVP2D()
[U,T] = IBVP2D(MESH,M,A,B0,BX,BY,F,GD,GN1,GN2,U0,T0,TEND,STEPS)

Solve an initial boundary value problem

m*d/dt u - div(a*grad u-u*(bx,by)) + b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u -u*(bx,by)) = gN1+gN2*u on Neumann boundary
u(t0) = u0 initial value

parameters:

* MESH is the mesh describing the domain and the boundary types

* M,A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE. Any constant function can be given by its scalar value.
The functions M,A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

* F may be given as a string for a function depending on (x,y)
and time t or a a vector with the values at nodes or as scalar.
If F is given by a scalar or vector it is independent on time.

* U0 is the initial value, can be given as a constant, function
name or as vector with the values at the nodes

* T0, TEND are the initial and final times

* STEPS is a vector with one or two positive integers.
If STEPS = n, then n Crank Nicolson steps are taken and the results returned.
If STEPS = [n,nint], then n*nint Crank Nicolson steps are taken and
(n+1) results returned.

return values

* U is a matrix with n+1 columns with the values of the solution
at the nodes at different times T

* T is the vector with the values of the times at which the
solutions are returned.

If there is no convection term b⃗ = 0⃗, then the resulting matrix A is symmetric and (most often) positive
definite. Thus one can use a Cholesky factorization for the time stepper. This is (or should be) faster. The
structure of IBVP2Dsym() is almost identical to IBVP2D().

IBVP2Dsym()
IBVP2Dsym(MESH,M,A,B0,F,GD,GN1,GN2,U0,T0,TEND,STEPS)

Solve a symmetric initial boundary value problem
m*d/dt u - div(a*grad u) + b0*u = f in domain

u = gD on Dirichlet boundary
n*(a*grad u) = gN1+gN2*u on Neumann boundary

u(t0) = u0 initial value
...
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4.6 Solving hyperbolic problems: I2BVP2D()

Examine an IBVP (6) of hyperbolic type.

ρ ∂2

∂t2
u+ 2α ∂

∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (0, T ]

u = g1 for (x, y, t) ∈ Γ1 × (0, T ]

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T ]

u = u0 on Ω at t = 0
∂
∂t u = v0 on Ω at t = 0

To solve this wave type equation use the command I2BVP2D(). Find examples in Sections 8.2 and 8.12 and a
description of the algorithm in Section 6.8.3.

I2BVP2D()
[U,T] = I2BVP2D(MESH,M,D,A,B0,BX,BY,F,GD,GN1,GN2,U0,V0,T0,TEND,STEPS)

Solve an initial boundary value problem

m*dˆ2/dtˆ2 u + 2*d*d/dt u - div(a*grad u-u*(bx,by)) + b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u -u*(bx,by)) = gN1+gN2*u on Neumann boundary
u(t0) = u0 initial value

d/dt u(t0) = v0 initial velocity

parameters:

* MESH is the mesh describing the domain and the boundary types

* M,D,A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE.
Any constant function can be given by its scalar value.
The functions M,D,A,B0,BX,BY and F may also be given as
vectors with the values of the function at the Gauss points.

* F may be given as a string for a function depending on (x,y)
and time t or a a vector with the values at nodes or as scalar.
If F is given by a scalar or vector it is independent on time.

* U0,V0 are the initial value and velocity, can be given as a constant,
function name or as vector with the values at the nodes

* T0, TEND are the initial and final times

* STEPS is a vector with one or two positive integers.
If STEPS = n, then n steps are taken and the results returned.
If STEPS = [n,nint], then n*nint steps are taken and (n+1 results returned.

return values

* U is a matrix with n+1 columns with the values of the solution
at the nodes at different times T

* T is the vector with the values of the times at which the
solutions are returned.

4.7 Solving plane stress and plane strain problems: PlaneStress(), PlaneStrain()

For a plane stress problem the total energy in expression (14)

U(u⃗) = Uelast + UV ol + USurf
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is minimized, respecting the boundary conditions (7), i.e.

u⃗ = g⃗D on Dirichlet boundary Γ1, i.e. prescibed displacement

force density = g⃗N on Neumann boundary Γ2, i.e. prescibed force density

force density = 0⃗ on free boundary Γ3

PlaneStress()
[U1,U2] = PlaneStress(MESH,E,NU,F,GD,GN)

solve an plane stress problem

plane stress equation in domain
u = gD on Gamma_1

force density = gN on Gamma_2
force density = 0 on Gamma_3

parameters:

* MESH is the mesh describing the domain and the boundary types

* E,NU Young’s modulus and Poisson’s ratio for the material

* F = {F1,F2} a cell array with the two components of the volume forces

* GD = {GD1,GD2} a cell array with the two components of the
prescribed displacements on the boundary section Gamma_1

* GN = {GN1,GN2} a cell array with the two components of the
surface forces on the boundary section Gamma_2

* Any constant function can be given by its scalar value

* Any function can be given by a string with the function name

* The functions E, NU, F1 and F2 may also be given as vectors
with the values of the function at the Gauss points

return values

* U1 vector with the values of the x-displacement at the nodes

* U2 vector with the values of the y-displacement at the nodes

For a plane strain problem the total energy in expression (49)

U(u⃗) = Uelast + UV ol + USurf
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1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩ dA−
−
∫∫
Ω

f⃗ · u⃗ dA−
∮
Γ2

g⃗N · u⃗ ds

=

∫∫
Ω

1

2

E

(1− (ν⋆)2)
⟨


1 ν⋆ 0

ν⋆ 1 0

0 0 2 (1− ν⋆)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩ dA−
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−
∫∫
Ω

f⃗ · u⃗ dA−
∮
Γ2

g⃗N · u⃗ ds .

is minimized, again respecting the boundary conditions (7). Thus the code for PlaneStrain() is almost
identical to PlaneStress() .

PlaneStrain()
[U1,U2] = PlaneStrain(MESH,E,NU,F,GD,GN)

solve an plane strain problem

plane strain equation in domain
u = gD on Gamma_1

force density = gN on Gamma_2
force density = 0 on Gamma_3

parameters:

* MESH is the mesh describing the domain and the boundary types

* E,NU Young’s modulus and Poisson’s ratio for the material

* F = {F1,F2} a cell array with the two components of the volume forces

* GD = {GD1,GD2} a cell array with the two components of the
prescribed displacements on the boundary section Gamma_1

* GN = {GN1,GN2} a cell array with the two components of the
surface forces on the boundary section Gamma_2

* Any constant function can be given by its scalar value

* Any function can be given by a string with the function name

* The functions E, NU, F1 and F2 may also be given as vectors
with the values of the function at the Gauss points

return values

* U1 vector with the values of the x-displacement at the nodes

* U2 vector with the values of the y-displacement at the nodes

4.7.1 Evaluating plane stress and plane strain solutions

In Table 6 find the commands related to solving plane elasticity problems and analyzing their solutions. Observe
the functions EvaluateStress(), EvaluateStrain(), EvaluateVonMises(), EvaluateTresca()
and EvaluatePrincipalStress() find the values at the nodes of the mesh. Thus for many applications
these function have to be followed by a call of FEMgriddata() to evaluate at arbitrary points.

Observe that the two computational paths

1. Evaluate the partial derivative ∂ u1
dx by a piecewise interpolation of the values of u1 at the nodes.

2. Evaluate the normal strain εxx at the nodes, followed by a piecewise interpolation to determine the value
at the arbitrary point (x, y).

will NOT generate identical results. The difference should be small, but can be substantial, in particular for first
order elements.

1. The value of eps xx 1 is evaluated using the values of u1 at the nodes and then a piecewise linear or
quadratic interpolation to find the value of the partial derivative ∂ u1

∂x at the point (x, y).

2. The second option eps xx 2 will first find values of the strain εxx at the nodes, by taking an average of
the partial derivatives ∂ u1

∂x at the node in the different triangles touching the node. Then a piecewise linear
or quadratic interpolation of the values of εxx at the nodes is used to estimate εxx = ∂ u1

∂x at the point (x, y).
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[˜,eps_xx_1,˜] = FEMgriddata(FEMmesh,u1,x,y)
[eps_xx,eps_yy,tau_xy] = EvaluateStrain(FEMmesh,u1,u2);
eps_xx_2 = FEMgriddata(FEMmesh,eps_xx,x,y)

command purpose

PlaneStress() solve a plane stress problem

PlaneStrain() solve a plane strain problem

PStressEquationM() internal script to generate the plane stress equations

PStressEquationQuadM() internal script to generate the plane stress equations

EvaluateStrain() given the displacement evaluate the strains at the nodes

EvaluateStress() given the strains evaluate the stress at the nodes

EvaluateVonMises() evaluate the von Mises stress at the nodes

EvaluatePrincipalStress() evaluate the three principal stresses at the nodes

EvaluateTresca() evaluate the Tresca stress at the nodes

Table 6: Commands to solve and examine elasticity problems

4.7.2 Evaluation of basic strain and stress: EvaluateStrain(), EvaluateStress()

Given the displacements u⃗1 and u⃗2 with the corresponding mesh use the function EvaluateStrain() to
determine the normal and shearing strains at the nodes of the mesh. The same function can be used for plane
stress and plane strain problems. The missing normal strain εzz in z–direction can be determined independently.

• For a plane stress setup use εzz =
−ν
1−ν (εxx + εyy).

• For a plane strain setup the assumption is εzz = 0.

EvaluateStrain()
[EPS_XX,EPS_YY,EPS_XY] = EvaluateStrain(MESH,U1,U2)

evaluate the normal and shearing strains at the nodes

parameters:

* MESH is the mesh describing the domain

* U1 vector with the values of the x-displacement at the nodes

* U2 vector with the values of the x-displacement’s at the nodes
return values:

* EPS_XX values of normal strain in x direction at the nodes

* EPS_YY values of normal strain in y direction at the nodes

* EPS_XY values of shearing strain at the nodes

Given the displacements u⃗1 and u⃗2 with the corresponding mesh use the function EvaluateStress()
to determine the normal and shearing stresses at the nodes. Since Hooke’s law is used to determine the stresses
the material parameters E and ν have to be provided. Use the same function for plane stress and plane strain
problems, but with different arguments.
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• For a plane stress setup ask for three return arguments σx, σy and τxy. All other components of the stress
tensor are zero, based on the plane stress assumption.

• For a plane strain setup ask for four return arguments σx, σy, τxy and σz . Based on Hooke’s law the other
shearing stresses are given by τxz = τyz = 0.

EvaluateStress()
[SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z] = EvaluateStress(MESH,U1,U2,E,NU)

evaluate the normal and shearing stresses at the nodes, using
Hooke’s law for plane stress or plane strain setups

* [SIGMA_X,SIGMA_Y,TAU_XY] = EvaluateStress(MESH,U1,U2,E,NU)
with three return arguments assumes a plane stress situation

* [SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z] = EvaluateStress(MESH,U1,U2,E,NU)
with four return arguments assumes a plane strain situation

parameters:

* MESH is the mesh describing the domain

* U1 vector with the values of the x-displacements at the nodes

* U2 vector with the values of the y-displacements at the nodes

* E Young’s modulus of elasticity, either as constant or as
string with the function name

* NU Young’s modulus of elasticity, either as constant of as
string with the function name

return values:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* TAU_XY values of shearing strain at the nodes

* SIGMA_Z values of normal stress in y direction at the nodes,
only for plane strain situations

4.7.3 Evaluation stress: EvaluateVonMises(), EvaluatePrincipalStress(), EvaluateTresca()

There are many expressions used for post processing elasticity problems. The following commands allow to
evaluate a few of them at the nodes of the given mesh.

The von Mises stress σM is useful as an indicator for material failure for ductile materials, e.g. most metals.
It is one of the most common output expressions used for mechanical FEM simulations. It is a measure for the
differences of the principals stresses, since

σ2
M =

1

2

(
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
)
.

• For a plane stress setup use σz = τxz = τyz = 0 to simplify the expression for the von Mises stress.

σ2
M =

1

2

(
(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2
)
+ 3

(
τ2xy + τ2yz + τ2zx

)
=

1

2

(
(σx − σy)

2 + σ2
y + σ2

x

)
+ 3 τ2xy = σ2

x + σ2
y − σyσ

2
x + 3 τ2xy

• For a plane strain setup use τxz = τyz = 0 to simplify the expression for the von Mises stress slightly.

σ2
M =

1

2

(
(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2
)
+ 3 τ2xy
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Select the plane stress or plane strain setup by calling the function EvaluateVonMises() with three or four
arguments.

• If the three arguments σx, σy and τxy are given, then a plane stress situation is used.

• If the four arguments σx, σy, τxy and σz are given, then a plane strain situation is used.

EvaluateVonMises()
VONMISES = EvaluateVonMises(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)

evaluate the von Mises stress at the nodes

* VONMISES = EvaluateVonMises(SIGMA_X,SIGMA_Y,TAU_XY)
with three input arguments assumes a plane stress situation

* VONMISES = EvaluateVonMises(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)
with four input arguments assumes a plane strain situation

parameters:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* TAU_XY values of shearing strain at the nodes

* SIGMA_Z values of normal stress in z direction at the nodes,
only for plane strain situations

return values:

* VONMISES values of the von Mises stress at the nodes

By selecting an appropriate (local) coordinate system the shearing stresses will vanish and only the three
principal stresses σ1, σ2 and σ3 are used. They are the eigenvalues of the stress matrix

σx τxy τxz

τxy σy τyz

τxz τyz σz

 .

• For a plane stress problem determine the principal stresses σ1 and σ2 by solving a quadratic equation.

0 = det

[
σx − σ τxy

τxy σy − σ

]
= σ2 − σ (σx + σy) + σxσy − τ2xy

σ1,2 =
1

2

(
(σx + σy)±

√
(σx + σy)2 − 4σxσy + 4 τ2xy

)
=

1

2

(
(σx + σy)±

√
(σx − σy)2 + 4 τ2xy

)
The third principal stress is given by σ3 = 0.

• For a plane strain setup the first two of the above principal stresses remain unchanged. The values of σ3
are determined by

σ3 = σz =
E ν (εxx + εyy)

(1 + ν) (1− 2 ν)
= ν (σ1 + σ2) = ν (σx + σy) .

and returned by the function EvaluateStress().

Thus there is no need for code to compute the values of σ3.
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EvaluatePrincipalStress()
[SIGMA_1,SIGMA_2] = EvaluatePrincipalStress(SIGMA_X,SIGMA_Y,TAU_XY)

evaluate the first two principal stresses at the nodes

parameters:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* TAU_XY values of shearing strain at the nodes
return values:

* SIGMA_1 first principal stress at the nodes

* SIGMA_2 second principal stress at the nodes

The Tresca stress is another indicator for material failure for ductile materials. The Tresca stress is given by

σT = max{|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|} .

Select the plane stress or plane strain setup by calling the function EvaluateTresca() with three or four
input arguments.

• If the three input arguments σx, σy and τxy are given, then a plane stress situation is used.

• If the four input arguments σx, σy, τxy and σz are given, then a plane strain situation is used.

EvaluateTresca()
TRESCA = EvaluateTresca(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)

evaluate the Tresca stress at the nodes

* TRESCA = EvaluateTresca(SIGMA_X,SIGMA_Y,TAU_XY)
with three input arguments assumes a plane stress situation

* TRESCA = EvaluateTresca(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)
with four input arguments assumes a plane strain situation

parameters:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* TAU_XY values of shearing strain at the nodes

* SIGMA_Z values of normal stress in z direction at the nodes,
only for plane strain situations

return values:

* TRESCA Tresca stress at the nodes

4.8 Internal commands in FEMoctave

4.8.1 Linear elements: FEMEquation() and FEMEquationM()

This is the fundamental function that transforms a BVP to a system of linear equations. First order triangular
elements are used. To speed it up it is written in C++, leading to the file FEMEquation.oct.

FEMEquation()
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[A,B] = FEMEquation(MESH,A,B0,BX,BY,F,GD,GN1,GN2)

sets up the system of linear equations for a numerical solution of
a PDE using a triangular mesh with elements of order 1

-div(a*grad u - u*(bx,by))+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u - u*(bx,by)) = gN1+g2N*u on Neumann boundary

parameters:

* MESH triangular mesh of order 1 describing the domain and the
boundary types

* A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

return values:

* A, B: matrix and vector for the linear system to be solved, A*u-B=0

FEMEquationM.m is a simplified version, but written as an Octave script. Thus the code is easier to read
and understand. The convection terms are not available in FEMEquationM.m.

4.8.2 Quadratic elements: FEMEquationQuad() and FEMEquationQuadM()

This is the fundamental function that transforms a BVP to a system of linear equations. Second order triangular
elements are used. To speed it up it is written in C++.

FEMEquationQuad()
[A,B] = FEMEquationQuad(MESH,A,B0,BX,BY,F,GD,GN1,GN2)
sets up the system of linear equations for a numerical solution of
a PDE using a triangular mesh with elements of order 2

-div(a*grad u - u*(bx,by))+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u - u*(bx,by)) = gN1+g2N*u on Neumann boundary

parameters:

* MESH triangular mesh of order 2 describing the domain and the
boundary types

* A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

return values:

* A, B: matrix and vector for the linear system to be solved, A*u-B=0

FEMEquationQuadM.m is a simplified version, but written as an Octave script. Thus the code is easier to
read and understand. The convection terms are not available in FEMEquationQuadM.m.

4.8.3 Cubic elements: FEMEquationCubic() and FEMEquationCubicM()

These two command are very similar to the above section, but use triangular elements of order 3.
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4.8.4 Effect of right hand side for dynamic problems: FEMInterpolWeight()

For the time stepping in parabolic and hyperbolic problems many systems of linear equations have to be solved
using the RHS f(t, x, y) for different values of the time t. Thus a function to keep track of the influence of f
is useful, FEMInterpolWeight(). This function returns a sparse matrix wMat such that the RHS of the
system to be solved is given by wMat f⃗ .

FEMInterpolWeight()
WMAT = FEMInterpolWeight(FEMMESH,WFUNC)

create the matrix to determine the contribution of w*f to a IBVP or BVP
the contribution of w*f is the determined by wMat*f, where f is the
vector with the values at the "free" nodes

-div(a*grad u)+ b0*u = w*f in domain
u = gD on Dirichlet boundary

n*(a*grad u) = gN1+gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* WFUNC is the weight function w
It may be given as a function name, a vector with the values
at the Gauss points or as a scalar value

return value

* WMAT is the sparse weight matrix

This function is used in IBVP2D(), I2BVP2D() and IBVP2Dsym().

4.8.5 Effect of the Dirichlet values: FEMInterpolBoundaryWeight()

If the same system has to be solved for many different Dirichlet values gD on the boundary, one can generate the
equation once and the only recompute the changes for different gD.

FEMInterpolBoundaryWeight()
WMAT = FEMInterpolBoundaryWeight(FEMMESH,A,B0)

create the matrix to determine the contribution of gD to a IBVP or BVP
the contribution of gD is the determined by wMat*gD, where gD is
the vector with the values at the Dirichlet nodes

-div(a*grad u)+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u) = gN1+gN2*u on Neumann boundary

parameters:

* FEMMESH is the mesh describing the domain and the boundary types.

* A,B0 are the coefficients and functions describing the PDE.
return value:

* WMAT is the sparse weight matrix

4.8.6 Determine a few small eigenvalues: eigSmall()

In the function BVP2Deig() a few small eigenvalues are determined with the help of the wrapper eigSmall()
for the Octave function eigs(). Usually generalized eigenvalues are used in FEMoctave.
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eigSmall
[Lambda,{Ev,err}] = eigSmall(A,V,tol)

solve A*Ev = Ev*diag(Lambda) standard eigenvalue problem

[Lambda,{Ev,err}] = eigSmall(A,B,V,tol)
solve A*Ev = B*Ev*diag(Lambda) generalized eigenvalue problem

A is a (sparse) mxm matrix
B is a (sparse) mxm matrix
V is a mxn matrix, where n is the number of eigenvalues desired

it contains the initial eigenvectors for the iteration
tol is the relative error, used as the stopping criterion

X is a column vector with the eigenvalues
EV is a matrix whose columns represent normalized eigenvectors
err is a vector with the aposteriori error estimates for the eigenvalues

this implementation is based on using eigs()

4.8.7 Generating the equations for elasticity problems

The two codes PStressEquationM.m and PStressEquationQuadM.m generate the linear system of
equations to be solved for plane stress and plain strain problems. They are used in PlaneStress() and
PlaneStrain(). The Octave codes are based on the algorithms in Section 7 (starting on page 124) and easier
to read and understand than C++ code

PStressEquationM.m
[gMat,gVec] = PStressEquationM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
setup the equation for a plane stress problem with linear elements

PStressEquationQuadM.m
[gMat,gVec] = PStressEquationM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
setup the equation for a plane stress problem with quadratic elements

The Octave code might be replaced by a compiled code for speed reasons.

4.9 External programs

To construct nonuniform triangular meshes FEMoctave uses an external program.

• Triangle to generate a good mesh. The source code is given in FEMoctave. Find documentation on the
web page www.cs.cmu.edu/˜quake/triangle.html.

• CuthillMcKee to obtain a good numbering. Not necessary any more, since the sparse factorizations do a
better job.

• tricountour.m is a code by Duane Hanselman available at the Mathworks web site matlabcentral. It
was used by previous versions of the function FEMtricontour(). The current version of FEMoctave
contains a simple implementation of tricontour.m . Neither code is able to generate good labels for
the contours.

SHA 17-11-22

https://www.cs.cmu.edu/~quake/triangle.html


5 TOOLS FOR DIDACTICAL PURPOSES 60

5 Tools for Didactical Purposes

In this section a few effects of FEM are illustrated. This could be useful to teach classes on the FEM.

5.1 Observe the convergence of the error as h→ 0

Consider the unit square Ω = [0, 1]× [0, 1]. One can verify that the function ue(x, y) = sin(x) · sin(y) is solution
of the boundary value problem

−∇ · ∇u = −2 sin(x) · sin(y) for 0 ≤ x, y ≤ 1
∂ u(x,1)

∂y = − sin(x) · cos(1) for 0 ≤ x ≤ 1 and y = 1

u(x, y) = ue(x, y) on the other sections of the boundary

.

Let h > 0 be the typical length of a side of a triangle. For second order elements 2h is used and for third order
elements 3h, such that the computational effort is comparable to first order elements. Nonuniform meshes are
used, to avoid superconvergence. By choosing different values of h one should observe smaller errors for smaller
values of h. The sizes of the matrices vary (approximately) from 50 × 50 to 58′000 × 58′000. The error is
measured by computing the L2 norms of the difference of the exact and approximate solutions, for the values
of the functions and its partial derivative with respect to y. These are the expressions used in the theoretical
convergence estimates stated in Section 6.7. A double logarithmic plot leads to Figure 23.
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Figure 23: Convergence results for linear, quadratic and cubic elements

• For linear elements:

– The slope of the curve for the absolute values of u(x, y) − ue(x, y) is approximately 2 and thus
conclude that the error is proportional to h2.

– The slope of the curve for the absolute values of ∂
∂y (u(x, y)− ue(x, y)) is approximately 1 and thus

conclude that the error of the gradient is proportional to h.
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• For quadratic elements:

– The slope of the curve for the absolute values of u(x, y) − ue(x, y) is approximately 3 and thus
conclude that the error is proportional to h3.

– The slope of the curve for the absolute values of ∂
∂y (u(x, y)− ue(x, y)) is approximately 2 and thus

conclude that the error of the gradient is proportional to h2.

• For cubic elements:

– The slope of the curve for the absolute values of u(x, y) − ue(x, y) is approximately 4 and thus
conclude that the error is proportional to h4.

– The slope of the curve for the absolute values of ∂
∂y (u(x, y)− ue(x, y)) is approximately 3 and thus

conclude that the error of the gradient is proportional to h3.

These observations confirm the theoretical error estimates in Section 6.7 on page 117. It is rather obvious from
Figure 23 that higher order elements generate more accurate solutions for a comparable computational effort.

TestConvergence.m
a = 1; b0 = 0; gN2 = 0; N = 6;
Npow = 6; % use Npow = 6 for final run

function res = u_exact(xy) res = sin(xy(:,1)).*sin(xy(:,2)); endfunction
function res = f(xy) res = 2*sin(xy(:,1)).*sin(xy(:,2)); endfunction
function res = u_y(xy) res = sin(xy(:,1)).*cos(xy(:,2)); endfunction

for ii = 1:Npow
Ni = N*2ˆ(ii-1); h(ii) = 1/(Ni); area = 0.5/(Ni)ˆ2;
FEMmesh1 = CreateMeshTriangle(’TestConvergence’,[0 0 -1;1 0 -1;1 1 -2;0 1 -1],area);
FEMmesh2 = CreateMeshTriangle(’TestConvergence’,[0 0 -1;1 0 -1;1 1 -2;0 1 -1],4*area);
FEMmesh2 = MeshUpgrade(FEMmesh2,’quadratic’);
FEMmesh3 = CreateMeshTriangle(’TestConvergence’,[0 0 -1;1 0 -1;1 1 -2;0 1 -1],9*area);
FEMmesh3 = MeshUpgrade(FEMmesh3,’cubic’);

%%% solve with first order elements
u1 = BVP2Dsym(FEMmesh1,a,b0,’f’,’u_exact’,’u_y’,gN2);
Difference(ii) = sqrt(FEMIntegrate(FEMmesh1,(u1-u_exact(FEMmesh1.nodes)).ˆ2));
[ux,uy] = FEMEvaluateGradient(FEMmesh1,u1);
DifferenceUy(ii) = sqrt(FEMIntegrate(FEMmesh1,(uy-u_y(FEMmesh1.nodes)).ˆ2));

%%% now for second order elements
u2 = BVP2Dsym(FEMmesh2,a,b0,’f’,’u_exact’,’u_y’,gN2);
DifferenceQ(ii) = sqrt(FEMIntegrate(FEMmesh2,(u2-u_exact(FEMmesh2.nodes)).ˆ2));
[ux,uy] = FEMEvaluateGradient(FEMmesh2,u2);
DifferenceUyQ(ii) = sqrt(FEMIntegrate(FEMmesh2,(uy-u_y(FEMmesh2.nodes)).ˆ2));

%%% now for third order elements
u3 = BVP2Dsym(FEMmesh3,a,b0,’f’,’u_exact’,’u_y’,gN2);
DifferenceC(ii) = sqrt(FEMIntegrate(FEMmesh3,(u3-u_exact(FEMmesh3.nodes)).ˆ2));
[ux,uy] = FEMEvaluateGradient(FEMmesh3,u3);
DifferenceUyC(ii) = sqrt(FEMIntegrate(FEMmesh3,(uy-u_y(FEMmesh3.nodes)).ˆ2));

endfor
figure(1); plot(log10(h),log10(Difference), ’+-’,log10(h),log10(DifferenceUy), ’+-’,

log10(h),log10(DifferenceQ),’+-’,log10(h),log10(DifferenceUyQ),’+-’,
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log10(h),log10(DifferenceC),’+-’,log10(h),log10(DifferenceUyC),’+-’)
xlabel(’log_{10}(h)’); ylabel(’log_{10}(difference)’)
legend(’linear, u-u_e’,’linear, d/dy (u-u_e)’,
’quad, u-u_e’,’quad, d/dy (u-u_e)’,’cubic, u-u_e’,’cubic, d/dy (u-u_e)’,
’location’,’southeast’); xlim([-2.5,-0.5])

5.2 Some Element Stiffness Matrices

5.2.1 Element contributions for equilateral triangles

Generate the trivial mesh consisting of a single equilateral triangle with the help of GenerateMeshTriangle.
The code in CreateTriangle.m generates the mesh and Figure 24.

CreateTriangle.m
%% corners of an equilateral triangle
corners = 1*[0,0,-2;1,0,-2;0.5,sqrt(3)/2,-2];
mm = CreateMeshTriangle(’one_triangle’,corners,max(corners(:).ˆ2))

plot([mm.nodes(:,1);mm.nodes(1,1)],[mm.nodes(:,2);mm.nodes(1,2)],’o-r’,
mm.GP(:,1),mm.GP(:,2),’b*’)

xlabel(’x’); ylabel(’y’); title(’triangle, with Gauss points’); axis equal

A =

√
3

6


+2 −1 −1
−1 +2 −1
−1 −1 +2



b⃗ =

√
3

4 · 3


−1
−1
−1

 =
area of triangle

3


−1
−1
−1


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Figure 24: An linear, equilateral triangle, the Gauss integration points and the element stiffness matrix

For the PDE −∆u = 1 generate the element stiffness matrix A and the element vector f⃗ by using the
commands FEMEquation() or FEMEquationM().

[A2,f2] = FEMEquationM(mm,1,0,1,0,0); %% using the script
[A,f] = FEMEquation (mm,1,0,0,0,1,0,0,0); %% using compiled code
Element_Matrix = full(A)
Element_Vector = f
-->
Element_Matrix = 0.57735 -0.28868 -0.28868

-0.28868 0.57735 -0.28868
-0.28868 -0.28868 0.57735

Element_Vector = -0.14434
-0.14434

SHA 17-11-22



5 TOOLS FOR DIDACTICAL PURPOSES 63

-0.14434

This result corresponds to the exact result for the element stiffness matrix in Figure 24.

Using the same idea one can examine the contributions of the different term to the element stiffness matrix.
As example consider the term caused by b0 u = 1u in the PDE.

B = FEMEquation(mm,0,1,0,0,0,0,0,0);
B = full(B)
-->
B = 0.072169 0.036084 0.036084

0.036084 0.072169 0.036084
0.036084 0.036084 0.072169

The result confirms

B =
area of triangle

12


2 1 1

1 2 1

1 1 2

 .

Examine a mesh consisting of equilateral triangle, as shown in Figure 25. Then examine the linear equation
corresponding to an interior point at (xi, yi).

-2 -1 0 1 2

-2

-1

0

1

2

Figure 25: Uniform meshes consisting of equilateral triangles

• The node is corner of 6 triangles, thus the coefficient ai,i of the global stiffness matrix consists of 6 contri-
butions found on the diagonal in the element stiffness matrix A in Figure 24, i.e. ai,i = 6 +2

2
√
3
= 6√

3
.

• If a node at (xj , yj) shares two triangles with (xi, yi) then the entry ai,j in the global stiffness matrix
consists of 2 contributions found off the diagonal in the element stiffness matrix A in Figure 24, i.e.
ai,j = 2 −1

2
√
3
= −1√

3
.

• If the function f in −∇2u = f is constant, then there will be 6 contributions from the six neigh-
boring triangle. If the length of one side of a triangle equals h, then the area is

√
3
4 h2. Thus find

bi = 6
area of triangle

3 (−f) = −
√
3
2 h2 f .
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As a result find the equation for the node at (xi, yi).

1

h2

 6√
3
u(xi, yi)−

1√
3

∑
neigbours

u(xj , yj)

 = +

√
3

2
f

1

h2

6u(xi, yi)−
∑

neigbours
u(xj , yj)

 = +
3

2
f

This is somewhat similar to a finite difference approximation. For each row of the global stiffness matrix the
entry on the diagonal and 6 more will be different from 0.

One can examine second order elements and the resulting element stiffness matrix and vector for quadratic
elements for the PDE −∆u = 1. The triangular, equilateral element and the matrix are shown in Figure 26. The

A =

√
3

18



6 1 1 0 −4 −4
1 6 1 −4 0 −4
1 1 6 −4 −4 0

0 −4 −4 24 −8 −8
−4 0 −4 −8 24 −8
−4 −4 0 −8 −8 24
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Figure 26: An equilateral, quadratic triangle, the Gauss integration points and the element stiffness matrix

vector is given by

b⃗ =

√
3

4 · 3



0

0

0

−1
−1
−1


=

area of triangle
3



0

0

0

−1
−1
−1


For the global stiffness matrix for a very regular mesh in Figure 25

• on each row of the matrix corresponding to a corner of the triangle the entry on the diagonal and 12 more
will be different from 0. If the mesh is not as regular even 19 entries on each row might be different from
zero.

• on each row of the matrix corresponding to a midpoint of a side of the triangle the entry on the diagonal
and 6 more will be different from 0. If the mesh is not as regular even 9 entries on each row might be
different from zero.

•

SHA 17-11-22



5 TOOLS FOR DIDACTICAL PURPOSES 65

5.2.2 From FEM to a finite difference approximation

Generate the trivial mesh consisting of a single equilateral triangle with the help of GenerateMeshTriangle.
The code in CreateTriangle.m generates the mesh and Figure 27. For the PDE −∆u = 1 generate the
element stiffness matrix A and the element vector b⃗ by using FEMEquation() or FEMEquationM().

CreateTriangle.m
%% corners of a right triangle
corners = 1*[0,0,-2;1,0,-2;0,1,-2];
CreateMeshTriangle(’one_triangle’,corners,max(corners(:).ˆ2))
mm = ReadMeshTriangle(’one_triangle.1’);
[A,f] = FEMEquation(mm,1,0,0,0,1,0,0,0); %% using compiled code
Element_Matrix = full(A)
Element_Vector = f
-->
Element_Matrix = 1.00000 -0.50000 -0.50000

-0.50000 0.50000 0.00000
-0.50000 0.00000 0.50000

Element_Vector = -0.16667
-0.16667
-0.16667

A =


+1 −0.5 −0.5
−0.5 +1 0

−0.5 0 +1

 , b⃗ =
1

6


−1
−1
−1


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1
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y

triangle, with Gauss points

Figure 27: A right triangle, the Gauss integration points and the element stiffness matrix

Based on elements of the above type there is a connection of FEM to the finite difference method. Generate
a rectangular grid, shown in Figure 28. Examine the PDE −∆u = π with Neumann boundary conditions. Use
the command FEMEquation to generate the matrix A and the vector b⃗, then the linear equation A u⃗+ b⃗ has to
be solved. The code displays the equation at node 5.

x = [-1,0,1];
FEMmesh = CreateMeshRect(x,x,-2,-2,-2,-2)
figure(1); clf
ShowMesh(FEMmesh.nodes,FEMmesh.elem)
xlabel(’x’); ylabel(’y’)
axis(1.2*[-1,1,-1,1]*max(x))
hold on
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(a) a section
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(b) a small section, numbered

Figure 28: Uniform meshes consisting of rectangular triangles

for kk = 1:length(FEMmesh.nodes)
text(FEMmesh.nodes(kk,1)+0.02,FEMmesh.nodes(kk,2)-0.07,num2str(kk),’color’,[1 0 0])

endfor
hold off

a=1; b0=bx=by= 0; f=pi;
[A,b] = FEMEquation(FEMmesh,a,b0,bx,by,f,0,0,0);
A5 = full(A(5,:))
b5 = b(5)
-->
A5 = 0 -1 0 -1 4 -1 0 -1 0
b5 = -3.1416

The results imply that the equation to be solved is

−u2 − u4 + 4u5 − u6 − u8 = π .

Running the code again with x = [1,0,1]/2 will not change A, but lead to b5 = −π 4. Thus for a width h
of the triangles the equation to be solved is

−u(x− h, y)− u(x, y − h) + 4u(x, y)− u(x+ h, y)− u(x, y + h)

h2
= f(x, y) .

This is the usual finite difference approximation of −∆u = f .

One can examine second order elements and the resulting element stiffness matrix and vector for quadratic
elements for the PDE −∆u = 1. The element and the matrix are shown in Figure 29. The vector is given by

b⃗ =
1

2 · 3



0

0

0

−1
−1
−1


=

area of triangle
3



0

0

0

−1
−1
−1


.
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A =
1

6
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Figure 29: A right angle triangle, the Gauss integration points and the element stiffness matrix

5.3 Behavior of a FEM solution within triangular elements

To examine the behavior of a solution within each of the triangular elements use the boundary value problem

−∆u = − exp(y) for (x, y) ∈ Ω

u(x, y) = exp(y) for (x, y) ∈ Γ
.

on the domain Ω displayed in Figure 30(a). The exact solution is given by u(x, y) = exp(y), shown in Fig-
ure 30(b). The problem is solved twice:

1. using 32 triangular elements of order 1.

2. using 8 triangular elements of order 2.

The nodes used coincide for the two approaches, i.e four triangles in Figure 30(a) for the linear elements corre-
spond to one of the eight triangles for the quadratic elements.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

x

y

(a) the mesh (b) the solution

Figure 30: The mesh and the solution for a BVP

Figure 31(a) shows the difference of the computed solution with first order elements to the exact solution.
Within each of the 32 elements the difference is not too far from a quadratic function. Figure 31(b) shows the
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values of the partial derivative ∂ u
∂y . It is clearly visible that the gradient is constant within each triangle, and not

continuous across element borders.

(a) the difference to the exact solution (b) the values of ∂ u
∂y

Figure 31: Difference to the exact solution and values of ∂ u
∂y , using a first order mesh

Figure 32(a) shows the difference of the computed solution with second order elements to the exact solution.
The error is considerably smaller than for linear elements, using identical degrees of freedom. Within each of the 8
elements the difference does not show a simple structure. Figure 32(b) shows the values of the partial derivative
∂ u
∂y . It is clearly visible that the gradient is not constant within the triangles. By a careful visual inspection one has
to accept that the gradient is not continuous across element borders, but the jumps are considerably smaller than
for linear elements. These elements are not c1–conforming. Figure 33 shows the errors for the partial derivative
∂ u
∂y and confirms this observation.

(a) the difference to the exact solution (b) the values of ∂ u
∂y

Figure 32: Difference to the exact solution and values of ∂ u
∂y , using a second order mesh

In Figure 34 find the differences of the values of the solution and the partial derivative with respect to y for
the same computation using cubic elements. Observe that the approximation errors are considerably smaller. The
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(a) using linear elements (b) using quadratic elements

Figure 33: Difference of the approximate values of ∂ u
∂y to the exact values

partial derivatives ∂ u
∂x and ∂ u

∂y is not continuous across the limits of the triangles, since these third order elements
are not c1–conforming.

(a) u− uexact (b) ∂
∂y

(u− uexact)

Figure 34: Difference of the approximate values of u and ∂ u
∂y to the exact values for cubic elements

FEMInsideElement
N = 2; MeshType = ’quadratic’ %% use ’linear’, ’quadratic’ or ’cubic’
Mesh = CreateMeshTriangle(’test’,[0 0 -1;1 0 -1;1 2 -1; 0 1 -1],1/Nˆ2);
switch MeshType
case ’quadratic’
Mesh = MeshUpgrade(Mesh,’quadratic’);

case ’cubic’
Mesh = MeshUpgrade(Mesh,’cubic’);

endswitch
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xi = linspace(0.2,1.1,5); yi = xi*0.8+0.05;
Ngrid = 100; [xi,yi] = meshgrid(linspace(0,1,Ngrid),linspace(0,2,Ngrid));

figure(1); FEMtrimesh(Mesh)
xlabel(’x’); ylabel(’y’); xlim([-0.1,1.1]); ylim([-0.1,2.1])

function res = u_exact(xy) res = +exp(xy(:,2)) ; endfunction
function u = f(xy) u = -exp(xy(:,2)); endfunction

u_ex = reshape(u_exact([xi(:),yi(:)]),Ngrid,Ngrid);
u = BVP2Dsym(Mesh,1,0,’f’,’u_exact’,0,0);
[ui,uxi,uyi] = FEMgriddata(Mesh,u,xi,yi);

figure(2); FEMtrimesh(Mesh,u)
hold on
plot3(xi,yi,ui,’g.’)
hold off;
xlabel(’x’); ylabel(’y’); title(’u’); view([-60 25])

figure(3); mesh(xi,yi,uyi)
xlabel(’x’); ylabel(’y’); title(’u_y’)

figure(4); mesh(xi,yi,uyi-u_ex)
xlabel(’x’); ylabel(’y’); title(’difference of u_y’); view([-110, 30])

5.4 Estimate the number of nodes and triangles in a mesh and the effect on the sparse matrix

Let Ω ⊂ R2 be a domain with a triangular mesh with many triangles. There is a connection between

N = number of nodes and T = number of triangles.

Examine the typical mesh on the right and consider only trian-
gles and nodes inside the mesh, as the number of contributions
by the borders are considerably smaller for large meshes.

• each triangle has three corners

• each (internal) corner is touched by 6 triangles

• each triangle has 3 midpoints of edges and each of the
midpoints is shared by 2 triangles ������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

• For first order elements the nodes are the corners of the triangles.

N ≈ 1

6
T 3 =

1

2
T

Thus the number N of nodes is approximately half the number T of triangles.

• For second order elements the nodes are the corners of the triangles and the midpoints of the edges. Each
midpoint is shared by two triangles.

N ≈ 1

2
T +

3

2
T = 2T

Thus the number N of nodes is approximately twice the number T of triangles.
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• For third order elements the nodes are the corners of the triangles, two points each edge and the central
point. Each point on an edge is shared by two triangles.

N ≈ 1

2
T +

2 · 3
2

T + T =
9

2
T

Thus the number N of nodes is approximately 4.5 times the number T of triangles.

The above implies that the number of degrees of freedom to solve a problem with second or third order ele-
ments with a typical diameter h of the triangles is approximately equal to using linear elements on triangles with
diameter h/2 (quadratic) or h/3 (cubic).

The above estimates also allow to estimate how many entries in the sparse matrix resulting from an FEM
algorithm will be different from zero.

• For linear elements each node typically touches 6 triangles and each of the involved corners is shared by
two triangles. Thus there might be 6 + 1 = 7 nonzero entries in each row of the matrix.

• For second order triangles distinguish between corners and midpoints.

– Each corner touches typically six triangles and thus expect up to 6 × 3 + 1 = 19 nonzero entries in
the corresponding row of the matrix.

– Each midpoint touches two triangles and two of the corner points are shared. Thus expect up to
2 + 2× 3 + 1 = 9 nonzero entries in the corresponding row of the matrix.

The midpoints outnumber the corners by a factor of three. Thus expect an average of 3·9+19
4 = 11.5

nonzero entries in each row of the matrix.

• For third order triangles distinguish between corners, points on edges and center points.

– Each corner touches typically six triangles and thus expect up to 6 × 6 + 1 = 37 nonzero entries in
the corresponding row of the matrix.

– Each point on an edge touches two triangles and four points on the same edge are shared. Thus expect
up to 16 nonzero entries in the corresponding row of the matrix.

– Each center point leads to 10 nonzero entries.

There are approximately C corners points, 2C midpoints and on the 3C edges find 6C points. Thus
expect an average of 1·37+6·16+2·10

2+6+1 = 153
9 = 17 nonzero entries in each row of the matrix.

• The above estimates are not correct for equations with constant coefficients or horizontal or vertical edges.
Then expect fewer nonzero entries in each row of the matrix.

This points to about a factor of 11.5
7 ≈ 1.6 more nonzero entries in the matrix for quadratic elements for the

same number of degrees of freedom. For cubic elements expect a factor of 17
7 ≈ 2.4. This implies that the

computational effort is larger, the actual effect depends on the linear solver used.

5.5 Compare linear, quadratic and cubic elements

To examine the performance of the different order elements examine the BVP

−∇
(
(1 + x2)∇u(x, y)

)
= −4 (1 + x2) exp(−2 y) for (x, y) ∈ Ω

∂ u(y,0)
∂x = 0 for 1 ≤ y ≤ 2

u(x, y) = exp(−2 y) on other sections of the boundary

.

on the domain shown in Figure 35. The exact solution is given by ue(x, y) = exp(−2 y). For different values of
the typical element size h for linear elements the three types of elements are used.
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(a) linear elements
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(b) quadratic elements
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(c) cubic elements

Figure 35: Meshes for linear, quadratic and cubic elements, leading to similar size linear systems to be solved.

• For quadratic elements use hquad = 2h to aim for the same number of degrees of freedom, i.e. the same
size of linear system of equations to be examined. For cubic elements hcubic = 3h is used. This leads to
meshes shown in Figure 35. Observe that the mesh for cubic elements is not as good as the mesh for linear
elements to approximate the deformed domain, caused by the larger elements.

• For each solution u determine the L2 error, i.e.

error =

∫∫
Ω

|u(x, y)− ue(x, y)|2 dA

1/2

.

• For each setup determine the size n× n of the matrix A for the linear system to be solved.

• For each setup determine the number of nonzero entries in the sparse matrix A and then the average number
of nonzeros in each row of A.

• When different values h1 and h2 are used the expression the errors are expected to be proportional to hk,
with the order of convergence k. Thus if h is replaced by h/2 expect ratios of 2, 4, 8 or 16 for the L2 errors,
according to the theoretical results shown in Section 6.7 on page 117.

• If h is replaced by h/2 expect the number of elements and the size of the matrix Ato be multiplied by 4.
The number of nonzero entries in each row should not change drastically.

The results in Table 7 confirm the theoretical estimates of the errors and the number of nonzero entries in the
matrix A.

Element linear quadratic cubic

width h of elements 0.025 0.0125 0.050 0.0250 0.075 0.0375

number of elements 3944 15912 998 3944 432 1764

size n of matrix 1920 7850 1920 7850 1896 7842

L2 error 2.2 · 10−4 6.4 · 10−5 1.8 · 10−5 1.4 · 10−6 8.4 · 10−7 5.6 · 10−8

ratio of L2 errors ≈ 2.9 ≈ 4.7 ≈ 15

nonzeros per row 6.8 6.9 11.0 11.2 16.1 16.6

Table 7: Results for elements of order 1, 2 and 3
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5.6 Shear locking of linear elements

Examine a domain Ω = [−L
2 , +L

2 ]× [−H
2 , +H

2 ] ⊂ R2 with L = H = 0.1 and apply a horizontal deformation u1
on the left and right edges at x = ±L

2 of size ±c y = ±5 · 10−4 y. Use the material parameters E = 100 · 109
and ν = 0. Find the original and deformed domain in Figure 36. One can verify8 that an exact solution of the

-0.06-0.04-0.02 0 0.020.040.06
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

y

x

Figure 36: Original and deformed domain and the Gauss integration points for linear elements

boundary value problem is given by

u1(x, y) =
2 c

L
x y , u2(x, y) =

c

L
(
L2

4
− x2) where c = 5 · 10−4 .

This exact solution leads to the strains εxx = 2 c
L y and εyy = εxy = 0 and thus the elastic energy (use the elastic

energy density (13) with ν = 0)

Uelast = Uεxx + Uεyy + Uεxy

=
E

2

∫∫
Ω

ε2xx dA+
E

2

∫∫
Ω

ε2yy dA+
E

2

∫∫
Ω

2 ε2xy dA

=
E

2

∫ +H/2

−H/2

∫ +L/2

−L/2

4 c2

L2
y2 dx dy + 0 + 0 =

E

2

4 c2

L2
L
2H3

3 8
=

125

3
≈ 41.667

Determine approximate solutions of this plane stress problem with NH=NL layers in either direction and
using either linear of quadratic elements. Then use these solutions u⃗1 and u⃗2 and the function FEMgriddata()
to evaluate the strains εxx, εyy and εxy on a rather fine xy–grid. Find the results for two layer (NL=NH=2) in
Figure 37. Observe that the strains obtained by quadratic elements are very close to the strains of the exact
solution. The strains based on linear elements show some surprising features:

8E.g. use [Stah08, §5] with ν = 0 and u1 = x y and u2 = −x2

2
to arrive at

0
?
=

∂2u1

∂x2
+

∂2u1

∂y2
+

∂

∂x

(
∂u1

∂x
+

∂u2

∂y

)
= +0 + 0 +

∂

∂x
(y + 0) OK

0
?
=

∂2u2

∂x2
+

∂2u2

∂y2
+

∂

∂y

(
∂u1

∂x
+

∂u2

∂y

)
= −1 + 0 +

∂

∂y
(y + 0) OK
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(a) εxx with quadratic elements (b) εxx with linear elements

(c) εxy with quadratic elements (d) εxy with linear elements

Figure 37: The strains εxx and εxy with two layers in each direction for linear and quadratic elements
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• The strains are piecewise constant! This should be no surprise, since a partial derivative of order one of a
piecewise linear function leads to a piecewise constant stress function. For this reason first order triangular
elements are also called Constant Strain Triangles, or short CST elements.

• The piecewise constant approximation of the normal strain εxx is as good as can be, since only 8 triangular
elements are used with this mesh.

• The piecewise approximation of the shearing strain εxy is drastically different from the exact value 0 .
This is caused by the two contributions to 2, εxy = ∂ u1

∂y + ∂ u2
∂x , which do not cancel out on the piecewise

constant sections. The approximation based on second order elements is quite good, since 10−19 ≈ 0 .

To examine the stiffness of the deformed body compute the elastic energy put into the body by the deforma-
tion. To arrive at reliable values a couple of steps are performed:

1. Generate a rather fine grid on the domain Ω, using the command meshgrid().

2. Evaluate the partial derivatives of u1 and u2 on the grid with the help of FEMgriddata(). Then compute
the three strains.

3. Use the command mesh() to visualize a few strains, leading to Figure 37.

4. With the strains use the expressions for the elastic energy density to evaluate the different contributions.

5. Use an iterated trapezoidal rule (trapz() to perform the numerical integration for the three contributions
to the elastic energy.

The above is performed for different numbers of layers and first and second order elements. Find the results in
Table 8. This table shows a few, possibly surprising, results.

element type # of layers Uelast Uεxx Uεyy Uεxy

exact 41.666 41.666 0 0

quadratic NL=NH=1 41.759 41.759 0 0

quadratic NL=NH=2 41.759 41.759 0 0

quadratic NL=NH=5 41.759 41.759 0 0

linear NL=NH=1 187.5 125 0 62.5

linear NL=NH=2 78.472 62.847 0 15.625

linear NL=NH=5 48.122 45.622 0 2.5

linear NL=NH=10 43.850 43.225 0 0.625

Table 8: Elastic energy contributions for shearing

• The results generated be second order elements are very accurate, even for one layer only. This is caused
by the fact that the exact solution is a polynomial of degree 2 and thus can be represented exactly by second
order elements. The remaining, small difference can be made smaller or by using a cleverer integration
scheme. See the remarks below.

• The results based on linear elements are severely different. The elastic energy is way to high and thus the
solid considered to be much stiffer than it actually is. There are two contributions to this nodesirable effect:

1. The piecewise constant patches lead to larger integrals.
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2. The shearing contribution by εxy does not vanish. The effect is often called shear locking.

For a small nuber of layers the effect is drastic, larger number vof layers the effect becomes smaller.

ShearLocking.m
L = 0.1; H = 0.1; E = 100e9; nu = 0;
%% shearing of elements by applied displacement
NL = 2; %% elements along length L
NH = NL; %% elements along height H
Order = 1; %% order of elements, either 1 or 2

FEMmesh = CreateMeshRect([-L/2:L/NL:L/2],[-H/2:H/NH:+H/2],-22,-22,-11,-11);
if Order==2
FEMmesh = MeshUpgrade(FEMmesh);

endif

function res = gD1(xy)
Disp = 0.01;
res = Disp*xy(:,1).*xy(:,2);

endfunction

[u1,u2] = PlaneStress(FEMmesh,E,nu,{0,0},{’gD1’,0},{0,0});
figure(2); FEMtrimesh(FEMmesh,u1); xlabel(’x’); ylabel(’y’); zlabel(’u1’)
figure(3); FEMtrimesh(FEMmesh,u2); xlabel(’x’); ylabel(’y’); zlabel(’u2’)

figure(1); factor = 4e2;
trimesh(FEMmesh.elem,FEMmesh.nodes(:,1)+factor*u1,FEMmesh.nodes(:,2)+factor*u2,...

’color’,’red’,’linewidth’,2);
hold on ;
trimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),...

’color’,’green’,’linewidth’,1);
plot(FEMmesh.GP(:,1),FEMmesh.GP(:,2),’b*’);
hold off; xlabel(’x’); ylabel(’y’); xlim([-0.06,+0.06]); ylim([-0.06,+0.06]); axis equal

%% generate the data on the grid
x = linspace(-L/2,L/2,31); y = linspace(-H/2,+H/2,31); [xx,yy] = meshgrid(x,y);
[u1i,eps_xxi,eps_xy1i] = FEMgriddata(FEMmesh,u1,xx,yy);
[u2i,eps_xy2i,eps_yyi] = FEMgriddata(FEMmesh,u2,xx,yy);
eps_xyi = (eps_xy1i+eps_xy2i)/2;

figure(12); mesh(xx,yy,eps_xxi); xlabel(’x’); ylabel(’y’); zlabel(’\epsilon_{xx}’)
figure(13); mesh(xx,yy,eps_yyi); xlabel(’x’); ylabel(’y’); zlabel(’\epsilon_{yy}’)
figure(14); mesh(xx,yy,eps_xyi); xlabel(’x’); ylabel(’y’); zlabel(’\epsilon_{xy}’)

Wi = 0.5*E/(1-nuˆ2)*(eps_xxi.ˆ2 + eps_yyi.ˆ2+2*nu*eps_xxi.*eps_yyi+2*(1-nu)*eps_xyi.ˆ2);
Wxxi = 0.5*E/(1-nuˆ2)*(eps_xxi.ˆ2);
Wyyi = 0.5*E/(1-nuˆ2)*(eps_yyi.ˆ2);
Wxxyyi = 0.5*E/(1-nuˆ2)*(2*nu*eps_xxi.*eps_yyi);
Wxyi = 0.5*E/(1-nuˆ2)*(2*(1-nu)*eps_xyi.ˆ2);

figure(15); mesh(xx,yy,Wi);xlabel(’x’); ylabel(’y’); title(’energy density’)

EnergiesGrid = [trapz(x,trapz(y,Wi)),trapz(x,trapz(y,Wxxi)),...
trapz(x,trapz(y,Wyyi)),trapz(x,trapz(y,Wxyi))]

SHA 17-11-22



5 TOOLS FOR DIDACTICAL PURPOSES 77

The evaluation on a fine grid might seems unnecessary, since FEMoctave provides EvaluateStrain()
to determine the values of the strains at the nodes. Then determine the contributions to the energy densities and
integrate using FEMIntegrate().

• The results for second order meshes seem reasonable.

• The results based on linear meshes are off, values and graphics. This is caused by the algorithms used:

1. EvaluateStrain() returns values at the nodes. For the derivatives the average value of the
neighboring elements are used, not the values of the elements.

2. FEMIntegrate() will then take those values and (for linear elements) apply a piecewise linear
interpolation, followed by a Gauss integration. Thus the values used for the integration are drastically
different form the values used wehen the equation was solved..

ShearLocking.m
%%% evaluate at the nodes
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);

W = 0.5*E/(1-nuˆ2)*(eps_xx.ˆ2 + eps_yy.ˆ2+2*nu*eps_xx.*eps_yy+2*(1-nu)*eps_xy.ˆ2);
Wxx = 0.5*E/(1-nuˆ2)*(eps_xx.ˆ2);
Wyy = 0.5*E/(1-nuˆ2)*(eps_yy.ˆ2);
Wxy = 0.5*E/(1-nuˆ2)*(2*(1-nu)*eps_xy.ˆ2);

%% integration results are not reliable
EnergiesFEMIntegrate = [FEMIntegrate(FEMmesh,W),FEMIntegrate(FEMmesh,Wxx),...

FEMIntegrate(FEMmesh,Wyy),FEMIntegrate(FEMmesh,Wxy)]
figure(4); FEMtrimesh(FEMmesh,W);

xlabel(’x’); ylabel(’y’); title(’energy density, on nodes’); view([-50,20])

The above problem can be removed by evaluating the partial derivatives at the Gauss points, instead of the
nodes. Use FEMEvaluateGP() to determine the contributions to the elastic energy density. Then integrate
with FEMIntegrate().

ShearLocking.m
%% integrate by evaluation at the Gauss points
[u1G,gradU1] = FEMEvaluateGP(FEMmesh,u1);
[u2G,gradU2] = FEMEvaluateGP(FEMmesh,u2);
eps_xxG = gradU1(:,1); eps_yyG = gradU2(:,2); eps_xyG = (gradU1(:,2)+gradU2(:,1))/2;
W = 0.5*E/(1-nuˆ2)*(eps_xxG.ˆ2 + eps_yyG.ˆ2+2*nu*eps_xxG.*eps_yyG+2*(1-nu)*eps_xyG.ˆ2);
Wxx = 0.5*E/(1-nuˆ2)*(eps_xxG.ˆ2);
Wyy = 0.5*E/(1-nuˆ2)*(eps_yyG.ˆ2);
Wxxyy = 0.5*E/(1-nuˆ2)*(2*nu*eps_xxG.*eps_yyG);
Wxy = 0.5*E/(1-nuˆ2)*(2*(1-nu)*eps_xyG.ˆ2);

EnergiesFEMIntegrateGauss = [FEMIntegrate(FEMmesh,W),FEMIntegrate(FEMmesh,Wxx),...
FEMIntegrate(FEMmesh,Wyy),FEMIntegrate(FEMmesh,Wxy)]

Below find the results for two layers NL=NH=2 and first and second order elements. Shown are in that order∫∫
Ω

W =

∫∫
Ω

Wxx + Wyy + Wxy + Wxxyy
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∫∫
Ω

Wxx =
E

2 (1− ν2)

∫∫
Ω

ε2xx dA

∫∫
Ω

Wyy =
E

2 (1− ν2)

∫∫
Ω

ε2yy dA

∫∫
Ω

Wxy =
E

2 (1− ν2)

∫∫
Ω

2 (1− ν) ε2xy dA

• first order elements

EnergiesGrid = 78.4722 62.8472 0 15.6250
EnergiesFEMIntegrate = 67.4913 58.5938 0 8.8976
EnergiesFEMIntegrateGauss = 78.1250 62.5000 0 15.6250

• second order elements

EnergiesGrid = 4.1759e+01 4.1759e+01 6.8171e-30 8.2941e-30
EnergiesFEMIntegrate = 4.1667e+01 4.1667e+01 6.6145e-30 2.7413e-30
EnergiesFEMIntegrateGauss = 4.1667e+01 4.1667e+01 6.5378e-30 8.5890e-30

Observe that the results based on the integration with the Gauss points yields the same numbers as the exact
formula.

5.7 Bending of an Euler beam

A plate of length L = 1, width W = 1 and height H = 0.1 is attached at the left edge and an upward force of
F = 100 is applied on the right side. Use the material parameters E = 100 · 109 and ν = 0. Based on the Euler
beam theory conclude
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x

Figure 38: The original shape of the a beam and its (exaggerated) deformed shape, using two layers of elements
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u1(x, y) = −y ∂

∂x
u2(x, y) = − F

E I
(Lx− 1

2
x2) y

εxx(x, y) =
∂ u1(x, y)

∂x
= − F

E I
(L− x) y , εyy(x, y) =

∂ u2(x, y)

∂y
= 0

εxy(x, y) =
1

2
(
∂ u1
∂y

+
∂ u2
∂x

) =
F

E I

(
−(Lx− 1

2
x2) + (

L

2
2x− 1

2
x2)

)
= 0

For the above parameters with the second moment I = W H3

12 of the cross section obtain the following maximal
values.

u2(L, y) =
F

3E I
L3 = 4

F

EW H3
L3 = 4 · 10−6

u1(L,−H/2) =
F

4E I
LH = 3

F

EW H2
L = 3 · 10−7

εxx(0,−H/2) =
F

2E I
LH = 6

F

EW H2
L = 6 · 10−7

Use these results to verify the accuracy of the numerical approximations.

To examine the performance of the FEM algorithms use a rectangular mesh with NL sections along the hor-
izontal x–axis and NH layers in the vertical y–direction. The code is using either first or second order elements.
In Figure 39 find the mesh and the corresponding integration points for meshes with NL=10 and just one layer,
i.e. NH=1 . Observe that the figure uses different scaling, all triangles have height and width 0.1, which is usually
recommended for good quality meshes. The code was run with NL=10 horizontal sections and NH=1 or 5 verti-
cal sections. The elastic energy density Wstress is computed and displayed in Figure 40. Observe the piecewise
constant energy density for linear elements, i.e. CST elements.
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(a) linear elements
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(b) quadratic elements

Figure 39: Meshes for linear and quadratic elements with one layer with the integration points

Multiple runs of the code BendingBeam.m lead to the results in Table 9. The values for the elastic energy
are computed with the help of the strain values at the Gauss points. Observe that second order elements generate
rather accurate results, even for a very coarse grid. With a coarse grid of linear elements the effect of shear
locking is clearly visible. But even for a 80× 8 grid the results are not very accurate.

BendingBeam.m
%% bending of beam by applied force
L = 1; H = 0.1; E = 100e9; nu = 0; Force = 100;
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(a) one layer of linear elements (b) one layer of quadratic elements

(c) five layers of linear elements (d) five layers of quadratic elements

Figure 40: The elastic energy density of the bending beam with one or five layers
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element order NL NH max{u2} max{εxx} energy

Euler beam, exact 4 · 10−6 6 · 10−7 2 · 10−4

second 80 8 4.0243 · 10−6 6.1660 · 10−7 2.0120 · 10−4

second 40 4 4.0242 · 10−6 6.1101 · 10−7 2.0120 · 10−4

second 20 2 4.0235 · 10−6 6.0326 · 10−7 2.0117 · 10−4

second 10 1 4.0162 · 10−6 5.8832 · 10−7 2.0081 · 10−4

first 80 8 3.8159 · 10−6 5.7295 · 10−7 1.9079 · 10−4

first 40 4 3.3036 · 10−6 4.8900 · 10−7 1.6517 · 10−4

first 20 2 2.1525 · 10−6 3.1248 · 10−7 1.0762. · 10−4

first 10 1 0.9079 · 10−6 1.2718 · 10−7 0.4539 · 10−4

Table 9: Different values for the deformation of a bending beam, depending on the size of the grid

NL = 20; %% number of elements along length L
NH = NL/10; %% number of elements along height H
Order = 2; %% order of elements, either 1 or 2
FEMmesh = CreateMeshRect([0:L/NL:L],[-H/2:H/NH:+H/2],-22,-22,-11,-33);

figure(1); FEMtrimesh(FEMmesh);%% axis equal;
if Order==2
FEMmesh = MeshUpgrade(FEMmesh);

endif
hold on; plot(FEMmesh.GP(:,1),FEMmesh.GP(:,2),’b*’); hold off
xlabel(’x’); ylabel(’y’)

[u1,u2] = PlaneStress(FEMmesh,E,nu,{0,0},{0,0},{0,Force/H});
figure(2); FEMtrimesh(FEMmesh,u1); xlabel(’x’); ylabel(’y’); zlabel(’u1’)
figure(3); FEMtrimesh(FEMmesh,u2); xlabel(’x’); ylabel(’y’); zlabel(’u2’)

FEMoctave_u2Max = max(u2);
EulerBeam = 4*Force*Lˆ3/(E*Hˆ3);
MaximalDisplacements = [EulerBeam, FEMoctave_u2Max]
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
figure(12); FEMtrimesh(FEMmesh,eps_xx); xlabel(’x’); ylabel(’y’); zlabel(’eps_{xx}’)
Results_Maxu1_Maxeps_xx = [max(abs(u1)), max(abs(eps_xx))]
W = 0.5*E/(1-nuˆ2)*(eps_xx.ˆ2 + eps_yy.ˆ2+2*nu*eps_xx.*eps_yy+2*(1-nu)*eps_xy.ˆ2);

EnergyByForce = [Force*EulerBeam/2, Force*max(u2)/2]

figure(4);FEMtrimesh(FEMmesh,W); xlabel(’x’); ylabel(’y’);
title(’energy density, on nodes’); view([-50,20])

figure(5);clf;FEMtricontour(FEMmesh,W); xlabel(’x’); title(’energy density’)

%% integrate by evaluation at the Gauss points
[u1G,gradU1] = FEMEvaluateGP(FEMmesh,u1);
[u2G,gradU2] = FEMEvaluateGP(FEMmesh,u2);
eps_xxG = gradU1(:,1); eps_yyG = gradU2(:,2); eps_xyG = (gradU1(:,2)+gradU2(:,1))/2;
W = 0.5*E/(1-nuˆ2)*(eps_xxG.ˆ2 + eps_yyG.ˆ2+2*nu*eps_xxG.*eps_yyG+2*(1-nu)*eps_xyG.ˆ2);
EnergiesFEMIntegrateGauss = FEMIntegrate(FEMmesh,W)
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[xx,yy] = meshgrid(linspace(0,L,101),linspace(-H/2,+H/2,51));
[u1i,eps_xxi,eps_xy1i] = FEMgriddata(FEMmesh,u1,xx,yy);
[u2i,eps_xy2i,eps_yyi] = FEMgriddata(FEMmesh,u2,xx,yy);
eps_xyi = (eps_xy1i+eps_xy2i)/2;

Wi = 0.5*E/(1-nuˆ2)*(eps_xxi.ˆ2 + eps_yyi.ˆ2+2*nu*eps_xxi.*eps_yyi+2*(1-nu)*eps_xyi.ˆ2);

figure(14); mesh(xx,yy,Wi);xlabel(’x’); ylabel(’y’);
title(’energy density, on fine grid’); view([-50,20])

%% show deformed domain
factor = 1e5/2;
figure(100); trimesh(FEMmesh.elem,FEMmesh.nodes(:,1)+factor*u1,...

FEMmesh.nodes(:,2)+factor*u2,’color’,’red’,’linewidth’,2);
hold on ; trimesh(FEMmesh.elem,FEMmesh.nodes(:,1),...
FEMmesh.nodes(:,2),’color’,’green’,’linewidth’,1);
hold off; xlabel(’x’); ylabel(’y’); axis equal
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function u is a classical solution

∇ (a∇u) = f in Ω

u = 0 on ∂Ω

���
���

����
��*

Calculus of Variations

function u is minimizer of

F (u) =
∫∫
Ω

1
2 a (∇u)

2 + f · u dA

u = 0 on ∂Ω

HH
HHH

HHH
HHHHj

multiply by ϕ and integrate

-

∂ F
∂u = 0

function u is a weak solution∫∫
Ω

a∇u · ∇ϕ+ f ϕ dA = 0

for all ϕ vanishing on ∂Ω

?

discretize

vector u⃗ ∈ RN is minimizer of

F (u⃗) = 1
2 ⟨A u⃗ , u⃗⟩+ ⟨W f⃗ , u⃗⟩

?

discretize

vector u⃗ ∈ RN satisfies

⟨A u⃗ , ϕ⃗⟩+ ⟨W f⃗ , ϕ⃗⟩ = 0

for all vectors ϕ⃗ ∈ RN

?

u⃗ ∈ RN satisfies A u⃗+W f⃗ = 0⃗

?

u⃗ ∈ RN satisfies A u⃗+W f⃗ = 0⃗FEM

Figure 41: Classical and weak solutions, minimizers and FEM

6 The Mathematics of the Algorithms

In this section the mathematical background for the FEM method applied to the problems in Section 2 is ex-
plained. Most of the theory is used to solve the second order elliptic boundary value problem (1). The expla-
nations are certainly not complete but should provide enough information to ease the understanding of the code.
For in-depth coverage consult one of the many books on FEM and/or numerical analysis. The starting point for
this presentaion are the lecture notes [Stah08]. Find a list of books on FEM in [Stah08, §0].

6.1 Classical solutions and weak solutions

A function u = u(x, y) is called a classical solution of the the BVP (1) iff it is twice differentiable and

−∇ · (a∇u− u b⃗) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y) ∈ Γ2

.

Multiply this equation with a smooth function ϕ, vanishing on Γ1, and integrate over the domain Ω to arrive at

0 = −∇ · (a∇u− u b⃗) + b0 u− f

0 =

∫∫
Ω

ϕ
(
−∇ · (a∇u− u b⃗) + b0 u− f

)
dA
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=

∫∫
Ω

∇ϕ · (a∇u− u b⃗) + ϕ (b0 u− f) dA−
∫
Γ
ϕ
(
a∇u− u b⃗

)
· n⃗ ds

=

∫∫
Ω

∇ϕ · (a∇u− u b⃗) + ϕ (b0 u− f) dA−
∫
Γ2

ϕ (g2 + g3 u) ds . (19)

If a function u satisfies (19) it is called a weak solution of the above BVP. If there is no convection term (⃗b = 0⃗)
and some sign conditions for a and b0 are satisfied, the above is equivalent to minimizing the functional

F (u) =

∫∫
Ω

1

2
a (∇u)2 + 1

2
b0 u

2 + f · u dA−
∫
Γ2

g2 u+
1

2
g3 u

2 ds

among all functions u satisfying the boundary condition u = g1 on Γ1. Figure 41 shows connections between
classical solutions, weak solutions and the resulting system of (linear) equations for the finite element approach.
The left branch in Figure 41 illustrates the usage of minimization and calculus of variations in the context of FEM
algorithms.

In the above equation integrals over the domain Ω ⊂ R2 have to be computed.
To discretize this process use a triangularization of the domain, using grid points
(xi, yi) ∈ Ω, 1 ≤ i ≤ n. On each triangle Tk we replace the function u by poly-
nomials of degree 1 (or 2, or 3). These polynomials are completely determined
by their values at the three corners of the triangle (or corners and some points on
the edges). Integrals over the full domain Ω are split up into integrals over each
triangle and then a summation∫∫

Ω

. . . dA =
∑
k

∫∫
Tk

. . . dA .

The gradients of u and ϕ are replaced by the gradients of the piecewise polyno-
mials. At the end each contribution is to be written in the form∫∫

Tk

. . . dA = ⟨Aku⃗k , ϕ⃗k⟩+ ⟨Wkf⃗k , ϕ⃗k⟩ ,

where Ak is the element stiffness matrix.
The above integral will be rewritten, leading to the condition

⟨Au⃗+Wf⃗ , ϕ⃗⟩ = 0 for all ϕ⃗ ∈ RN .

This condition is satisfied if u⃗ solves the linear system Au⃗ = −Wf⃗ . The matrix A is called global stiffness
matrix. It is this system of linear equations that will be solved to obtain an approximate solution of the boundary
value problem (1).

6.2 A few triangular elements

There are different methods to construct finite elements on triangles. In Figure 42 find a graphical representation
of a few commonly used elements.

• A solid dot at a position indicates that the value at this point is used as a DOF.

• A circle around a solid dot at a position indicates that the values of the first order partial derivatives are
used as DOFs.
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• A double circle around a solid dot at a position indicates that the values of the second order partial deriva-
tives are used as DOFs.

• A short line at a position indicates that the value of the normal derivative at this point is used as a DOF.
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Figure 42: A few triangular elements

linear quadratic Morley cubic Hermite Argyris

degrees of freedom DOF 3 6 6 10 10 21

polynomial basis P1 P2 P2 P3 P3 P5

C0 conforming yes yes no yes yes yes

C1 conforming no no quasi no quasi yes

Table 10: Properties of triangular elements

6.3 Transformation, interpolation and Gauss integration

From the above it is obvious that integration over general triangles is important for the development of FEM
algorithms. It turns out to be convenient to find integration methods for a standard triangle and then consider the
general triangle by appropriate coordinate transformations.

6.3.1 Transformation of coordinates and integration over a general triangle

All of the necesssary integrals for the FEM method are integrals over general triangles E. These can be written
as images of a standard triangle in a (ξ, ν)–plane, according to Figure 43. The transformation is given by

(
x

y

)
=

(
x1

y1

)
+ ξ

(
x2 − x1

y2 − y1

)
+ ν

(
x3 − x1

y3 − y1

)

=

(
x1

y1

)
+

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
·

(
ξ

ν

)
=

(
x1

y1

)
+T ·

(
ξ

ν

)
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Figure 43: Transformation of standard triangle Ω to a general triangle E

with the transformation matrix

T =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
.

By using 0 < ξ, ν < 1 with ξ + ν < 1 the standard triangle Ω is mapped onto the general triangle E ⊂ R2. If
the coordinates (x, y) are given find the values of (ξ, ν) with the help of(

ξ

ν

)
= T−1 ·

(
x− x1

y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1

y − y1

)
.

If a function f(x, y) is to be integrated over the triangle E use the transformation∫∫
E

f dA =

∫∫
Ω

f (x⃗ (ξ, ν))

∣∣∣∣det(∂ (x, y)

∂ (ξ, ν)

)∣∣∣∣ dξ dν = |det(T)|
∫ 1

0

(∫ ν

0
f (x⃗ (ξ, ν)) dξ

)
dν . (20)

The Jaccobi determinant is given by∣∣∣∣det(∂ (x, y)

∂ (u, v)

)∣∣∣∣ = |det(T)| = |(x2 − x1) (y3 − y1)− (x3 − x1) (y2 − y1)|

If the orientation of the triangle is positive, then det(T) will be positive. Since the area of the standard triangle
Ω equals 1

2 find

area of E =
1

2
|detT| .

For an efficient numerical integration over the standard triangle Ω choose integration points g⃗j ∈ Ω and corre-
sponding weights wj for j = 1, 2, . . . ,m and then work with the values of the function at those points, i.e.∫∫

Ω

f(ξ⃗) dA ≈
m∑
j=1

wj f(g⃗j) . (21)

The integration points and weights have to be chosen, such that the approximation error is as small as possible.
Required are two essential conditions for the integration method:

• If a sample point is used in a Gauss integration, then all other points obtainable by permuting the three
corners of the triangle must appear and with identical weight.

• All sample points must be inside the triangle (or on the triangle boundary)

• All weights wi must be positive.
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6.3.2 Gauss integration on the standard triangle with 3 Gauss points

In Figure 44 consider the three points at g⃗1 = 1
2 (λ, λ), g⃗2 = (1 − λ, λ/2) and g⃗1 = (λ/2, 1 − λ). Find optimal

values for the parameters λ and w such that polynomials of degree as high as possible are integrated exactly by∫∫
∆

f dA ≈ w (f(g⃗1) + f(g⃗2) + f(g⃗3)) .

-
ξ

6ν
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Figure 44: Gauss integration of order 2 on the standard triangle, using 3 integration points

To determine the optimal values determine a solution of a nonlinear system of 2 equations for the unknowns
λ and w. Require that ξk for 0 ≤ k ≤ 2 be integrated exactly. This leads to the solution λ = 1/3 and the weight
w = 1/6 . This approximate integration yields the exact results for polynomials f up to degree 2 . Thus for a
single triangle with diameter h, i.e. an area of the order h2, the integration error for smooth functions is of the
order h3 · h2 = h5. When dividing a large domain in sub-triangles of size h this leads to a total integration error
of the order h3.

The Gauss points and weights are given by

G =


1/6 1/6

2/3 1/6

1/2 2/3

 and w =
1

6
.

For a general triangle the Gauss points are located at

XG =

(
x1

y1

)
+

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
·GT =

(
x1

y1

)
+T ·GT .

This integration scheme will be used for linear elements.9

6.3.3 Gauss integration on the standard triangle with 7 Gauss points

As a second method use the points g1 = (λ1, λ1) and g4 = (λ2, λ2) along the diagonal ξ = ν. Similarly use two
more points along each connecting straight line from a corner of the triangle to the midpoint of the opposite edge.
This leads to a total of 6 integration points where groups of 3 have the same weight. Finally add the midpoint with
weight w3. This is illustrated in Figure 45. The result is a 7× 2 matrix G containing in each row the coordinates
of one integration point g⃗j and a vector w⃗ with the corresponding integration weights. To determine the optimal

9One might be temped to add the center of the triangle as a fourth point, but the resulting weight will be negative. This would lead to
stiffness matrices that are not positive definite.
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Figure 45: Gauss integration of order 5 on the standard triangle, using 7 integration points

values solve a nonlinear system of 5 equations for the unknowns λ1, λ2, w1, w2 and w3. Require that ξk for
0 ≤ k ≤ 5 be integrated exactly. Find details in [Stah08]. Pick a solution of the resulting nonlinear system with
0 < λ1 < λ2 < 1 (points inside the triangle) and positive weights w1, w2 and w3.

This approximate integration yields the exact results for polynomials f up to degree 5 . Thus for one triangle
with diameter h and an area of the order h2 the integration error for smooth functions is of the order h6 ·h2 = h8.
When dividing a large domain in sub-triangles of size h this leads to a total integration error of the order h6. For
most problems this error will be considerably smaller than the approximation error of the FEM method and it is
reasonably safe to ignore the error.

The optimal choice of Gauss points and integration weights is given by10

G =



λ1/2 λ1/2

1− λ1 λ1/2

λ1/2 1− λ1

λ2/2 λ2/2

1− λ2 λ2/2

λ2/2 1− λ2

1/3 1/3


≈



0.101287 0.101287

0.797427 0.101287

0.101287 0.797427

0.470142 0.470142

0.059716 0.470142

0.470142 0.059716

0.333333 0.333333


and w⃗ =



w1

w1

w1

w2

w2

w2

w3


≈



0.0629696

0.0629696

0.0629696

0.0661971

0.0661971

0.0661971

0.1125000


. (22)

Using the transformation results in this section compute the coordinates XG for the Gauss integration in a general
triangle by

XG =

(
x1

y1

)
+

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
·GT =

(
x1

y1

)
+T ·GT . (23)

This notation is used to compute the Gauss points for a given triangulation of the domain, i.e. for the mesh.

6.4 Construction of first order elements

Assume that the function u is linear on each triangle Tk, thus determined by the values at the three corners. Then
all integrals in expression (19) have to be examined. For the linear elements use the integration with 3 Gauss
nodes in the triangle, as described in Section 6.3.2. All contributions in (19)

0 =

∫∫
Ω

∇ϕ · (a∇u− u b⃗) + ϕ (b0 u− f) dA−
∫
Γ2

ϕ (g2 + g3 u) ds

10The exact values are λ1 = (12 − 2
√
15)/21, λ2 = (12 + 2

√
15)/21, w1 = (155 −

√
15)/2400, w4 = (155 +

√
15)/2400 and

w7 = 9/80.
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have to be transformed into
0 = ⟨ϕ⃗ , Au⃗+Wf⃗⟩ . (24)

By integration over one triangle E find

∫∫
E

∇ϕ · (a∇u− u b⃗) + ϕ (b0 u− f) dA ≈ ⟨


ϕ1

ϕ2

ϕ3

 , AE


u1

u2

u3

⟩+ ⟨


ϕ1

ϕ2

ϕ3

 , WE f⃗E⟩ .

The matrix AE is the element stiffness matrix and WE f⃗E the corresponding vector. These entries have to
be added in the correct rows and columns of the global stiffness matrix. For this examine the local and global
numbering of nodes in Figure 46. In each triangle the three corners are numbered by 1,2 and 3, but in the global
mesh (consisting of many triangles) they are numbered by i,k and j. Thus the entries in the element stiffness
matrix AE have to be added to rows/columns i,k and j in the global stiffness matrix A.

2 k

3
j

1
i

local ←→ global

triangle ←→ mesh

1 ←→ i

2 ←→ k

3 ←→ j

Figure 46: Local and global numbering of nodes

AE =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 −→ A = A+



col i col j col k
. . .

...
...

...

row i · · · a11 · · · a13 · · · · · · a12 · · ·
...

. . .
...

...

row j · · · a31 · · · a33 · · · · · · a32 · · ·
...

...
. . .

...

row k · · · a21 · · · a23 · · · · · · a22 · · ·
...

...
...

. . .


Similar procedures have to be appplied to the vectors.

6.4.1 Linear interpolation on a triangle

If the values of the function ϕ(x, y) at the three corners are given by ϕ1, ϕ2 and ϕ3 then the values ϕ(g⃗i) are given
by

ϕ(g⃗1) =
2

3
ϕ1 +

1

6
ϕ2 +

1

6
ϕ3

ϕ(g⃗2) =
1

6
ϕ1 +

2

3
ϕ2 +

1

6
ϕ3

ϕ(g⃗3) =
1

6
ϕ1 +

1

6
ϕ2 +

2

3
ϕ3
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or using a matrix notation 
ϕ(g⃗1)

ϕ(g⃗3)

ϕ(g⃗3)

 =
1

6


4 1 1

1 4 1

1 1 4




ϕ1

ϕ2

ϕ3

 = M ϕ⃗ .

This interpolation of the values from the nodes of the triangle to the Gauss points g⃗i is independent of shape and
size of the triangle.

For second order elements the construction of this interpolation matrix is performed using the basis functions
(see Section 6.5.1). For the linear case use the simpler basis functions

Φ⃗(ξ, ν) =


Φ1(ξ, ν)

Φ2(ξ, ν)

Φ3(ξ, ν)

 =


1− ξ − ν

ξ

ν


and a linear interpolation of a function given at the nodes is given by

f(ξ, ν) =
3∑

i=1

fiΦi(ξ, ν) .

Since

∂

∂ξ
Φ⃗(ξ, ν) =


−1
1

0

 and
∂

∂ν
Φ⃗(ξ, ν) =


−1
0

1


observe that the gradient does not depend on the position within the triangle.

6.4.2 Integration of f ϕ

Examine different methods to give the function f : either by providing the values at the Gauss points, or by using
the values at the nodes.

• If the values of the function f at the Gauss points g⃗i are denoted by fi then this integral is approximated by∫∫
E

f ϕ dA ≈ w 2 area(E) (f1 ϕ(g⃗1) + f2 ϕ(g⃗2) + f3 ϕ(g⃗3))

=
2 area(E)

6
⟨M ϕ⃗ , f⃗⟩ = area(E)

3
⟨ϕ⃗ , MT f⃗⟩ .

Thus find one contribution to (24).

• If the values of the function f at the nodes are denoted by fi then first determine the values at the Gauss
points by a linear interpolation. Then integrate as above, leading to the approximation∫∫

E

f ϕ dA ≈ 2 area(E)
6

⟨M ϕ⃗ , M f⃗⟩ = area(E)
3

⟨ϕ⃗ , MTM f⃗⟩ .

The matrix

MTM =
1

36


18 9 9

9 18 9

9 9 18

 =
1

4


2 1 1

1 2 1

1 1 2


is independent on the shape and size of the element (triangle). Thus find one contribution to (24).
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6.4.3 Integration of b0 uϕ

Since the values of the functions u and ϕ are known at the nodes interpolate both functions and then use the
values of the function b0(x, y) at the Gauss nodes to find∫∫

E

b0 uϕ dA ≈ w 2 area(E)
3∑

i=1

b0(g⃗i)u(g⃗i)ϕ(g⃗1)

=
2 area(E)

6
⟨M ϕ⃗ , diag(⃗b)M u⃗⟩ = area(E)

3
⟨ϕ⃗ , MT diag(⃗b0)M u⃗⟩ ,

where

diag b⃗0 =


b0(g⃗1) 0 0

0 b0(g⃗2) 0

0 0 b0(g⃗3)

 .

If b0(x, y) happens to be a constant, then the above may be simplified to

∫∫
E

b0 uϕ dA ≈ b0
area(E)

12
⟨ϕ⃗ ,


2 1 1

1 2 1

1 1 2

 u⃗⟩ .

Thus find another contribution to (24).

6.4.4 Integration of a∇u · ∇ϕ

Since the functions u and ϕ are linear on each triangle, we use the fact that the gradients are constant on each
triangle. The gradient may be determined with the help of a normal vector of the plane passing through the three
points 

x1

y1

u1

 ,


x2

y2

u2

 and


x3

y3

u3

 .

A normal vector n⃗ is given by the vector product

n⃗ =


x2 − x1

y2 − y1

u2 − u1

×


x3 − x1

y3 − y1

u3 − u1

 =


+(y2 − y1) · (u3 − u1)− (u2 − u1) · (y3 − y1)

−(x2 − x1) · (u3 − u1) + (u2 − u1) · (x3 − x1)

+(x2 − x1) · (y3 − y1)− (y2 − y1) · (x3 − x1)

 .

The third component of this vector equals twice the oriented11 area of the triangle. To obtain the gradient in the
first two components the vector has to be normalized, such that the third component equals −1. Find

∇u =

(
d u
∂x
d u
∂y

)
=

−1
2 area(E)

(
+(y2 − y1) · (u3 − u1)− (u2 − u1) · (y3 − y1)

−(x2 − x1) · (u3 − u1) + (u2 − u1) · (x3 − x1)

)
.

This formula can be written in the form

∇u =
−1

2 area(E)

[
(y3 − y2) (y1 − y3) (y2 − y1)

(x2 − x3) (x3 − x1) (x1 − x2)

]
·


u1

u2

u3

 =
−1

2 area(E)
G ·


u1

u2

u3

 . (25)

11It is quietly assumed that the third component of n⃗ is positive. Since only the square of the gradient is used the influence of this
ignorance will disappear. Generate meshes with triangles with a positive orientation also allow to assure n3 > 0.

SHA 17-11-22



6 THE MATHEMATICS OF THE ALGORITHMS 92

and thus

⟨∇ϕ , ∇u⟩ = 1

4 area(E)2
⟨G


ϕ1

ϕ2

ϕ3

 , G


u1

u2

u3

⟩ = 1

4 area(E)2
⟨


ϕ1

ϕ2

ϕ3

 , GT ·G


u1

u2

u3

⟩ .
If ai are the values of the function a(x, y) at the Gauss points g⃗i find

∫∫
E

a∇ϕ · ∇u dA ≈ a1 + a2 + a3
12 area(E)

⟨


ϕ1

ϕ2

ϕ3

 , GT ·G


u1

u2

u3

⟩ .
As an exercise one can verify that the matrix GT ·G is symmetric and positive semi-definite. The expression
vanishes for constant vectors, i.e. for vanishing gradients.

6.4.5 Integration of u b⃗ · ∇ϕ

Since the gradient of ϕ is constant on each of the triangles use

(
ϕx

ϕy

)
= ∇ϕ =

−1
2 area(E)

G ·


ϕ1

ϕ2

ϕ3

 =
−1

2 area(E)

[
Gx

Gy

]
·


ϕ1

ϕ2

ϕ3

 ,

where
Gx =

[
y3 − y2 y1 − y3 y2 − y1

]
and Gy =

[
x2 − x3 x3 − x1 x1 − x2

]
.

Let b1,i be the values of the first component of b⃗ at the Gauss nodes and find∫∫
E

u b1 ϕx dA ≈ area(E)
3

3∑
i=1

u(g⃗i) b1,i ϕx,i

=
−area(E)

3 · 2 area(E)
⟨


Gx

Gx

Gx




ϕ1

ϕ2

ϕ3

 ,


b1,1 0 0

0 b1,2 0

0 0 b1,3

M


u1

u2

u3

⟩

=
−1
6
⟨


ϕ1

ϕ2

ϕ3

 ,
[
GT

x GT
x GT

x

]
b1,1 0 0

0 b1,2 0

0 0 b1,3

M


u1

u2

u3

⟩

=
−1
6
⟨


ϕ1

ϕ2

ϕ3

 ,


b1,1(y3 − y2) b1,2(y3 − y2) b1,3(y3 − y2)

b1,1(y1 − y3) b1,2(y1 − y3) b1,3(y1 − y3)

b1,1(y2 − y1) b1,2(y2 − y1) b1,3(y2 − y1)

M


u1

u2

u3

⟩ .
If the values of the second component of b⃗ at the Gauss nodes are given by b2,i find by similar computations∫∫

E

u b2 ϕy dA ≈ −area(E)
3

3∑
i=1

u(g⃗i) b2,i ϕy,i
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=
−1
6
⟨


ϕ1

ϕ2

ϕ3

 ,


b2,1(x2 − x3) b2,2(x2 − x3) b2,3(x2 − x3)

b2,1(x3 − x1) b2,2(x3 − x1) b2,3(x3 − x1)

b2,1(x1 − x2) b2,2(x1 − x2) b2,3(x1 − x2)

M


u1

u2

u3

⟩ .
This leads to two more contributions to (24).

6.4.6 Integration over boundary segments

In expression (19) compute integrals over the boundary∫
Γ2

ϕ (g2 + g3 u) ds .

For triangular domains the boundary consists of straight line segments. Replace the integral by a sum of line
integrals and use a Gauss integration. Based on the two endpoints x⃗1 and x⃗2 use the values at the two Gauss
integration points12

p⃗1 = 1
2 (x⃗1 + x⃗2)− 1

2
√
3
(x⃗2 − x⃗1)

p⃗2 = 1
2 (x⃗1 + x⃗2) +

1
2
√
3
(x⃗2 − x⃗1) .

Polynomials up to degree 3 are integrated exactly, thus the error is proportional to h4. By linear interpolation
between the points x⃗1 and x⃗2 find the values of the function u at the Gauss points to be

u(p⃗1) = (1− α)u1 + αu2

u(p⃗2) = αu1 + (1− α)u2

or (
u(p⃗1)

u(p⃗2)

)
=

[
(1− α) α

α (1− α)

] (
u1

u2

)
,

where α = 1−1/
√
3

2 ≈ 0.211325. Using the length L =
√
(x2 − x1)2 + (y2 − y1)2 this leads to the approxima-

tions∫
ϕ g2 ds ≈ L

2
⟨

[
(1− α) α

α (1− α)

](
ϕ1

ϕ2

)
,

(
g2(p⃗1)

g2(p⃗2)

)
⟩

=
L

2
⟨

(
ϕ1

ϕ2

)
,

[
(1− α) α

α (1− α)

] (
g2(p⃗1)

g2(p⃗2)

)
⟩

∫
ϕ g3 u ds ≈ L

2
⟨

[
(1− α) α

α (1− α)

] (
ϕ1

ϕ2

)
,

[
g3(p⃗1) 0

0 g3(p⃗2)

] [
(1− α) α

α (1− α)

] (
u1

u2

)
⟩

12To derive the formula integrate 1, t, t2 and t3 over the interval [−1, 1].∫ +1

−1
f(t) dt = w1 f(−ξ) + w1 f(+ξ)∫ +1

−1
1 dt = 2 = w1 1 + w1 1 =⇒ w1 = 1∫ +1

−1
t dt = 0 = −w1 ξ + w1 ξ = 0∫ +1

−1
t2 dt = 2

3
= +w1 ξ

2 + w1 ξ
2 =⇒ ξ =

√
1/3∫ +1

−1
t3 dt = 0 = −w1 ξ

3 + w1 ξ
3 = 0

Thus t4 is not integrated exactly and the error is proportional to h4.

SHA 17-11-22



6 THE MATHEMATICS OF THE ALGORITHMS 94

=
L

2
⟨

(
ϕ1

ϕ2

)
,

[
(1− α) α

α (1− α)

] [
(1− α) g3(p⃗1) α g3(p⃗1)

α g3(p⃗2) (1− α) g3(p⃗2)

] (
u1

u2

)
⟩

=
L

2
⟨

(
ϕ1

ϕ2

)
,

[
(1− α)2 g3(p⃗1) + α2 g3(p⃗2) (1− α)α (g3(p⃗1) + g3(p⃗2))

(1− α)α (g3(p⃗1) + g3(p⃗2)) α2 g3(p⃗1) + (1− α)2 g3(p⃗2)

] (
u1

u2

)
⟩ .

The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the
second expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the
function to be integrated is a polynomial of degree 3, or less. If h is the typical length of an edge then the error
is of the order h5 for one line segment and thus of order h4 for the total boundary. This boundary integration is
used for first order elements.

The second expression is of the form∫
ϕ g3 u ds ≈ ⟨ϕ⃗,B u⃗⟩ = ⟨

(
ϕ2

ϕ2

)
,

[
b11 b12

b21 b22

] (
u1

u2

)
⟩ (26)

and its effect on the linear system A u⃗+W f⃗ = 0⃗ to be solved depends on nodes being on the Dirichlet part of
the boundary.

• If u1 and u2 are both free, i.e. not on the Dirichlet section, then all entries of the matrix B have to be added
to the global stiffness matrix A.

• If u1 and u2 are on the Dirichlet section, then nothing has to be added to A and f⃗ .

• If u1 is free and u2 is on the Dirichlet section, then only the first expression

b11 u1 + b12 u2 = b11 u1 + b12 d2

has to be added. d2 is the Dirichlet value at the position of u2. Then b11 has to be taken into account in A
and b12 d2 has to be added to W f⃗ .

• If u2 is free and u1 is on the Dirichlet section, then only the second expression b21 u1 + b22 u2 = b21 d1 +
b22 u2 has to be added. d1 is the Dirichlet value at the position of u1. Then b22 has to be taken into account
in A and b12 d1 has to be added to W f⃗ .

6.5 Construction of second order elements

In this section the construction of the element stiffness matrix and vector for triangular elements or order 2 is
examined. The ideas are very similar to Section 6.4 for linear basis functions, but using a bit more mathematics
is required. Again all contributions in (19)

0 =

∫∫
Ω

∇ϕ · (a∇u− u b⃗) + ϕ (b0 u− f) dA−
∫
Γ2

ϕ (g2 + g3 u) ds

have to be transformed into
0 = ⟨ϕ⃗ , Au⃗+Wf⃗⟩ .

For second order element a general quadratic function is used on each of the triangles in the mesh. There are 6
linearly independent polynomials of degree 2 or less, namely 1, x, y, x2, y2 and x · y.
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6.5.1 The basis functions for a second order element and quadratic interpolation

Examine the standard triangle Ω in Figure 43 with the values of a function f(ξ, ν) at the corners and at the
midpoints of the edges. Use the numbering as shown in Figure 43. The parameters ξ and ν at the nodes are given
by Table 11. Construct polynomials ϕi(ξ, ν) of degree 2, such that

Φi(ξj , νj) = δi,j =

{
1 if i = j

0 if i ̸= j

i.e. each basis function is equal to 1 at one of the nodes and vanishes on all other nodes. These basis polynomials
are given by

node i 1 2 3 4 5 6

ξi 0 1 0 1
2 0 1

2

νi 0 0 1 1
2

1
2 0

Table 11: Coordinates of the nodes in the standard quadratic triangle

Φ⃗(ξ, ν) =



Φ1(ξ, ν)

Φ2(ξ, ν)

Φ3(ξ, ν)

Φ4(ξ, ν)

Φ5(ξ, ν)

Φ6(ξ, ν)


=



(1− ξ − ν) (1− 2 ξ − 2 ν)

ξ (2 ξ − 1)

ν (2 ν − 1)

4 ξ ν

4 ν (1− ξ − ν)

4 ξ (1− ξ − ν)


(27)

and find their graphs in Figure 47.
Any quadratic polynomial f on the standard triangle Ω can be written as linear combination of the basis

functions by using

f(ξ, ν) =

6∑
i=1

f(ξi, νi) Φi(ξ, ν) . =

6∑
i=1

fiΦi(ξ, ν) . (28)

This is the formula to apply a quadratic interpolation on the triangle, using the values fi of the function at the
nodes. To use this interpolation for a given point (x, y) in the triangle E in Figure 43 determine the correct values
of the parameters ξ and ν, i.e. solve(

x

y

)
=

(
x1

y1

)
+ ξ

(
x2 − x1

y2 − y1

)
+ ν

(
x3 − x1

y3 − y1

)
.

This is equivalent to the linear system

T

(
ξ

ν

)
=

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

] (
ξ

ν

)
=

(
x− x1

y − y1

)
.

Since the 2× 2 matrix T is invertible find(
ξ

ν

)
= T−1 ·

(
x− x1

y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1

y − y1

)
.
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0

1

ξ

0

1

1

ν

0

(a) Φ1(ξ, ν) = (1−ξ−ν) (1−2 ξ−2 ν)

0

1

ξ

0

1

1

ν

0

(b) Φ2(ξ, ν) = ξ (2 ξ − 1)

0

1

ξ

0

1

1

ν

0

(c) Φ3(ξ, ν) = ν (2 ν − 1)

0

1

ξ

0

1

1

ν

0

(d) Φ4(ξ, ν) = 4 ξ ν

ξ

0

0

1

1

1

ν

0

(e) Φ5(ξ, ν) = 4 ν (1− ξ − ν)

0

1

ξ

0

1

1

ν

0

(f) Φ6(ξ, ν) = 4 ξ (1− ξ − ν)

Figure 47: Basis functions for second order triangular elements

6.5.2 Determine values at the Gauss points and apply Gauss integration

Use equation (23) to determine the coordinates of the seven Gauss points. Then a function to be integrated can
be evaluated at these Gauss points. Computing the values of the basis functions Φi(ξ, ν) at the Gauss points g⃗j
by mj,i = Φi(g⃗j) and write

f(g⃗j) =

6∑
i=1

fiΦi(g⃗j) =

6∑
i=1

mj,i fi

or using a matrix notation
f(g⃗1)

f(g⃗2)
...

f(g⃗7)

 =


m1,1 m1,2 · · · m1,6

m2,1 m2,2 · · · m2,6

...
...

. . .
...

m7,1 m7,2 · · · m7,6

 ·


f1

f2
...

f6

 = M · f⃗ (29)

≈



+0.474353 −0.080769 −0.080769 0.041036 0.323074 0.323074

−0.080769 +0.474353 −0.080769 0.323074 0.041036 0.323074

−0.080769 −0.080769 +0.474353 0.323074 0.323074 0.041036

−0.052584 −0.028075 −0.028075 0.884134 0.112300 0.112300

−0.028075 −0.052584 −0.028075 0.112300 0.884134 0.112300

−0.028075 −0.028075 −0.052584 0.112300 0.112300 0.884134

−0.111111 −0.111111 −0.111111 0.444444 0.444444 0.444444





f1

f2

f3

f4

f5

f6


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The Gauss integration can be written in the form∫∫
Ω

f(ξ, ν) dA ≈
7∑

j=1

wj f(g⃗j) = ⟨w⃗ , M · f⃗⟩ .

To integrate over the general triangle E use the transformation (20), i.e.∫∫
E

f dA =

∫∫
Ω

f (x⃗ (ξ, ν))

∣∣∣∣det(∂ (x, y)

∂ (ξ, ν)

)∣∣∣∣ dξ dν ≈ |detT| ⟨w⃗ , M · f⃗⟩ .

Now all the tools to approximate the integrals required for the element stiffness matrix are available.

6.5.3 Integration of f ϕ

The test function ϕ is given by its values ϕ⃗ at the nodes, i.e. the corners of the triangle and the midpoints of the
sides. Examine different methods to give the function f : either by providing the values at the Gauss points, or by
using the values at the nodes.

• If the values of the function f at the Gauss points g⃗i are denoted by fi then this integral is approximated by∫∫
E

f ϕ dA ≈ | det(T)|
7∑

j=1

wj fj ϕ(gj) = | det(T)| ⟨diag(w⃗)f⃗ , M ϕ⃗⟩

= | det(T)| ⟨MT diag(w⃗)f⃗ , ϕ⃗⟩ ,

Thus find one contribution to (24).

• If the values of the function f at the nodes are denoted by fi then first determine the values at the Gauss
points by a quadratic interpolation. Then integrate as above, leading to the approximation∫∫

E

f ϕ dA ≈ |det(T)| ⟨diag(w⃗)Mf⃗ , M ϕ⃗⟩ = |det(T)| ⟨MT diag(w⃗)Mf⃗ , ϕ⃗⟩ .

The matrices MT diag(w⃗) and MT diag(w⃗)M are independent on the triangle E.

6.5.4 Integration of b0 uϕ

Since the values of the functions u and ϕ are known at the nodes use an interpolation and then the function
b0(x, y) at the Gauss nodes to find∫∫

E

b0 uϕ dA ≈ | det(T)|
7∑

j=1

wj b0(gj)u(gj)ϕ(gj) = |det(T)| ⟨diag(w⃗) diag(⃗b0)M u⃗ , M ϕ⃗⟩

= |det(T)| ⟨MT diag(w⃗) diag(⃗b0)M u⃗ , ϕ⃗⟩ ,

where diag(⃗b0) = diag(b0(g⃗1), b0(g⃗2), b0(g⃗3), . . . , b0(g⃗7)).
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6.5.5 Transformation of the gradient to the standard triangle

To examine the contributions containing ∇u or ∇ϕ requires considerably more tools than the ones used in Sec-
tion 6.4.4 for linear elements. For linear elements the gradients are constant on each of the triangles. For quadratic
elements the gradients are linear functions and thus not constant. First examine how the gradient behave under
the transformation to the standard triangle, only then use the above integration methods.

According to Section 6.3.1 the coordinates (ξ, ν) of the standard triangle are connected to the global coordi-
nates (x, y) by(

x

y

)
=

(
x1

y1

)
+

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
·

(
ξ

ν

)
=

(
x1

y1

)
+T ·

(
ξ

ν

)

or equivalently(
ξ

ν

)
= T−1 ·

(
x− x1

y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1

y − y1

)
.

If a function f(x, y) is given on the general triangle E can pull it back to the standard triangle by

g(ξ, ν) = f(x(ξ, ν) , y(ξ, ν))

and then compute the gradient of g(ξ, ν) with respect to its independent variables ξ and ν. The result will depend
on the partial derivatives of f with respect to x and y. The standard chain rule implies

∂

∂ξ
g(ξ, ν) =

∂

∂ξ
f(x(ξ, ν) , y(ξ, ν)) =

∂ f(x, y)

∂x

∂ x

∂ξ
+

∂ f(x, y)

∂y

∂ y

∂ξ

=
∂ f(x, y)

∂x
(x2 − x1) +

∂ f(x, y)

∂y
(y2 − y1)

∂

∂ν
g(ξ, ν) =

∂

∂ν
f(x(ξ, ν) , y(ξ, ν)) =

∂ f(x, y)

∂x

∂ x

∂ν
+

∂ f(x, y)

∂y

∂ y

∂ν

=
∂ f(x, y)

∂x
(x3 − x1) +

∂ f(x, y)

∂y
(y3 − y1) .

This can be written with the help of matrices in the form(
∂ g
∂ξ
∂ g
∂ν

)
=

[
(x2 − x1) (y2 − y1)

(x3 − x1) (y3 − y1)

]
·

(
∂ f
∂x
∂ f
∂y

)
= TT ·

(
∂ f
∂x
∂ f
∂y

)

or equivalently (
∂ g

∂ξ
,
∂ g

∂ν

)
=

(
∂ f

∂x
,
∂ f

∂y

)
·T . (30)

This implies(
∂ f

∂x
,
∂ f

∂y

)
=

(
∂ g

∂ξ
,
∂ g

∂ν

)
·T−1 =

1

detT

(
∂ g

∂ξ
,
∂ g

∂ν

)
·

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]

or by transposition (
∂ f
∂x
∂ f
∂y

)
=

1

detT

[
y3 − y1 −y2 + y1

−x3 + x1 x2 − x1

] (
∂ g
∂ξ
∂ g
∂ν

)
.
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Let g be a function on the standard triangle Ω given as a linear combination of the basis functions, i.e.

g(ξ, ν) =
6∑

i=1

gi Φi(ξ, ν)

where the basis function Φi(ξ, ν) are given by (27). Then its gradient with respect to ξ and ν can be determined
with the help of elementary partial derivatives applied to the expressions in (27). The result is

grad Φ⃗ =



−3 + 4 ξ + 4 ν −3 + 4 ξ + 4 ν

4 ξ − 1 0

0 4 ν − 1

4 ν 4 ξ

−4 ν 4− 4 ξ − 8 ν

4− 8 ξ − 4 ν −4 ξ


=
[
Φ⃗ξ(ξ, ν) Φ⃗ν(ξ, ν)

]
. (31)

Thus find on the standard triangle Ω(
∂ g

∂ξ
,
∂ g

∂ν

)
= (g1, g2, g3, g4, g5, g6) ·

[
Φ⃗ξ(ξ, ν) Φ⃗ν(ξ, ν)

]
= g⃗T ·

[
Φ⃗ξ(ξ, ν) Φ⃗ν(ξ, ν)

]
.

If the function φ(x, y) is given on the general triangle E as linear combination of the basis functions on E
find

φ(x, y) =

6∑
i=1

φi Φi(ξ(x, y) , ν(x, y)) .

Now combine the results in this section to conclude(
∂ φ

∂x
,
∂ φ

∂y

)
=

(
∂ φ

∂ξ
,
∂ φ

∂ν

)
·T−1 = φ⃗T ·

[
Φ⃗ξ Φ⃗ν

]
·T−1

or by transposition(
∂ φ
∂x
∂ φ
∂y

)
=
(
T−1

)T · [ Φ⃗T
ξ

Φ⃗T
ν

]
· φ⃗ =

1

det(T)

[
+y3 − y1 −y2 + y1

−x3 + x1 +x2 − x1

]
·

[
Φ⃗T
ξ

Φ⃗T
ν

]
· φ⃗

and the same identities can be spelled out for the two components independently.

∂ φ

∂x
=

1

det(T)

[
(+y3 − y1) Φ⃗

T
ξ + (−y2 + y1) Φ⃗

T
ν

]
· φ⃗ , (32)

∂ φ

∂y
=

1

det(T)

[
(−x3 + x1) Φ⃗

T
ξ + (+x2 − x1) Φ⃗

T
ν

]
· φ⃗ (33)

For the numerical integration use the values of the gradients at the Gauss integration points g⃗j = (ξj , νj).
The values of the function φ at the Gauss points can be computed with the help of the interpolation matrix M by

φ(g⃗1)

φ(g⃗2)
...

φ(g⃗7)

 = M ·


φ1

φ2

...

φ6

 .
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Similarly we define the interpolation matrices for the partial derivatives. Using

Mξ =


−3 + 4 ξ1 + 4 ν1 4 ξ1 − 1 0 4 ν1 −4 ν1 4− 8 ξ1 − 4 ν1

−3 + 4 ξ2 + 4 ν2 4 ξ2 − 1 0 4 ν2 −4 ν2 4− 8 ξ2 − 4 ν2
...

...

−3 + 4 ξ7 + 4 ν7 4 ξ7 − 1 0 4 ν7 −4 ν7 4− 8 ξ7 − 4 ν7



≈



−2.18971 −0.59485 0.00000 0.40515 −0.40515 2.78456

0.59485 2.18971 0.00000 0.40515 −0.40515 −2.78456
0.59485 −0.59485 0.00000 3.18971 −3.18971 0.00000

0.76114 0.88057 0.00000 1.88057 −1.88057 −1.64170
−0.88057 −0.76114 0.00000 1.88057 −1.88057 1.64170

−0.88057 0.88057 0.00000 0.23886 −0.23886 0.00000

−0.33333 0.33333 0.00000 1.33333 −1.33333 0.00000


find 

φξ(g⃗1)

φξ(g⃗2)
...

φξ(g⃗7)

 = Mξ ·


φ1

φ2

...

φ6

 .

Similarly write

Mν =


−3 + 4 ξ1 + 4 ν1 0 4 ν1 − 1 4 ξ1 4− 4 ξ1 − 8 ν1 −4 ξ1
−3 + 4 ξ2 + 4 ν2 0 4 ν2 − 1 4 ξ2 4− 4 ξ2 − 8 ν2 −4 ξ2

...
...

−3 + 4 ξ7 + 4 ν7 0 4 ν7 − 1 4 ξ7 4− 4 ξ7 − 8 ν7 −4 ξ7



≈



−2.18971 0.00000 −0.59485 0.40515 2.78456 −0.40515
0.59485 0.00000 −0.59485 3.18971 0.00000 −3.18971
0.59485 0.00000 2.18971 0.40515 −2.78456 −0.40515
0.76114 0.00000 0.88057 1.88057 −1.64170 −1.88057
−0.88057 0.00000 0.88057 0.23886 0.00000 −0.23886
−0.88057 0.00000 −0.76114 1.88057 1.64170 −1.88057
−0.33333 0.00000 0.33333 1.33333 0.00000 −1.33333


and 

φν(g⃗1)

φν(g⃗2)
...

φν(g⃗7)

 = Mν ·


φ1

φ2

...

φ6

 .

The matrices Mξ and Mν allow to compute the values of the partial derivatives at the Gauss points in the standard
triangle Ω and they are independent on the general triangle E.
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Combining the above two computations use the notation

x⃗i =

(
x1

y1

)
+T ·

(
ξi

νi

)
for i = 1, 2, 3, . . . , 7

and find for the first component φx = ∂ φ
∂x of the gradient at the Gauss points

φx(x⃗1)

φx(x⃗2)
...

φx(x⃗7)

 =
1

det(T)

[
(+y3 − y1)M

T
ξ + (−y2 + y1)M

T
ν

]
· ϕ⃗

and for the second component of the gradient
φy(x⃗1)

φy(x⃗2)
...

φy(x⃗7)

 =
1

det(T)

[
(−x3 + x1)M

T
ξ + (+x2 − x1)M

T
ν

]
· ϕ⃗ .

The above results for Mξ and Mν can be coded in Octave and then used to compute the element stiffness matrix.

6.5.6 Partial derivatives at the nodes

For post processing one also needs the partial derivatives of the function at the nodes. On the standard triangle Ω
use the formulas for the partial derivatives of the basis functions in expression (31) to find them at the nodes,
given by the (ξ, ν) coordinates in Table 11 for quadratic elements.

φξ(ξ1, ν1)

φξ(ξ2, ν2)

φξ(ξ3, ν3)

φξ(ξ4, ν4)

φξ(ξ5, ν5)

φξ(ξ6, ν6)


=



−3 1 1 1 −1 −1
−1 3 −1 1 −1 1

0 0 0 0 0 0

0 0 4 2 2 0

0 0 −4 −2 −2 0

4 −4 0 −2 2 0





φ1

φ2

φ3

φ4

φ5

φ6


= Nξ



φ1

φ2

φ3

φ4

φ5

φ6


and 

φν(ξ1, ν1)

φν(ξ2, ν2)

φν(ξ3, ν3)

φν(ξ4, ν4)

φν(ξ5, ν5)

φν(ξ6, ν6)


=



−3 1 1 1 −1 −1
0 0 0 0 0 0

−1 −1 3 1 1 −1
0 4 0 2 0 2

4 0 −4 −2 0 2

0 −4 0 −2 0 −2





φ1

φ2

φ3

φ4

φ5

φ6


= Nν



φ1

φ2

φ3

φ4

φ5

φ6


Now use the transformation formulas (32) and (33) to determine the gradient of a function on the general triangle

φ(x, y) =

6∑
i=1

φiΦi(ξ(x, y), ν(x, y))
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at the nodes (xi, yi) in the general triangle E, leading to
φx(x1, y1)

φx(x2, y2)
...

φx(x6, y6)

 =
1

det(T)

[
(+y3 − y1)N

T
ξ + (−y2 + y1)N

T
ν

]
· φ⃗ ,


φy(x1, y1)

φy(x2, y2)
...

φy(x6, y6)

 =
1

det(T)

[
(−x3 + x1)N

T
ξ + (+x2 − x1)N

T
ν

]
· φ⃗ .

These results are useful to evaluate the gradient at the nodes. Observe that the results depends on the triangle
used for the interpolation and a node is typically member of more than one triangle.

6.5.7 Integration of u b⃗ · ∇ϕ and a∇u · ∇ϕ

The vector function b⃗(x⃗) has to be evaluated at the Gauss integration points g⃗j . Then the integration of∫∫
E

u b⃗ ∇ϕ dA =

∫∫
E

u b1
∂ ϕ

∂x
dA+

∫∫
E

u b2
∂ ϕ

∂y
dA

is approximated by∫∫
E

u b1
∂ ϕ

∂x
dA ≈ | detT|

detT
⟨
(
(y3 − y1)M

T
ξ + (−y2 + y1)M

T
ν

)
· diag(

−→
wb1) ·M · u⃗ , ϕ⃗⟩

∫∫
E

u b2
∂ ϕ

∂y
dA ≈ | detT|

detT
⟨
(
(−x3 + x1)M

T
ξ + (x2 − x1)M

T
ν

)
· diag(

−→
wb2) ·M · u⃗ , ϕ⃗⟩ .

The function a∇u · ∇ϕ = a (∂ u
∂x

∂ ϕ
∂x + ∂ u

∂y
∂ ϕ
∂y ) has to be evaluated at the Gauss integration points g⃗j , then

multiplied by the Gauss weights wi and added up. Use the vector
−→
wa with the values of the function a(xi, yi) and

the weights wi at the Gauss points to obtain∫∫
E

a
∂ u(x⃗)

∂x

∂ ϕ(x⃗)

∂x
dA = |detT|

∫∫
Ω

a(x⃗(ξ, ν))
∂ u(x⃗(ξ, ν))

∂x

∂ ϕ(x⃗(ξ, ν))

∂x
dξ dν

≈ |detT|
(detT)2

⟨Ax · u⃗ , ϕ⃗⟩ =
1

| detT|
⟨Ax · u⃗ , ϕ⃗⟩∫∫

E

a
∂ u(x⃗)

∂y

∂ ϕ(x⃗)

∂y
dA = |detT|

∫∫
Ω

a(x⃗(ξ, ν))
∂ u(x⃗(ξ, ν))

∂y

∂ ϕ(x⃗(ξ, ν))

∂y
dξ dν

≈ |detT|
(detT)2

⟨Ay · u⃗ , ϕ⃗⟩ =
1

|detT|
⟨Ay · u⃗ , ϕ⃗⟩

where

Ax =
[
(+y3 − y1)Mξ + (−y2 + y1)Mν

]T
· diag(−→wa) ·

[
(+y3 − y1)Mξ + (−y2 + y1)Mν

]
Ay =

[
(−x3 + x1)Mξ + (+x2 − x1)Mν

]T
· diag(−→wa) ·

[
(−x3 + x1)Mξ + (+x2 − x1)Mν

]
.
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6.5.8 Integration over boundary segments

In expression (19) we have to compute integrals over the boundary∫
Γ2

ϕ (g2 + g3 u) ds .

For triangular domains the boundary consists of straight line segments. Thus replace the integral by a sum of line
integrals and use a Gauss integration. Based on the two endpoints x⃗1 and x⃗3 and the midpoint x⃗2 = 1

2 (x⃗1 + x⃗3)
use the values at three Gauss integration points. Based on13

∫ h/2

−h/2
f(x) dx ≈ h

18

(
5 f(−

√
3

2
√
5
h) + 8 f(0) + 5 f(

√
3

2
√
5
h)

)

polynomials up to degree 5 are integrated exactly, thus the error on one interval is proportional to h7. To evaluate
a function at the Gauss points

p⃗1 = 1
2 (x⃗1 + x⃗3)−

√
3

2
√
5
(x⃗3 − x⃗1)

p⃗2 = x⃗2 = 1
2 (x⃗1 + x⃗3)

p⃗3 = 1
2 (x⃗1 + x⃗3) +

√
3

2
√
5
(x⃗3 − x⃗1)

use a quadratic interpolation of a function with f− = f(−h/2), f0 = f(0) and f+ = f(+h/2). Since14

f(x) = f0 +
f+ − f−

h
x+ 2

f− − 2 f0 + f+
h2

x2

the quadratic interpolation result at ±αh is

f(±αh) = f0 ± (f+ − f−)α+ 2 (f− − 2 f0 + f+)α
2

= f− (±α+ 2α2) + f0 (1− 4α2) + f+ (∓α+ 2α2)

13To derive the 3 point Gauss integration scheme use∫ +1

−1
f(t) dt = w1 f(−ξ) + w0 f(0) + w1 f(+ξ)∫ +1

−1
1 dt = 2 = w1 1 + w0 1 + w1 1∫ +1

−1
t dt = 0 = −w1 ξ + w0 0 + w1 ξ = 0∫ +1

−1
t2 dt = 2

3
= +w1 ξ

2 + w1 ξ
2∫ +1

−1
t3 dt = 0 = −w1 ξ

3 + w1 ξ
3 = 0∫ +1

−1
t4 dt = 2

5
= +w1 ξ

4 + w1 ξ
4∫ +1

−1
t5 dt = 0 = −w1 ξ

5 + w1 ξ
5 = 0

Thus t6 is not integrated exactly and the error is proportional to h6. The system to be solved is
w0 + 2w1 = 2

2w1 ξ
2 = 2

3

2w1 ξ
4 = 2

5

=⇒ ξ2 =
3

5
, w1 =

5

9
, w0 =

8

9
.

14To verify use f(0) = f0 and

f(±h/2) = f0 ±
f+ − f−

h

h

2
+ 2

f− − 2 f0 + f+
h2

h2

4
= f0 ±

1

2
(f+ − f−) +

1

2
(f− − 2 f0 + f+) .
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where α =
√
3

2
√
5
=

√
15
10 ≈ 0.316. If a function u is given at the two endpoints by u1 and u3 and at the midpoint

by u2 obtain 
u(p⃗1)

u(p⃗2)

u(p⃗3)

 =


+α+ 2α2 1− 4α2 −α+ 2α2

0 1 0

−α+ 2α2 1− 4α2 +α+ 2α2




u1

u2

u3



= MB


u1

u2

u3

 ≈


+0.68730 0.4 −0.08730
0 1 0

−0.08730 0.4 +0.68730




u1

u2

u3

 (34)

With the length L =
√

(x3 − x1)2 + (y3 − y1)2 of the segment this leads to the approximations

∫
edge

ϕ g2 ds ≈ L

18
⟨MB


ϕ1

ϕ2

ϕ3

 ,


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩ = L

18
⟨


ϕ1

ϕ2

ϕ3

 , MT
B


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩
∫

edge
ϕ g3 u ds ≈ L

18
⟨MB


ϕ1

ϕ2

ϕ3

 ,


5 g3(p⃗1) 0 0

0 8 g3(p⃗2) 0

0 0 5 g3(p⃗3)

 MB


u1

u2

u3

⟩

=
L

18
⟨


ϕ1

ϕ2

ϕ3

 , MT
B


5 g3(p⃗1) 0 0

0 8 g3(p⃗2) 0

0 0 5 g3(p⃗3)

 MB


u1

u2

u3

⟩ .
The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the
second expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the
function to be integrated is a polynomial of degree 5, or less. If h is the typical length of an edge then the error
is of the order h7 for one line segment and thus of order h6 for the total boundary. This boundary integration is
used for the second order elements.

The second expression is of the form

∫
ϕ g3 u ds ≈ ⟨ϕ⃗,B u⃗⟩ = ⟨


ϕ2

ϕ2

ϕ3

 ,


b11 b12 b13

b21 b22 b23

b31 b32 b33




u1

u2

u3

⟩
and its effect on the linear system A u⃗+W f⃗ = 0⃗ depends on nodes being on the Dirichlet part of the boundary.

• If u1 and u3 are both free, i.e. not on the Dirichlet section, then u2 is free too. All entries of the matrix B
have to be added to the global stiffness matrix A.

• If u1 and u3 are on the Dirichlet section, then nothing has to be added to A and f⃗ .

• If u1 and u2 are free and u3 is on the Dirichlet section, then only the first two expressions

b11 u1 + b12 u2 + b13 u3 = b11 u1 + b12 u2 + b13 d3

b21 u1 + b22 u2 + b23 u3 = b21 u1 + b22 u2 + b23 d3

have to be added. d3 is the Dirichlet value at the position of u3. b13 g3 and b23 d3 have to be added to W f⃗ ,
the other expression to A.

SHA 17-11-22



6 THE MATHEMATICS OF THE ALGORITHMS 105

• If u2 and u3 are free and u1 is on the Dirichlet section, then only the second and third expressions

b21 u1 + b22 u2 + b23 u3 = b21 d1 + b22 u2 + b23 u3

b31 u1 + b32 u2 + b33 u3 = b31 d1 + b32 u2 + b33 u3

have to be added. d1 is the Dirichlet value at the position of u1. b21 g1 and b31 d1 have to be added to W f⃗ ,
the other expression to A.

• If u1 and u3 are free, then u2 has to be free too, since it is the midpoint of a Neumann section of the
boundary.

6.6 Construction of third order elements

In this section the construction of the element stiffness matrix and vector for triangular elements or order 3 is
examined. The ideas are extremely similar to Section 6.5 for quadratic functions. Again all contributions in (19)

0 =

∫∫
Ω

∇ϕ · (a∇u− u b⃗) + ϕ (b0 u− f) dA−
∫
Γ2

ϕ (g2 + g3 u) ds

have to be transformed into
0 = ⟨ϕ⃗ , Au⃗+Wf⃗⟩ . (35)

For third order elements a general cubic function is used on each of the triangles in the mesh. There are 10
linearly independent polynomials of degree 3 or less, namely 1, x, y, x2, x y, y2, x3, x2y, x y2 and y3.

- ξ
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Figure 48: Transformation of cubic standard triangle Ω to a general triangle E

6.6.1 The basis functions for a third order element and cubic interpolation

Examine the standard triangle Ω in Figure 48 with the values of a function f(ξ, ν) at the corners and at the points
on the edges. Use the numbering as shown in Figure 48. The parameters ξ and ν at the nodes are given by
Table 12. Construct polynomials ϕi(ξ, ν) of degree 3, such that

Φi(ξj , νj) = δi,j =

{
1 if i = j

0 if i ̸= j

i.e. each basis function is equal to 1 at one of the nodes and vanishes on all other nodes. These basis polynomials
are given by15

15Use that the level curves of the functions ξ, ν and 1− (ξ+ν) at the levels 0, 1
3

, 2
3

and 1 are straight lines through the nodes. For each
node use these functions to write down a polynomial vanishing at all other nodes, then choose the leading factor such that at the node the
value equals 1.
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node i 1 2 3 4 5 6 7 8 9 10

ξi 0 1 0 2
3

1
3 0 0 1

3
2
3

1
3

νi 0 0 1 1
3

2
3

2
3

1
3 0 0 1

3

Table 12: Coordinates of the nodes in the standard cubic triangle

Φ⃗(ξ, ν) =



Φ1(ξ, ν)

Φ2(ξ, ν)

Φ3(ξ, ν)

Φ4(ξ, ν)

Φ5(ξ, ν)

Φ6(ξ, ν)

Φ7(ξ, ν)

Φ8(ξ, ν)

Φ9(ξ, ν)

Φ10(ξ, ν)



=



(1− (ξ + ν)) (1− 3 (ξ + ν)) (1− 3
2 (ξ + ν))

ξ (3 ξ − 1) (32 ξ − 1)

ν (3 ν − 1) (32 ν − 1)
9
2 ξ ν (3 ξ − 1)
9
2 ξ ν (3 ν − 1)

9
2 ν (1− (ξ + ν)) (3 ν − 1)

9 ν (1− (ξ + ν)) (1− 3
2 (ξ + ν))

9 ξ (1− 3
2 (ξ + ν)) (1− (ξ + ν))

9
2 ξ (3 ξ − 1) (1− (ξ + ν))

27 ξ ν (1− (ξ + ν))



(36)

=



1− 11
2 ξ − 11

2 ν + 9 ξ2 + 18 ξ ν + 9 ν2 − 9
2 ξ

3 − 27
2 ξ2 ν − 27

2 ξ ν2 − 9
2 ν

3

ξ − 9
2 ξ

2 + 9
2 ξ

3

ν − 9
2 ν

2 + 9
2 ν

3

−9
2 ξ ν + 27

2 ξ2 ν

−9
2 ξ ν + 27

2 ξ ν2

−9
2 ν + 9

2 ξ ν + 18 ν2 − 27
2 ξ ν2 − 27

2 ν3

9 ν − 45
2 ξ ν − 45

2 ν2 + 27
2 ξ2 ν + 27 ξ ν2 + 27

2 ν3

9 ξ − 45
2 ξ2 − 45

2 ξ ν + 27
2 ξ3 + 27 ξ2 ν + 27

2 ξ ν2

−9
2 ξ + 18 ξ2 + 9

2 ξ ν −
27
2 ξ3 − 27

2 ξ2 ν

27 ξ ν − 27 ξ2 ν − 27 ξ ν2



(37)

and find their graphs in Figure 49.
Any cubic polynomial f on the standard triangle Ω can be written as linear combination of the 10 basis

functions by using

f(ξ, ν) =
10∑
i=1

f(ξi, νi) Φi(ξ, ν) =
10∑
i=1

fiΦi(ξ, ν) . (38)

This is the formula to apply a cubic interpolation on the triangle, using the values fi = f(ξi, νi) of the function
at the nodes. To use this interpolation for a given point (x, y) in the triangle E in Figure 48. The transformation
form the standard triangle Ω to the general triangle E is identical to the second order elements, i.e.(

x

y

)
=

(
x1

y1

)
+

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

] (
ξ

ν

)
=

(
x1

y1

)
+T

(
ξ

ν

)
and (

ξ

ν

)
= T−1 ·

(
x− x1

y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1

y − y1

)
.
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Figure 49: The 10 basis functions for third order triangular elements
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6.6.2 Determine values at the Gauss points and apply Gauss integration

Use equation (23) (page 88) to determine the coordinates of the seven Gauss points. Then a function to be
integrated can be evaluated at these Gauss points. Determine the values of the basis functions Φi(ξ, ν) at the
Gauss points g⃗j by mj,i = Φi(g⃗j) and write

f(g⃗j) =
10∑
i=1

fiΦi(g⃗j) =
10∑
i=1

mj,i fi

or using a matrix notation
f(g⃗1)

f(g⃗2)
...

f(g⃗7)

 =


m1,1 m1,2 · · · m1,10

m2,1 m2,2 · · · m2,10

...
...

. . .
...

m7,1 m7,2 · · · m7,10

 ·


f1

f2
...

f10

 = M · f⃗ ≈

≈



+0.22 +0.06 +0.06 −0.03 −0.03 −0.25 +0.51 +0.51 −0.25 +0.22

+0.06 +0.22 +0.06 +0.51 −0.25 −0.03 −0.03 −0.25 +0.51 +0.22

+0.06 +0.06 +0.22 −0.25 +0.51 +0.51 −0.25 −0.03 −0.03 +0.22

+0.04 −0.06 −0.06 +0.41 +0.41 +0.05 −0.10 −0.10 +0.05 +0.36

−0.06 +0.04 −0.06 −0.10 +0.05 +0.41 +0.41 +0.05 −0.10 +0.36

−0.06 −0.06 +0.04 +0.05 −0.10 −0.10 +0.05 +0.41 +0.41 +0.36

0 0 0 0 0 0 0 0 0 1





f1

f2

f3

f4
...

f9

f10


The Gauss integration can be written in the form∫∫

Ω

f(ξ, ν) dA ≈
7∑

j=1

wj f(g⃗j) = ⟨w⃗ , M · f⃗⟩ .

To integrate over the general triangle E use the transformation (20), i.e.∫∫
E

f dA =

∫∫
Ω

f (x⃗ (ξ, ν))

∣∣∣∣det(∂ (x, y)

∂ (ξ, ν)

)∣∣∣∣ dξ dν ≈ |detT| ⟨w⃗ , M · f⃗⟩ .

Now all the tools to approximate the integrals required for the element stiffness matrix are available.

6.6.3 Integration of f ϕ and b0 uϕ

These integrations are identical to the case of quadratic elements The test function ϕ is given by its values ϕ⃗ at
the nodes, i.e. the corners of the triangle and the two points on each side.

• If the values of the function f at the Gauss points g⃗i are denoted by fi then this integral is approximated by∫∫
E

f ϕ dA ≈ |det(T)|
7∑

j=1

wj fj ϕ(gj) = |det(T)| ⟨diag(w⃗)f⃗ , M ϕ⃗⟩ = |det(T)| ⟨MT diag(w⃗)f⃗ , ϕ⃗⟩ .

Thus find one contribution to (35).
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• If the values of the function f at the nodes are denoted by fi then first determine the values at the Gauss
points by a cubic interpolation. Then integrate as above, leading to∫∫

E

f ϕ dA ≈ |det(T)| ⟨diag(w⃗)Mf⃗ , M ϕ⃗⟩ = | det(T)| ⟨MT diag(w⃗)Mf⃗ , ϕ⃗⟩ .

• Since the values of the functions u and ϕ are known at the nodes use an interpolation and then the function
b0(x, y) at the Gauss nodes to find∫∫

E

b0 uϕ dA ≈ | det(T)|
7∑

j=1

wj b0(gj)u(gj)ϕ(gj) = |det(T)| ⟨diag(w⃗) diag(⃗b0)M u⃗ , M ϕ⃗⟩

= | det(T)| ⟨MT diag(w⃗) diag(⃗b0)M u⃗ , ϕ⃗⟩ .

The matrices MT diag(w⃗) and MT diag(w⃗)M are again independent on the triangle E, but different from the
case of quadratic elements.

6.6.4 Transformation of the gradient to the standard triangle

Computing the partial derivatives is again very similar to the case of quadratic elements. If a function f(x, y) is
given on the general triangle E can pull it back to the standard triangle by

g(ξ, ν) = f(x(ξ, ν) , y(ξ, ν))

and then compute the gradient of g(ξ, ν) with respect to its independent variables ξ and ν. The result is This can
be written with the help of matrices in the form(

∂ g
∂ξ
∂ g
∂ν

)
=

[
(x2 − x1) (y2 − y1)

(x3 − x1) (y3 − y1)

]
·

(
∂ f
∂x
∂ f
∂y

)
= TT ·

(
∂ f
∂x
∂ f
∂y

)

or equivalently (
∂ g

∂ξ
,
∂ g

∂ν

)
=

(
∂ f

∂x
,
∂ f

∂y

)
·T ,

or (
∂ f
∂x
∂ f
∂y

)
=

1

detT

[
y3 − y1 −y2 + y1

−x3 + x1 x2 − x1

] (
∂ g
∂ξ
∂ g
∂ν

)
.

Let u be a function on the standard triangle Ω given as a linear combination of the basis functions, i.e.
u(ξ, ν) =

∑10
i=1 ui Φi(ξ, ν), where the basis function Φi(ξ, ν) are given by (37). Then its gradient with respect

to ξ and ν can be determined with the help of elementary partial derivatives applied to the expressions in (37).
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The results are

Φ⃗ξ(ξ, ν) =
∂

∂ξ
Φ⃗(ξ, ν) =



−11
2 + 18 ξ + 18 ν − 27

2 ξ2 − 27 ξ ν − 27
2 ν2

1− 9 ξ + 27
2 ξ2

0

−9
2 ν + 27 ξ ν

−9
2 ν + 27

2 ν2

9
2 ν −

27
2 ν2

−45
2 ν + 27 ξ ν + 27 ν2

9− 45 ξ − 45
2 ν + 81

2 ξ2 + 54 ξ ν + 27
2 ν2

−9
2 + 36 ξ + 9

2 ν −
81
2 ξ2 − 27 ξ ν

27 ν − 54 ξ ν − 27 ν2



(39)

and

Φ⃗ν(ξ, ν) =
∂

∂ν
Φ⃗(ξ, ν) =



−11
2 + 18 ξ + 18 ν − 27

2 ξ2 − 27 ξ ν − 27
2 ν2

0

1− 9 ν + 27
2 ν2

−9
2 ξ +

27
2 ξ2

−9
2 ξ + 27 ξ ν

−9
2 + 9

2 ξ + 36 ν − 27 ξ ν − 81
2 ν2

9− 45
2 ξ − 45 ν + 27

2 ξ2 + 54 ξ ν + 81
2 ν2

−45
2 ξ + 27 ξ2 + 27 ξ ν

+9
2 ξ −

27
2 ξ2

27 ξ − 27ξ2 − 54 ξ ν



. (40)

Thus find on the standard triangle Ω(
∂ u

∂ξ
,
∂ u

∂ν

)
= (u1, u2, . . . , u10) ·

[
Φ⃗ξ(ξ, ν) Φ⃗ν(ξ, ν)

]
= u⃗T ·

[
Φ⃗ξ(ξ, ν) Φ⃗ν(ξ, ν)

]
.

For a function φ(x, y) =
∑10

i=1 φi Φi(ξ(x, y) , ν(x, y)) use the above to conclude(
∂ φ
∂x
∂ φ
∂y

)
=

1

det(T)

[
+y3 − y1 −y2 + y1

−x3 + x1 +x2 − x1

]
·

[
Φ⃗T
ξ

Φ⃗T
ν

]
· φ⃗

or spelled out for the two components independently

∂ φ

∂x
=

1

det(T)

[
(+y3 − y1) Φ⃗

T
ξ + (−y2 + y1) Φ⃗

T
ν

]
· φ⃗ ,

∂ φ

∂y
=

1

det(T)

[
(−x3 + x1) Φ⃗

T
ξ + (+x2 − x1) Φ⃗

T
ν

]
· φ⃗ .

For the numerical integration use the values of the gradients at the Gauss integration points g⃗j = (ξj , νj).
Using expression (37) the values of the function φ at the Gauss points can be computed with the help of the

SHA 17-11-22



6 THE MATHEMATICS OF THE ALGORITHMS 111

interpolation matrix M byc 
φ(g⃗1)

φ(g⃗2)
...

φ(g⃗7)

 = M ·


φ1

φ2

...

φ10

 .

Similarly, using (39) and (40), define the interpolation matrices for the partial derivatives.

∂

∂ξ


φ(g⃗1)

φ(g⃗2)
...

φ(g⃗7)

 = Mξ ·


φ1

φ2

...

φ10

 and
∂

∂ν


φ(g⃗1)

φ(g⃗2)
...

φ(g⃗7)

 = Mν ·


φ1

φ2

...

φ10

 .

Approximate values are

Mξ ≈



−2.408 0.227 0 −0.179 −0.317 0.317 −1.725 3.271 −1.090 1.904

−0.227 2.408 0 1.725 −0.317 0.317 0.179 1.090 −3.271 −1.904
−0.227 0.227 0 −1.408 4.996 −4.996 1.408 −0.138 0.138 0

−0.511 −0.247 0 3.852 0.868 −0.868 1.358 1.137 −0.379 −5.210
0.247 0.511 0 −1.358 0.868 −0.868 −3.852 0.379 −1.137 5.210

0.247 −0.247 0 0.489 −0.221 0.221 −0.489 −2.984 2.984 0

0.500 −0.500 0 1.500 0 0 −1.500 −1.500 1.500 0


and

Mν ≈



−2.269 0 0.227 −0.317 −0.179 −1.090 3.271 −1.725 0.317 1.904

0.863 0 0.227 4.996 −1.408 0.138 −0.138 1.408 −4.996 0

0.863 0 2.408 −0.317 1.725 −3.271 1.090 0.179 0.317 −1.904
2.473 0 −0.247 0.868 3.852 −0.379 1.137 1.358 −0.868 −5.210
0.626 0 −0.247 −0.221 0.489 2.984 −2.984 −0.489 0.221 0

0.626 0 0.511 0.868 −1.358 −1.137 0.379 −3.852 −0.868 5.210

2.000 0 −0.500 0 1.500 1.500 −1.500 −1.500 0 0


.

The matrices Mξ and Mν allow to compute the values of the partial derivatives at the Gauss points in the standard
triangle Ω and they are independent on the general triangle E.

Combining the above two computations use the notation

x⃗i =

(
x1

y1

)
+T ·

(
ξi

νi

)
for i = 1, 2, 3, . . . , 7

and find for the first component φx = ∂ φ
∂x of the gradient at the Gauss points

φx(x⃗1)

φx(x⃗2)
...

φx(x⃗7)

 =
1

det(T)

[
(+y3 − y1)M

T
ξ + (−y2 + y1)M

T
ν

]
· ϕ⃗
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and for the second component of the gradient
φy(x⃗1)

φy(x⃗2)
...

φy(x⃗7)

 =
1

det(T)

[
(−x3 + x1)M

T
ξ + (+x2 − x1)M

T
ν

]
· ϕ⃗ .

The above results for Mξ and Mν can be coded in Octave and then used to compute the element stiffness matrix.

6.6.5 Integration of u b⃗ · ∇ϕ and a∇u · ∇ϕ

The vector function b⃗(x⃗) has to be evaluated at the Gauss integration points g⃗j . Then the integration of∫∫
E

u b⃗ ∇ϕ dA =

∫∫
E

u b1
∂ ϕ

∂x
dA+

∫∫
E

u b2
∂ ϕ

∂y
dA

is approximated by∫∫
E

u b1
∂ ϕ

∂x
dA ≈ | detT|

detT
⟨
(
(y3 − y1)M

T
ξ + (−y2 + y1)M

T
ν

)
· diag(

−→
wb1) ·M · u⃗ , ϕ⃗⟩

∫∫
E

u b2
∂ ϕ

∂y
dA ≈ | detT|

detT
⟨
(
(−x3 + x1)M

T
ξ + (x2 − x1)M

T
ν

)
· diag(

−→
wb2) ·M · u⃗ , ϕ⃗⟩ .

The function a∇u · ∇ϕ = a (∂ u
∂x

∂ ϕ
∂x + ∂ u

∂y
∂ ϕ
∂y ) has to be evaluated at the Gauss integration points g⃗j , then

multiplied by the Gauss weights wi and added up. Use the vector
−→
wa with the values of the function a(xi, yi) and

the weights wi at the Gauss points to obtain∫∫
E

a
∂ u(x⃗)

∂x

∂ ϕ(x⃗)

∂x
dA = |detT|

∫∫
Ω

a(x⃗(ξ, ν))
∂ u(x⃗(ξ, ν))

∂x

∂ ϕ(x⃗(ξ, ν))

∂x
dξ dν

≈ |detT|
(detT)2

⟨Ax · u⃗ , ϕ⃗⟩ =
1

| detT|
⟨Ax · u⃗ , ϕ⃗⟩∫∫

E

a
∂ u(x⃗)

∂y

∂ ϕ(x⃗)

∂y
dA = |detT|

∫∫
Ω

a(x⃗(ξ, ν))
∂ u(x⃗(ξ, ν))

∂y

∂ ϕ(x⃗(ξ, ν))

∂y
dξ dν

≈ |detT|
(detT)2

⟨Ay · u⃗ , ϕ⃗⟩ =
1

|detT|
⟨Ay · u⃗ , ϕ⃗⟩

where

Ax =
[
(+y3 − y1)Mξ + (−y2 + y1)Mν

]T
· diag(−→wa) ·

[
(+y3 − y1)Mξ + (−y2 + y1)Mν

]
Ay =

[
(−x3 + x1)Mξ + (+x2 − x1)Mν

]T
· diag(−→wa) ·

[
(−x3 + x1)Mξ + (+x2 − x1)Mν

]
.

6.6.6 Partial derivatives at the nodes

For post processing one also needs the partial derivatives of the function at the nodes. On the standard triangle Ω
use the formulas for the partial derivatives of the basis functions in expressions (39) and (40) to find them at the
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nodes, given by the (ξ, ν) coordinates in Table 12 for cubic elements.

φξ(ξ1, ν1)

φξ(ξ2, ν2)

φξ(ξ3, ν3)

φξ(ξ4, ν4)

φξ(ξ5, ν5)

φξ(ξ6, ν6)

φξ(ξ7, ν7)

φξ(ξ8, ν8)

φξ(ξ9, ν9)

φξ(ξ10, ν10)



=



−11
2 1 0 0 0 0 0 9 −9

2 0

−1 11
2 0 0 0 0 0 9

2 −9 0

−1 1 0 −9
2 9 −9 9

2 0 0 0

−1 1 0 9
2 0 0 3

2 3 −3 −6
−1 −1

2 0 3 3 −3 3 3
2 0 −6

1
2 1 0 −3 3 −3 −3 0 −3

2 6

−1 1 0 −3
2 0 0 −9

2 3 −3 6

−1 −1
2 0 0 0 0 0 −3

2 3 0
1
2 1 0 0 0 0 0 −3 3

2 0
1
2

−1
2 0 3

2 0 0 −3
2

−3
2

3
2 0





φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10



= Nξ



φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10


and

φν(ξ1, ν1)

φν(ξ2, ν2)

φν(ξ3, ν3)

φν(ξ4, ν4)

φν(ξ5, ν5)

φν(ξ6, ν6)

φν(ξ7, ν7)

φν(ξ8, ν8)

φν(ξ9, ν9)

φν(ξ10, ν10)



=



−11
2 0 1 0 0 −9

2 9 0 0 0

−1 0 1 9 −9
2 0 0 9

2 −9 0

−1 0 11
2 0 0 −9 9

2 0 0 0

−1 0 −1
2 3 3 0 3

2 3 −3 −6
−1 0 1 0 9

2 −3 3 3
2 0 −6

1
2 0 1 0 0 3

2 −3 0 0 0

−1 0 −1
2 0 0 3 −3

2 0 0 0

−1 0 1 0 −3
2 −3 3 −9

2 0 6
1
2 0 1 3 −3 −3

2 0 −3 −3 6
1
2 0 −1

2 0 3
2

3
2

−3
2

−3
2 0 0





φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10



= Nν



φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10


Now use the transformation formulas (32) and (33) to determine the gradient of a function on the general triangle

φ(x, y) =

10∑
i=1

φiΦi(ξ(x, y), ν(x, y))

at the nodes (xi, yi) in the general triangle E, leading to
φx(x1, y1)

φx(x2, y2)
...

φx(x10, y10)

 =
1

det(T)

[
(+y3 − y1)N

T
ξ + (−y2 + y1)N

T
ν

]
· φ⃗ ,


φy(x1, y1)

φy(x2, y2)
...

φy(x10, y10)

 =
1

det(T)

[
(−x3 + x1)N

T
ξ + (+x2 − x1)N

T
ν

]
· φ⃗ .

These results are useful to evaluate the gradient at the nodes. Observe that the results depends on the triangle
used for the interpolation and a node is typically member of more than one triangle.
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6.6.7 Integration over boundary segments

In expression (19) integrals over the section Γ2 of the boundary are required.∫
Γ2

ϕ (g2 + g3 u) ds

For triangular domains the boundary consists of straight line segments. Thus replace the integral by a sum of line
integrals and use a Gauss integration. Based on the two endpoints x⃗1 and x⃗3 and the midpoint x⃗2 = 1

2 (x⃗1 + x⃗3)
use the values at three Gauss integration points. Based on∫ h/2

−h/2
f(x) dx ≈ h

18

(
5 f(−

√
3

2
√
5
h) + 8 f(0) + 5 f(

√
3

2
√
5
h)

)
=

h

18

(
5 f(−

√
15

10
h) + 8 f(0) + 5 f(

√
15

10
h)

)

polynomials up to degree 5 are integrated exactly, thus the error on one interval is proportional to h7. To evaluate
a function at the Gauss points

p⃗1 = 1
2 (x⃗1 + x⃗4)−

√
3

2
√
5
(x⃗4 − x⃗1)

p⃗2 = 1
2 (x⃗1 + x⃗4)

p⃗3 = 1
2 (x⃗1 + x⃗4) +

√
3

2
√
5
(x⃗4 − x⃗1)

use a cubic interpolation of a function with f−2 = f(−h/2), f−1 = f(−h/6), f+1 = f(+h/6) and f+2 =

f(+h/2). Required are the values at x = 0 and x = ±
√
15
10 h ≈ ±0.387h. This is illustrated in Figure 50 with

the values of the function f(x) indicated by red spots and the interpolation position and values in green. The

-h/2 -h/6 0 +h/6 +h/2
x

f

Figure 50: The interpolation from four nodes to three Gauss points on an interval [−h
2 ,+

h
2 ]
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computations are tedious16 and lead to


u(p⃗1)

u(p⃗2)

u(p⃗3)

 = MB


f−2

f−1

f+1

f+2

 ≈


0.4880 0.7479 −0.2979 0.06199

−0.0625 0.5625 0.5625 −0.0625
0.06199 −0.2979 0.7479 0.4880




f−2

f−1

f+1

f+2


16For an interval [−h/2,+h/2] use a polynomial p(x) = c0 + c1 x+ c2 x

2 + c3 x
3, leading to

f−2 = p(−h/2) = c0 −
1

2
h c1 +

1

4
h2 c2 −

1

8
h3 c3

f−1 = p(−h/6) = c0 −
1

6
h c1 +

1

36
h2 c2 −

1

216
h3 c3

f+1 = p(+h/6) = c0 +
1

6
h c1 +

1

36
h2 c2 +

1

216
h3 c3

f+2 = p(+h/2) = c0 +
1

2
h c1 +

1

4
h2 c2 +

1

8
h3 c3

or with a matrix notation 
+1 − 1

2
+ 1

4
− 1

8

+1 − 1
6

+ 1
36

− 1
216

+1 + 1
6

+ 1
36

+ 1
216

+1 + 1
2

+ 1
4

+ 1
8




c0

h c1

h2 c2

h3 c3

 =


f−2

f−1

f+1

f+2

 .

The corresponding inverse matrix leads to
c0

h c1

h2 c2

h3 c3

 =
1

16


−1 +9 +9 −1

+2 −54 +54 −2

+36 −36 −36 +36

−72 +216 −216 +72




f−2

f−1

f+1

f+2

 .

With λ =
√
15

10
≈ 0.3873 and p(λh) = c0 + λ c1 h+ λ2 c2 h

2 + λ3 c3 h
3 obtain

p(λh) =
1

16

[
1 λ λ2 λ3

]


−1 +9 +9 −1

+2 −54 +54 −2

+36 −36 −36 +36

−72 +216 −216 +72




f−2

f−1

f+1

f+2




p(−λh)

p(0)

p(+λh)

 =
1

16


1 −λ λ2 −λ3

1 0 0 0

1 +λ λ2 +λ3




−1 +9 +9 −1

+2 −54 +54 −2

+36 −36 −36 +36

−72 +216 −216 +72




f−2

f−1

f+1

f+2



≈


0.4880 0.7479 −0.2979 0.06199

−0.0625 0.5625 0.5625 −0.0625

0.06199 −0.2979 0.7479 0.4880




f−2

f−1

f+1

f+2


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With the length L =
√
(x4 − x1)2 + (y4 − y1)2 of the segment this leads to the approximations

∫
edge

ϕ g2 ds ≈ L

18
⟨MB


ϕ1

ϕ2

ϕ3

ϕ4

 ,


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩ = L

18
⟨


ϕ1

ϕ2

ϕ3

ϕ4

 , MT
B


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩

∫
edge

ϕ g3 u ds ≈ L

18
⟨MB


ϕ1

ϕ2

ϕ3

ϕ4

 ,


5 g3(p⃗1) 0 0

0 8 g3(p⃗2) 0

0 0 5 g3(p⃗3)

 MB


u1

u2

u3

u4

⟩

=
L

18
⟨


ϕ1

ϕ2

ϕ3

ϕ4

 , MT
B


5 g3(p⃗1) 0 0

0 8 g3(p⃗2) 0

0 0 5 g3(p⃗3)

 MB


u1

u2

u3

u4

⟩ .

The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the
second expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the
function to be integrated is a polynomial of degree 5, or less. If h is the typical length of an edge then the error
is of the order h7 for one line segment and thus of order h6 for the total boundary. This boundary integration is
used for the second and third order elements. The second expression is of the form

∫
ϕ g3 u ds ≈ ⟨ϕ⃗,B u⃗⟩ = ⟨


ϕ2

ϕ2

ϕ3

ϕ4

 ,


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b34 b44




u1

u2

u3

u4

⟩

and its effect on the linear system A u⃗+W f⃗ = 0⃗ to be solved depends on nodes being on the Dirichlet section
of the boundary or the Neumann section.

• If u1 and u4 are free, i.e. not on the Dirichlet section, then u2 and u3 are free too. All entries of the matrix
B have to be added to the global stiffness matrix A.

• If u1 and u4 are on the Dirichlet section, then u2 and u3 are on the Dirichlet section too. Nothing has to be
added to A and f⃗ .

• If u1, u2 and u3 are free and u4 is on the Dirichlet section, then only the first three expressions

b11 u1 + b12 u2 + b13 u3 + b14 u4 = b11 u1 + b12 u2 + b13 u3 + b14 d4

b21 u1 + b22 u2 + b23 u3 + b24 u4 = b21 u1 + b22 u2 + b23 u3 + b24 d4

b31 u1 + b32 u2 + b33 u3 + b34 u4 = b31 u1 + b32 u2 + b33 u3 + b34 d4

have to be taken into account. d4 is the Dirichlet value at the position of u4. The contributions b14 d4,
b24 d4 and b34 d4 have to be added to W f⃗ , the other expressions to A.
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• If u2, u3 and u4 are free and u1 is on the Dirichlet section, then only the least three expressions

b21 u1 + b22 u2 + b23 u3 + b24 u4 = b21 d1 + b22 u2 + b23 u3 + b24 u4

b31 u1 + b32 u2 + b33 u3 + b34 u4 = b31 d1 + b32 u2 + b33 u3 + b34 u4

b41 u1 + b42 u2 + b43 u3 + b44 u4 = b41 d1 + b42 u2 + b43 u3 + b44 u4

have to be taken into account. d1 is the Dirichlet value at the position of u1. The contributions b21 d1,
b31 d1 and b41 d1 have to be added to W f⃗ , the other expressions to A.

6.7 Convergence of the approximate solutions uh to the exact solution u

A key feature of a good FEM algorithm is a rapid convergence. As the diameter h of the triangles converge
to 0, the approximate solution uh(x, y) should converge to the exact solution u(x, y). The statements below are
correct for very smooth exact solutions and “nice” domains. Find more information in books on the mathematical
background of FEM, e.g. [AxelBark84] or consult [Stah08].

It is convenient to state the approximation results using two norms on the function space L2(Ω) and the
Sobolev space V = H1(Ω) = W 1,2(Ω). The norms are given by

∥u∥22 =

∫∫
Ω

u2(x, y) dA

∥u∥2V =

∫∫
Ω

u2(x, y) + ∥∇u(x, y)∥2 dA .

The results assume that the meshes are well defined, e.g. satisfy a minimal angle condition.

• If the solutions uh are generated by first order, triangular elements, i.e. piecewise linear functions, then

∥uh − u∥V ≤ C h and ∥uh − u∥2 ≤ C1 h
2

for some constants C and C1 independent on h. A short formulation is

– uh converges to u with an error proportional to h2 as h→ 0.
– ∇uh converges to ∇u with an error proportional to h as h→ 0.

• If the solutions uh are generated by second order, triangular elements, i.e. piecewise quadratic functions,
then

∥uh − u∥V ≤ C h2 and ∥uh − u∥2 ≤ C1 h
3

for some constants C and C1 independent on h. A short formulation is

– uh converges to u with an error proportional to h3 as h→ 0.
– ∇uh converges to ∇u with an error proportional to h2 as h→ 0.

• If the solutions uh are generated by third order, triangular elements, i.e. piecewise cubic functions, then

∥uh − u∥V ≤ C h3 and ∥uh − u∥2 ≤ C1 h
4

for some constants C and C1 independent on h. A short formulation is

– uh converges to u with an error proportional to h4 as h→ 0.
– ∇uh converges to ∇u with an error proportional to h3 as h→ 0.

Observe that the convergence results are about the integral of differences, and not point-wise estimates. In
addition the exact solution u is assumed to be smooth. Thus one has to be careful when using the estimates for
problems with limited regularity of the type in Section 8.4.
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6.8 Dynamic problems

The are two distinct classes of dynamic problems:

• Parabolic problems with the heat equation u̇ = ∆u as the typical example.

• Hyperbolic problems with the wave equation ü = ∆u as the typical example.

For both types the following sections will present unconditionally stable, consistent time stepping algorithms.

6.8.1 Dynamic problems of the heat equation type

Examine an IBVP (4) of parabolic type.

ρ ∂
∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (0, T ]

u = g1 for (x, y, t) ∈ Γ1 × (0, T ]

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T ]

u = u0 on Ω at t = 0

First the problem is reduced to a new problem with homogeneous boundary conditions, i.e g1 = g2 = 0. Solve
the static problem with nonhomogeneous boundary conditions.

−∇ · (a∇uB − uB b⃗) + b0 uB = 0 for (x, y, t) ∈ Ω

uB = g1 for (x, y) ∈ Γ1

n⃗ · (a∇uB + uB b⃗) = g2 + g3 uB for (x, y, t) ∈ Γ2

(41)

Then the new function v(x, y, t) = u(x, y, t)− uB(x, y) is a solution of an initial boundary value problem with
no constant boundary contributions, i.e. g1 = g2 = 0.

ρ ∂
∂t v −∇ · (a∇u− v b⃗) + b0 v = f for (x, y, t) ∈ Ω× (0, T ]

v = 0 for (x, y, t) ∈ Γ1 × (0, T ]

n⃗ · (a∇v + v b⃗) = g3 v for (x, y, t) ∈ Γ2 × (0, T ]

v = u0 − uB on Ω at t = 0

This equation is transformed to a system of ordinary differential equations.

W
d

dt
v⃗(t) +A v⃗(t) = f⃗(t) with v⃗(0) = v⃗0 . (42)

The implementation assumes that the coefficient functions ρ, a, b0, b⃗ and gi depend on (x, y), while f may
depend on time t and the position (x, y). Then use a Crank–Nicolson17 approximation to advance the solution
from time t to t+∆t.

W
v⃗(t+∆t)− v⃗(t)

∆t
= −A v⃗(t+∆t) + v⃗(t)

2
+ f⃗(t+∆t/2)(

W +
∆t

2
A

)
v⃗(t+∆t) = +

(
W − ∆t

2
A

)
v⃗(t) + ∆t f⃗(t+∆t/2)

For each time step such a system has to be solved. Observe that the matrix on the left does not change as time
advances. Using an sparsity preserving LU factorization of the matrix on the left, these systems can be solved

17This is a standard choice and unconditionally stable, see e.g. [Stah08, §4].
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efficiently. The matrices P and Q are permutation matrices with P−1 = PT . A substantial amount of time has
to be used to perform the LU factorization, but then the time stepping is fast.

P
(
W + ∆t

2 A
)
Q = LU LU factorization(

W + ∆t
2 A

)
v⃗ = b⃗ system to be solved

P
(
W + ∆t

2 A
)
Q Q−1 v⃗ = P b⃗

LU Q−1 v⃗ = P b⃗

v⃗ = Q (U\(L\(P b⃗))) in the Octave code

With the computed v⃗(t) then find the solution u⃗(t) = v⃗(t) + u⃗B of the original problem.

If the matrix A is symmetric and positive definite one can use Cholesky factorization with row and column
permutations to preserve the sparsity, as much as possible. This should be faster than a LU factorization. but it is

not!
QT

(
W + ∆t

2 A
)
Q = RT R Cholesky factorization(

W + ∆t
2 A

)
v⃗ = b⃗ system to be solved

QT
(
W + ∆t

2 A
)
Q QT v⃗ = QT b⃗

RT R QT v⃗ = QT b⃗

v⃗ = Q (R\(RT \(QT b⃗))) in the Octave code

The Octave manual claims that a lower Cholesky factorization is often faster.

QT
(
W + ∆t

2 A
)
Q = LLT lower Cholesky factorization(

W + ∆t
2 A

)
v⃗ = b⃗ system to be solved

QT
(
W + ∆t

2 A
)
Q QT v⃗ = QT b⃗

LLT QT v⃗ = QT b⃗

v⃗ = Q (LT \(L\(QT b⃗))) in the Octave code

6.8.2 Using eigenvalues for dynamic problems of the heat equation type

With equation (42) for f⃗ = 0⃗

W
d

dt
v⃗(t) +A v⃗(t) = f⃗(t) with v⃗(0) = v⃗0

observe that a generalized eigenvalue λ with eigenvector v⃗, i.e.

A v⃗ = λW v⃗

leads to a solution u⃗(t) = c exp(−λ t) v⃗, since

W
d

dt
u⃗(t) = −λW v⃗ exp(−λ t)

A u⃗(t) = +λW v⃗ exp(−λ t)

Thus for λ > 0 find an exponentially decaying solution of the IBVP.
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6.8.3 Dynamic problems of the wave equation type

Examine an IBVP (6) of hyperbolic type.

ρ ∂2

∂t2
u+ 2α ∂

∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (0, T ]

u = g1 for (x, y, t) ∈ Γ1 × (0, T ]

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T ]

u = u0 on Ω at t = 0
∂
∂t u = v0 on Ω at t = 0

First the problem is reduced to a new problem with homogeneous boundary conditions, i.e g1 = g2 = 0, us-
ing (41). Then the new function v(x, y, t) = u(x, y, t) − uB(x, y) is a solution of an initial boundary value
problem with no constant boundary contributions, i.e. g1 = g2 = 0.

ρ ∂2

∂t2
v + 2α ∂

∂t v(t)−∇ · (a∇u− v b⃗) + b0 v = f for (x, y, t) ∈ Ω× (0, T ]

v = 0 for (x, y, t) ∈ Γ1 × (0, T ]

n⃗ · (a∇v − v b⃗) = g3 v for (x, y, t) ∈ Γ2 × (0, T ]

v = u0 − uB on Ω at t = 0
∂
∂t v = v0 on Ω at t = 0

This equation is transformed to a system of ordinary differential equations.

W
d2

dt2
v⃗(t) + 2D

d

dt
v⃗(t) +A v⃗(t) = f⃗(t) with v⃗(0) = u⃗0 − u⃗B ,

d

dt
v⃗(0) = v⃗0 (43)

The implementation assumes that the coefficient functions ρ, α, a, b0, b⃗ and gi depend on (x, y), while f may
depend on time t and the position (x, y). Then use an implicit approximation18 to advance the solution from
time t−∆t and t to t+∆t.

W
d2

dt2
v⃗(t) = −2D d

dt
v⃗(t)−A v⃗(t) + f⃗(t)

W
v⃗(t−∆t)− 2 v⃗(t) + v⃗(t+∆t)

(∆t)2
= −2D v⃗(t+∆t)− v⃗(t−∆t)

2∆t
−

−A v⃗(t−∆t) + 2 v⃗(t) + v⃗(t+∆t)

4
+ f⃗(t)(

+W +∆tD+
(∆t)2

4
A

)
v⃗(t+∆t) = −

(
W −∆tD+

(∆t)2

4
A

)
v⃗(t−∆t) +

+

(
2W − (∆t)2

2
A

)
v⃗(t) + (∆t)2 f⃗(t)

This scheme is unconditionally stable and consistent of order 2. Observe that the matrices do not change as time
advances. Thus use again a sparsity preserving LU factorization for the time stepping. The above scheme is
unconditionally stable, at least for constant coefficients19.

18This is a standard choice and unconditionally stable, see e.g. [Stah08, §4].
19I have a proof in WaveStability.tex.
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• To construct the solution at the initial time ∆t use the initial value u0 and initial velocity v0 and a scheme
with the same order of consistency. with respect to time. An explicit scheme for the first step leads to

d

dt
v⃗(0) = v⃗0 ≈

v⃗(∆t)− v⃗(−∆t)

2∆t
=⇒ v⃗(−∆t) ≈ v⃗(∆t)− 2∆t v⃗0

W
d2

dt2
v⃗(t) = −2D d

dt
v⃗(t)−A v⃗(t) + f⃗(t)

W
v⃗(t−∆t)− 2 v⃗(t) + v⃗(t+∆t)

(∆t)2
= −2D v⃗(t+∆t)− v⃗(t−∆t)

2∆t
−A v⃗(t) + f⃗(t)

(W +∆tD) v⃗(t+∆t) = −(W −∆tD) v⃗(t−∆t) + 2W v⃗(t) + (∆t)2 (−A v⃗(t) + f⃗(t))

(W +∆tD) v⃗(∆t) = −(W −∆tD) (v⃗(∆t)− 2∆t v⃗0) +

+2W (u⃗0 − u⃗B) + (∆t)2 (−A (u⃗0 − uB) + f⃗(0))

2W v⃗(∆t) = +2 (W −∆tD)∆t v⃗0 +

+2W (u⃗0 − u⃗B) + (∆t)2 (−A (u⃗0 − u⃗B) + f⃗(0))

W v⃗(∆t) = (W −∆tD)∆t v⃗0 +

+W (u⃗0 − u⃗B) +
1

2
(∆t)2 (−A (u⃗0 − u⃗B) + f⃗(0)) .

This is currently implemented. The conditional stability for this single step should not cause a major
problem.

• One could also use v⃗(−∆t) ≈ v⃗(∆t)− 2∆2 v⃗0 in the implicit scheme at t = 0.(
+W +∆tD+

(∆t)2

4
A

)
v⃗(t+∆t) = −

(
W −∆tD+

(∆t)2

4
A

)
v⃗(t−∆t) +

+

(
2W − (∆t)2

2
A

)
v⃗(t) + (∆t)2 f⃗(t)(

+W +∆tD+
(∆t)2

4
A

)
v⃗(∆t) = −

(
W −∆tD+

(∆t)2

4
A

)
(v⃗(∆t)− 2∆t v⃗0) +

+

(
2W − (∆t)2

2
A

)
v⃗(0) + (∆t)2 f⃗(0)(

+2W + 2
(∆t)2

4
A

)
v⃗(∆t) = +2∆t

(
W −∆tD+

(∆t)2

4
A

)
v⃗0 +

+

(
2W − (∆t)2

2
A

)
v⃗(0) + (∆t)2 f⃗(0)

This initial step requires solving a new system of linear equations. If there is no damping term (D = 0) it
is the same system as for the time stepping, thus should be used.

6.8.4 Using eigenvalues for dynamic problems of the wave equation type

With equation (43) for f⃗ = 0⃗ and a damping factor DW with a constant D ≥ 0 (instead of the matrix D)

W
d2

dt2
v⃗(t) + 2DW

d

dt
v⃗(t) +A v⃗(t) = 0⃗ (44)

observe that a generalized eigenvalue λ > 0 with eigenvector v⃗, i.e. A v⃗ = λW v⃗ and weak damping 0 ≤ D <√
λ leads to a solution u⃗(t) = exp(µ t) v⃗ with µ ∈ C, since

0⃗ = µ2W v⃗ exp(µ t) + µ 2DW v⃗ exp(µ t) + λW v⃗ exp(µ t)
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0 = µ2 + µ 2D + λ

µ1,2 =
1

2

(
−2D ±

√
4D2 − 4λ

)
= −D ± i

√
λ−D2 ∈ C

Thus the real solutions are of the form

u⃗(t) = exp(−D t)
(
v⃗1 cos(

√
λ−D2 t) + v⃗2 sin(

√
λ−D2 t)

)
.

The angular velocity of the exponentially decaying oscillations is given by ω =
√
λ−D2.

• For the case of strong damping D >
√
λ use

µ1,2 = −D ±
√

D2 − λ ∈ R

to find two exponentially decaying solutions

u⃗(t) = c1 exp(−D +
√

D2 − λ t) v⃗1 + c2 exp(−D −
√

D2 − λ t) v⃗2 .

• If the damping term is not in the special form DW d
dt v⃗(t) the above, simple approach does not work.

Instead replace equation (44) by the first order system

d

dt

(
v(t)

W d
dt v⃗(t)

)
=

(
d
dt v⃗(t)

−2D d
dt v⃗(t)−A v⃗(t)

)

or with a matrix notation

d

dt

[
I 0

0 W

] (
v(t)
d
dt v⃗(t)

)
=

[
0 I
−A −W

] (
v(t)
d
dt v⃗(t)

)
.

Thus the generalized eigenvalues of[
0 I
−A −W

]
x⃗ = λ

[
I 0

0 W

]
x⃗

provide information on the behavior of the solutions of the wave equation. This is not implemented in
FEMoctave.

6.9 Inverse power iteration or eigs() to determine small eigenvalues of positive definite ma-
trices

The algorithm to solve the generalized eigenvalue problem

A x⃗ = λB x⃗

for given, positive definite matrices A and B is based on inverse power iteration. A small number of the smallest
eigenvalues can be estimated with reasonable efficiency. This algorithm imposes some restrictions though:

• Both matrices A and B have to be symmetric and strictly positive definite.

• Only very few eigenvalues and eigenvectors should be computed. The convergence rate for too many
eigenvalues is unacceptable.
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• There are obvious improvements possible, but I hope for an Octave implementation of the command
eigs(). This is the case now, thus I use eigs(). Thus some of the notes on eigenvalues do not
apply any more.

The algorithm is presented in [GoluVanLoan96] and some more details are worked out in [VarFEM], available
at web.sha1.bfh.science/fem/VarFEM/VarFEM.pdf.

To determine the first m eigenvalues proceed as follows.

• Create an n×m matrix V0 with the initial vectors v⃗j,0 as its columns.

• repeat until desired precision is reached

– solve the matrix equation A ·Vk = B ·Vk−1 or Vk = A−1 ·B ·Vk−1

– ortho-normalize the columns of Vk, using a generalized Gram-Schmidt algorithm. The resulting
columns of Vk are orthonormal with respect to the scalar product ⟨x⃗ , By⃗⟩.

• for j = 1, 2 . . .m compute βj = ⟨V(:, j) , A ·V(:, j)⟩. Then βj should be good approximations to the
eigenvalues.

The error estimates are based on results in [Demm97]. For a normalized, approximate eigenvector v⃗i and the
corresponding approximate eigenvalue βi compute the residual r⃗ = A v⃗i − βiB v⃗i. Then the estimates

min
λj∈σ(A)

|βi − λj | ≤
√
⟨r⃗ , B−1r⃗⟩ and |βi − λj | ≤

⟨r⃗ , B−1r⃗⟩
gap

(45)

are valid. The denominator gap measures the distance to the next eigenvalue.

gap = min{|βi − λj | : λj ∈ σ(A), j ̸= i} .

Without the exact values of the eigenvalues λi there is no way to compute gap exactly. Thus use the approxi-
mate values. Expect the error estimate to have its problems at multiple eigenvalues. For the largest, computed
eigenvalue one can not estimate gap reliably, since no information on the next eigenvalue is available.

SHA 17-11-22

https://web.sha1.bfh.science/fem/VarFEM/VarFEM.pdf


7 PLANE ELASTICITY 124

7 Plane Elasticity

Find the description of the plane elasticity problems in Section 2.8, starting on page 9.

7.1 The plane stress problem

For a plane stress problem it is assumed that there are no stresses in z–direction, i.e. σz = τxz = τyz = 0 . The
elastic energy density is given by equation (13) by

Wstress =
E

2 (1− ν2)

(
ε2xx + ε2yy + 2 ν εxx εyy + 2 (1− ν) ε2xy

)
.

With FEMoctave examine plane stress deformations with (only) three types of boundary conditions.

u⃗ = g⃗D on Dirichlet boundary Γ1, i.e. prescibed displacement

force density = g⃗N on Neumann boundary Γ2, i.e. prescibed force density

force density = 0 on free boundary Γ3

(46)

With this the total energy of a plane stress problem can be written in the form20

U(u⃗) = Uelast + UV ol + USurf (47)

=

∫∫
Ω

1

2

E

(1− ν2)
⟨


1 ν 0

ν 1 0

0 0 2 (1− ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩ dA−
−
∫∫
Ω

f⃗ · u⃗ dA−
∮
Γ2

g⃗N · u⃗ ds .

Using the Bernoulli principle this energy has to be minimized. A discretization of the displacments u1(x, y) and
u2(x, y) leads to a vector u⃗ and the above total energy has to be written in the form

1

2
⟨u⃗,Au⃗⟩+ ⟨u⃗,Wf⃗⟩

Then the approximate minimizer is given as solution of the linear system Au⃗ = −Wf⃗ . This setup is very similar
to Figure 41 on page 83.

Another approach is to use perturbed displacements u1 + ϕ1 and u2 + ϕ2 and dropping higher order contri-
butions in ϕi. Use the approximations

εxx =
∂ (u1 + ϕ1)

∂x
=

∂ u1
∂x

+
∂ ϕ1

∂x

ε2xx = (
∂ (u1 + ϕ1)

∂x
)2 ≈ (

∂ u1
∂x

)2 + 2 (
∂ u1
∂x

) (
∂ ϕ1

∂x
)

ε2yy ≈ (
∂ u2
∂y

)2 + 2 (
∂ u2
∂y

) (
∂ ϕ2

∂y
)

εxxεyy ≈ ∂ u1
∂x

∂ u2
∂y

+
∂ u1
∂x

∂ ϕ2

∂y
+

∂ u2
∂y

∂ ϕ1

∂x

2 εxy =
∂ (u1 + ϕ1)

∂y
+

∂ (u2 + ϕ2)

∂x
=

∂ u1
∂y

+
∂ ϕ1

dy
+

∂ u2
∂x

+
∂ ϕ2

∂x

20We quietly dropped the constant thickness H from all expressions.
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4 ε2xy ≈ (
∂ u1
∂y

)2 + (
∂ u2
∂x

)2 + 2
∂ u1
∂y

(
∂ ϕ1

∂y
+

∂ ϕ2

∂x
) + 2

∂ u2
∂x

(
∂ ϕ1

∂y
+

∂ ϕ2

∂x
)

= (
∂ u1
∂y

+
∂ u2
∂x

)2 + 2
∂ ϕ1

∂y
(
∂ u1
∂y

+
∂ u2
∂x

) + 2
∂ ϕ2

∂x
(
∂ u1
∂y

+
∂ u2
∂x

)

Based on 2 (1−ν2)
E W (u) = ε2xx + ε2yy + 2 ν εxx εyy + 2 (1− ν) ε2xy conclude

2 (1− ν2)

E

(
W (u⃗+ ϕ⃗)−W (u⃗)

)
≈ 2

∂ u1
∂x

∂ ϕ1

∂x
+ 2

∂ u2
∂y

∂ ϕ2

∂y
+

+2 ν (
∂ u1
∂x

∂ ϕ2

∂y
+

∂ u2
∂y

∂ ϕ1

∂x
) +

+
4

4
(1− ν)

(
∂ ϕ1

∂y
(
∂ u1
∂y

+
∂ u2
∂x

) +
∂ ϕ2

∂x
(
∂ u1
∂y

+
∂ u2
∂x

)

)
and use ∫∫

Ω

f⃗ · (u⃗+ ϕ⃗) dA =

∫∫
Ω

f⃗ · u⃗ dA+

∫∫
Ω

f1 ϕ1 + f2 ϕ2 dA∫
Γ2

g⃗N · (u⃗+ ϕ⃗) ds =

∫
Γ2

g⃗N · u⃗ ds+

∫
Γ2

g1 ϕ1 + g2 ϕ2 ds .

This leads to

U(u⃗+ ϕ⃗)− U(u⃗) ≈ +

∫∫
Ω

E

1− ν2

(
∂ ϕ1

∂x
(
∂ u1
∂x

+ ν
∂ u2
∂y

) +
1− ν

2

∂ ϕ1

∂y
(
∂ u1
∂y

+
∂ u2
∂x

)

)
− ϕ1 f1 dA+

+

∫∫
Ω

E

1− ν2

(
∂ ϕ2

∂y
(
∂ u2
∂y

+ ν
∂ u1
∂x

) +
1− ν

2

∂ ϕ2

∂x
(
∂ u1
∂y

+
∂ u2
∂x

)

)
− ϕ2 f2 dA−

−
∮
Γ2

ϕ1 g1 + ϕ2 g2 ds . (48)

Using Bernoulli’s principle this expression should vanish for all perturbations ϕ⃗. Use discrete approximations of
the functions ui and ϕi to write equation (48) in the form

⟨ϕ⃗,Au⃗+Wf⃗⟩ = 0 for all ϕ⃗ .

7.2 Construction of first order elements

The algorithm in this section is based on the results in Section 6.4 (p. 88), with the expressions in equation (48)
to be integrated over a triangle T . The approximation consists of piecewise linear, triangular segments. Thus the
first order partial derivatives are constant on each triangle. Consequently the strains are constant on each triangle.
This is the reason for the name Constant Strain Triangle, short CST.

7.2.1 Integration of f1 ϕ1 + f2 ϕ2

• If the values of the functions f1 and f2 at the Gauss points are denoted by the vectors f⃗1 and f⃗2, then use
the approximation∫∫

T

f1 ϕ1 + f2 ϕ2 dA ≈ area(T )
3

(
⟨M ϕ⃗1 , f⃗1⟩+ ⟨M ϕ⃗2 , f⃗2⟩

)
=

area(T )
3

(
⟨ϕ⃗1 , M

T f⃗1⟩+ ⟨ϕ⃗2 , M
T f⃗2⟩

)
.

SHA 17-11-22



7 PLANE ELASTICITY 126

M ∈ R3×3 is the matrix for interpolation from the nodes to the Gauss points, given by

M =
1

6


4 1 1

1 4 1

1 1 4

 .

• If the values of the functions f1 and f2 at the nodes are denoted by the vectors f⃗1 and f⃗2, then use the
approximation ∫∫

T

f1 ϕ1 + f2 ϕ2 dA ≈ area(T )
3

(
⟨M ϕ⃗1 , M f⃗1⟩+ ⟨M ϕ⃗2 , M f⃗2⟩

)
=

area(T )
3

(
⟨ϕ⃗1 , M

TM f⃗1⟩+ ⟨ϕ⃗2 , M
TM f⃗2⟩

)
Thus find one contribution to (48). With a block matrix notation the above can be written in the form

area(T )
3

⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MT 0

0 MT

](
f⃗1

f⃗2

)
⟩ or

area(T )
3

⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MTM 0

0 MTM

](
f⃗1

f⃗2

)
⟩ .

7.2.2 Integration of the terms involving derivatives of ϕ1 and ϕ2

For linear elements the gradient of the functions ui and ϕi are constant and using equation (25) given by

∇u =
−1

2 area(T )

[
(y3 − y2) (y1 − y3) (y2 − y1)

(x2 − x3) (x3 − x1) (x1 − x2)

]
· u⃗ =

[
Gx

Gy

]
u⃗ .

Evaluate the coefficients E and ν at the Gauss points g⃗i and define the averaged values

a1 =
1

3

3∑
i=1

E(g⃗i)

1− ν2(g⃗i)
, a2 =

1

3

3∑
i=1

ν(g⃗i)E(g⃗i)

1− ν2(g⃗i)
and a3 =

1

3

3∑
i=1

E(g⃗i)

2 (1 + ν(g⃗i))
.

This leads to the approximations

Iϕ1 =

∫∫
T

E

1− ν2

(
∂ ϕ1

∂x
(
∂ u1
∂x

+ ν
∂ u2
∂y

) +
1− ν

2

∂ ϕ1

∂y
(
∂ u1
∂y

+
∂ u2
∂x

)

)
dA

≈ a1 ⟨Gxϕ⃗1,Gxu⃗1⟩+ a2 ⟨Gxϕ⃗1,Gyu⃗2⟩+ a3 ⟨Gyϕ⃗1,Gyu⃗1 +Gxu⃗2⟩
= a1 ⟨ϕ⃗1,G

T
xGxu⃗1⟩+ a2 ⟨ϕ⃗1,G

T
xGyu⃗2⟩+ a3 ⟨ϕ⃗1,G

T
y Gyu⃗1 +GT

y Gxu⃗2⟩

Iϕ2 =

∫∫
T

E

1− ν2

(
∂ ϕ2

∂y
(
∂ u2
∂y

+ ν
∂ u1
∂x

) +
1− ν

2

∂ ϕ2

∂x
(
∂ u1
∂y

+
∂ u2
∂x

)

)
dA

≈ a1 ⟨Gyϕ⃗2,Gyu⃗2⟩+ a2 ⟨Gyϕ⃗2,Gxu⃗1⟩+ a3 ⟨Gxϕ⃗2,Gyu⃗1 +Gxu⃗2⟩
= a1 ⟨ϕ⃗2,G

T
y Gyu⃗2⟩+ a2 ⟨ϕ⃗2,G

T
y Gxu⃗1⟩+ a3 ⟨ϕ⃗2,G

T
xGyu⃗1 +GT

xGxu⃗2⟩

With a block matrix notation write the above in the form

I
ϕ⃗
≈ ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
a1G

T
xGx + a3G

T
y Gy a2G

T
xGy + a3G

T
y Gx

a2G
T
y Gx + a3G

T
xGy a1G

T
y Gy + a3G

T
xGx

](
u⃗1

u⃗2

)
⟩ =: ⟨

(
ϕ⃗1

ϕ⃗2

)
,G

(
u⃗1

u⃗2

)
⟩ .

The symmetric 6×6 matrix G ∈ R6×6 is the element stiffness matrix for the triangle T , containing contributions
to (48).
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7.2.3 The boundary integral

The boundary integral is similar to (26) on page 94. With α = 1−1/
√
3

2 use the symmetric interpolation matrix
from nodes to Gauss points

Mb =

[
1− α α

α 1− α

]
and the length L of the edge segment for the approximate integral∫

edge
g⃗N · ϕ⃗ ds =

∫
edge

g1 ϕ1 + g2 ϕ2 ds ≈
L

2
⟨ϕ⃗1,Mb g⃗1⟩+

L

2
⟨ϕ⃗2,Mb g⃗2⟩ ,

Where the functions g1 and g2 are evaluated at the Gauss points.

7.3 Construction of second order elements

The algorithm in this section is based on the results in Section 6.5 (p. 94), with the expressions in equation (48)
to be integrated over a triangle T . The approximation consists of piecewise quadratic, triangular segments. Thus
the first order partial derivatives are linear on each triangle.

7.3.1 Integration of f1 ϕ1 + f2 ϕ2

Use the Gauss weights w⃗ ∈ R7 from equation (22) on page 88 for the approximate integration over one triangle T .

• If the values of the functions f1 and f2 at the seven Gauss points are denoted by the vectors f⃗1 and f⃗2 ∈ R7,
then use the approximation∫∫

T

f1 ϕ1 + f2 ϕ2 dA ≈ area(T )
(
⟨M ϕ⃗1 , diag(w⃗) f⃗1⟩+ ⟨M ϕ⃗2 , diag(w⃗) f⃗2⟩

)
= area(T )

(
⟨ϕ⃗1 , M

T diag(w⃗) f⃗1⟩+ ⟨ϕ⃗2 , M
T diag(w⃗) f⃗2⟩

)
= area(T ) ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MT diag(w⃗) 0

0 MT diag(w⃗)

](
f⃗1

f⃗2

)
⟩ .

M ∈ R7×6 is the matrix for interpolation from the nodes to the Gauss points, given in equation (29) on
page 96.

• If the values of the functions f1 and f2 at the nodes are denoted by the vectors f⃗1 and f⃗2 ∈ R6, then use
the approximation∫∫

T

f1 ϕ1 + f2 ϕ2 dA ≈ area(T )
(
⟨M ϕ⃗1 , diag(w⃗)M f⃗1⟩+ ⟨M ϕ⃗2 , diag(w⃗)M f⃗2⟩

)
= area(T )

(
⟨ϕ⃗1 , M

T diag(w⃗)M f⃗1⟩+ ⟨ϕ⃗2 , M
T diag(w⃗)M f⃗2⟩

)
= area(T ) ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MT diag(w⃗)M 0

0 MT diag(w⃗)M

](
f⃗1

f⃗2

)
⟩ .

Thus find one contribution to (48). Observe that MT diag(w⃗)M is a 6×6 matrix, independent on the triangle T .

SHA 17-11-22



7 PLANE ELASTICITY 128

7.3.2 Integration of the terms involving derivatives of ϕ1 and ϕ2

Using the results from Section 6.5 the partial derivatives at the nodes of functions ϕ given at the notes find for the
first component φx = ∂ φ

∂x of the gradient at the Gauss points
φx(x⃗1)

φx(x⃗2)
...

φx(x⃗7)

 =
1

det(T)

[
(+y3 − y1)M

T
ξ + (−y2 + y1)M

T
ν

]
· ϕ⃗ =: Gx ϕ⃗

and for the second component of the gradient
φy(x⃗1)

φy(x⃗2)
...

φy(x⃗7)

 =
1

det(T)

[
(−x3 + x1)M

T
ξ + (+x2 − x1)M

T
ν

]
· ϕ⃗ =: Gy ϕ⃗ .

Evaluate the coefficients E and ν at the Gauss points g⃗i and multiply by the Gauss integration weights to obtain
the three diagonal matrices

A1 = diag


w1

E(g⃗1)
1−ν2(g⃗1)

w2
E(g⃗2)

1−ν2(g⃗2)
...

w7
E(g⃗7)

1−ν2(g⃗7)

 , A2 = diag


w1

ν(g⃗1)E(g⃗1)
1−ν2(g⃗1)

w2
ν(g⃗2)E(g⃗2)
1−ν2(g⃗2)

...

w7
E(ν(g⃗7) g⃗7)
1−ν2(g⃗7)

 and A3 = diag


w1

E(g⃗1)
2 (1+ν(g⃗1))

w2
E(g⃗2)

2 (1+ν(g⃗2))
...

w7
E(g⃗7)

2 (1+ν(g⃗7))

 .

This leads to the approximations

Iϕ1

area(T )
=

1

area(T )

∫∫
T

E

1− ν2

(
∂ ϕ1

∂x
(
∂ u1
∂x

+ ν
∂ u2
∂y

) +
1− ν

2

∂ ϕ1

∂y
(
∂ u1
∂y

+
∂ u2
∂x

)

)
dA

≈ ⟨A1Gxϕ⃗1,Gxu⃗1⟩+ ⟨diagA2Gxϕ⃗1,Gyu⃗2⟩+ ⟨A3Gyϕ⃗1,Gyu⃗1 +Gxu⃗2⟩
= ⟨ϕ⃗1,G

T
xA1Gxu⃗1⟩+ ⟨ϕ⃗1,G

T
xA2Gyu⃗2⟩+ ⟨ϕ⃗1,G

T
y A3Gyu⃗1 +GT

y A3Gxu⃗2⟩
Iϕ1

area(T )
=

1

area(T )

∫∫
T

E

1− ν2

(
∂ ϕ2

∂y
(
∂ u2
∂y

+ ν
∂ u1
∂x

) +
1− ν

2

∂ ϕ2

∂x
(
∂ u1
∂y

+
∂ u2
∂x

)

)
dA

≈ ⟨A1Gyϕ⃗2,Gyu⃗2⟩+ ⟨A2Gyϕ⃗2,Gxu⃗1⟩+ ⟨A3Gxϕ⃗2,Gyu⃗1 +Gxu⃗2⟩
= ⟨ϕ⃗2,G

T
y A1Gyu⃗2⟩+ ⟨ϕ⃗2,G

T
y A2Gxu⃗1⟩+ ⟨ϕ⃗2,G

T
xA3Gyu⃗1 +GT

xA3Gxu⃗2⟩ .

With a block matrix notation write the above in the form

I
ϕ⃗
= Iϕ1 + Iϕ2 ≈ area(T ) ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
GT

xA1Gx +GT
y A3Gy GT

xA2Gy +GT
y A3Gx

GT
y A2Gx +GT

xA3Gy GT
y A1Gy +GT

xA3Gx

](
u⃗1

u⃗2

)
⟩

=: area(T ) ⟨

(
ϕ⃗1

ϕ⃗2

)
,G

(
u⃗1

u⃗2

)
⟩ .

The symmetric 12× 12 matrix G ∈ R12×12 is the element stiffness matrix for the triangle T , containing contri-
butions to (48).
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7.3.3 The boundary integral

The boundary integral is similar to (34) on page 104, i.e. based on∫ h/2

−h/2
f(x) dx ≈ h

18

(
5 f(−

√
3

2
√
5
h) + 8 f(0) + 5 f(

√
3

2
√
5
h)

)
.

If the values of a function f at the two endpoints and the midpoint are denoted by (f1, f2, f3) use a quadratic
interpolation to find the values at the three Gauss integration points, given by

f(p⃗1)

f(p⃗2)

f(p⃗3)

 = MB


f1

f2

f3

 ≈


+0.68730 0.4 −0.08730
0 1 0

−0.08730 0.4 +0.68730




f1

f2

f3


and with the length L of the segment on the edge obtain the approximate integral

∫
edge

g1 ϕ1 + g2 ϕ2 ds ≈ L

18
⟨MBϕ⃗1 ,


5 g1(p⃗1)

8 g1(p⃗2)

5 g1(p⃗3)

⟩+ L

18
⟨MBϕ⃗2 ,


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩

=
L

18
⟨ϕ⃗1 , M

T
B


5 g1(p⃗1)

8 g1(p⃗2)

5 g1(p⃗3)

⟩+ L

18
⟨ϕ⃗2 , M

T
B


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩
The intgeration weights can be combined into the interpolation matrix MB by

MBC =
1

18
MT

B


5 0 0

0 8 0

0 0 5

 ≈


0.1909 0 −0.0242
0.1111 0.4444 0.1111

−0.0242 0 0.1909

 .

This matrix does not depend on the current edge segment and now use

∫
edge

g1 ϕ1 + g2 ϕ2 ds ≈ L ⟨ϕ⃗1 , MBC


g1(p⃗1)

g1(p⃗2)

g1(p⃗3)

⟩+ L ⟨ϕ⃗2 , MBC


g2(p⃗1)

g2(p⃗2)

g2(p⃗3)

⟩ .
7.4 The plane strain problem

For a plane strain problem it is assumed that there are no strains in z–direction, i.e.

εxz = εyz = εz = 0 .

With the modified material parameters from (16)

ν⋆ =
ν

1− ν
and E⋆ =

E

1− ν2
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this leads to a simpler version of Hooke’s law
σx

σy

τxy

 =
E

(1 + ν) (1− 2 ν)


1− ν ν 0

ν 1− ν 0

0 0 1− 2 ν

 ·


εxx

εyy

εxy



=
E⋆

(1− ν⋆) (1 + ν⋆)


1 ν⋆ 0

ν⋆ 1 0

0 0 1− ν⋆

 ·


εxx

εyy

εxy


σz =

E ν (εxx + εyy)

(1 + ν) (1− 2 ν)

This is very similar to Hooke’s law (12) for the plane stress situation, but with E⋆ and ν⋆ instead of E and ν. The
energy density is in this case given by

Wstrain =
1

2

E

(1 + ν) (1− 2 ν)
⟨


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩
=

E (1− ν)

2 (1 + ν) (1− 2 ν)

(
ε2xx + ε2yy + 2

ν

1− ν
εxxεyy + 2

1− 2 ν

1− ν
ε2xy

)
=

E⋆

2 (1− (ν⋆)2)

(
ε2xx + ε2yy + 2 ν⋆ εxxεyy + 2 (1− ν⋆) ε2xy

)
(49)

This is very similar to the elastic energy density (13) for plane stress problems.
As a consequence of the similarity of the plane strain and plane stress problem there is no need for extensive

new codes for plane strain problems. It is sufficient to write a wrapper to modify the material parameters.
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8 Examples, Examples, Examples

8.1 An elliptic problem with variable coefficients

The elliptic BVP in Section 5.5 is

−∇
(
(1 + x2)∇u(x, y)

)
= −4 (1 + x2) exp(−2 y) for (x, y) ∈ Ω

∂ u(y,0)
∂x = 0 for 1 ≤ y ≤ 2

u(x, y) = exp(−2 y) on other sections of the boundary

.

on the domain shown in Figure 51(a). The exact solution is given by ue(x, y) = exp(−2 y). To solve this BVP
with FEMoctave use the following steps:

1. Use CreateMeshTriangle() to generate a mesh on the rectangle 1 ≤ r ≤ 2 and 0 ≤ φ ≤ π/2.

2. With the polar coordinates use (
x

y

)
=

(
r cosφ

r sinφ

)
to generate the mesh on the section of a ring, visible in Figure 51(a) with the help of an appropriate function
Deform() and the function MeshDeform().

3. Then use MeshUpgrade() to generate a mesh with third order elements.

4. Define the coefficient functions a(x, y) = 1+x2 and the right hand side f(x, y) = −4 (1+x2) exp(−2 y)
with Octave functions.

5. Call the function BVP2Dsym() with appropriate arguments to calculate the approximate solution u(x, y).

6. Use FEMtrimesh() to display the solution visible in Figure 51(b) and then use FEMIntegrate() to
determine the L2–error ∫∫

Ω

|u(x, y)− uexact(x, y)|2 dA

1/2

.

-0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

(a) the mesh

0

0.2

0.4

0
0.5

1
y

2
1.5

u

1 1.5

0.6

x 0.5

0.8

0 2

1

-0.5

(b) the solution

Figure 51: Difference to the exact solution of a BVP
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DeformVariableCoeff.m
clear *
h = 0.1
function xy_new = Deform(xy)
xy_new = [xy(:,1).*cos(xy(:,2)), xy(:,1).*sin(xy(:,2))];

endfunction

function u = f_u_exact(xy)
u = exp(-2*xy(:,2));

endfunction

function u = f_DDu_exact(xy)
u = -4*(1+xy(:,1).ˆ2).*exp(-2*xy(:,2));

endfunction

function a = f_a(xy)
a = 1 + xy(:,1).ˆ2;

endfunction

FEMmesh = CreateMeshTriangle(’Test’,[1,0,-1;2,0,-1;2,pi/2,-2;1,pi/2,-1],hˆ2);
FEMmesh = MeshDeform(FEMmesh,’Deform’);
figure(1); FEMtrimesh(FEMmesh)
FEMmesh = MeshUpgrade(FEMmesh,’cubic’);
u = BVP2Dsym(FEMmesh,’f_a’,0,’f_DDu_exact’,’f_u_exact’,0,0);
figure(2); FEMtrimesh(FEMmesh,u)

xlabel(’x’); ylabel(’y’); zlabel(’u’); view([-150,30])
u_exact = f_u_exact(FEMmesh.nodes);
L2Error = sqrt(FEMIntegrate(FEMmesh,(u-u_exact).ˆ2))
-->
L2Error = 3.3205e-06

8.2 An animated wave

With a narrow Gauss bell surface around (x, y) ≈ (1, 0) as initial value and zero initial velocity observe the
waves traveling away from the initial location and the different types of reflections at the boundaries. Figure 52
shows the final status.

WaveAnimation.m
if 0 %% linear elements
FEMmesh = CreateMeshRect(linspace(0,pi,101),linspace(-pi,pi,101),-1,-2,-2,-2);

else %% quadratic elements
FEMmesh = CreateMeshRect(linspace(0,pi,51),linspace(-pi,pi,51),-1,-2,-2,-2);
FEMmesh = MeshUpgrade(FEMmesh);

endif
x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);

m=1; alpha=0.0; a=1; b0=0; bx=0; by=0; f=0; gD=0; gN1=0; gN2=0;
t0=0; tend=3 ; steps = [150,10];

u0 = exp(-25*((x-1).ˆ2+(y-0).ˆ2));
v0 = zeros(length(FEMmesh.nodes),1);
[u_dyn,t] = I2BVP2D(FEMmesh,m,alpha,a,b0,bx,by,f,gD,gN1,gN2,u0,v0,t0,tend,steps);

figure(1) % show animation
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for t_ii = 1:length(t)
FEMtrimesh(FEMmesh,u_dyn(:,t_ii))
axis([0 pi -pi pi -0.2 0.4]); xlabel(’x’); ylabel(’y’)
drawnow();

endfor

Figure 52: Traveling waves on a rectangle

8.3 An elliptic problem with radial symmetry, superconvergence

The Bessel function
u(x, y) = f(x, y) = J0(

√
x2 + y2)

is a solution of the BVP
−∆u+ u = 2 f for 0 < x, y < 1

u = f for (1, y) and (x, 1)
∂ u
∂n = 0 for (0, y) and (x, 0)

.

A solution is shown in Figure 53. This BVP is solved by two slightly different approaches, and then the difference
to the known exact solution displayed in Figure 54. In both cases first a mesh with linear element is generated,
then upgraded to a mesh with quadratic elements, using MeshUpgrade(). Then a mesh with identical nodes
and DOF with linear elements is generated by MeshQuad2Linear().

1. Use a uniform mesh generated by CreateMeshRect, leading to 400 degrees of freedom. The result in
Figure 54(a) shows the effect of super-convergence. Caused by the extremely regular structure of the grid
points the differences are smaller than can reasonably be expected.

2. Use a non-uniform mesh generated by CreateMeshTriangle, leading to 432 degrees of freedom. Thus
one expects to obtain similar accuracy. The result in Figure 54(b) confirms this.
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x y

0.5

0.6
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0.8

0.9

0.2
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0.8
0

exact solution

0.4 0.6

1

0.6 0.4
0.8 0.2

1 0

Figure 53: The radial Bessel function as solution of a BVP

N = 10; Triangle = 1
if Triangle
FEMmesh = CreateMeshTriangle(’test1’,[0 0 -2;1 0 -1; 1 1 -1; 0 1 -2],0.75/Nˆ2);
FEMmesh = MeshUpgrade(FEMmesh);
FEMmesh1 = MeshQuad2Linear(FEMmesh);
nDOFTri = [FEMmesh.nDOF, FEMmesh1.nDOF]

else
FEMmesh = CreateMeshRect(linspace(0,1,N+1),linspace(0,1,N+1),-2,-1,-2,-1);
FEMmesh = MeshUpgrade(FEMmesh);
FEMmesh1 = MeshQuad2Linear(FEMmesh);
nDOFRect = [FEMmesh.nDOF, FEMmesh1.nDOF]

endif

x y
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-2e-06

0 1

-1e-06

0

1e-06

2e-06

0.8

error, quadratic elements

0.2
0.4 0.6

3e-06

0.6 0.4
0.8 0.2

1 0

(a) uniform grid

yx

-4e-06

-2e-06

0

2e-06

0
0.2

1
0.8

error, quadratic elements

4e-06

0.4 0.6

6e-06

0.6 0.4
0.8 0.2

1 0

(b) nonumiform grid

Figure 54: Difference to the exact solution of a BVP

To generate Figure 55 the command FEMgriddata() is used to evaluate the functions on a much finer grid
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(not recomputing, just evaluation) and then display the difference between the approximate and exact solution.
This figure illustrates that the effect of superconvergence does not provide additional accuracy one can reliably
count on.

(a) uniform grid (b) nonumiform grid

Figure 55: Difference to the exact solution of a BVP, using quadratic elements and interpolation to a finer grid.

The gradient of this solution u can be determined using ∂
∂r J0(r) = −J1(r) and(

∂ u
∂x
∂ u
∂y

)
=

(
cosϕ

sinϕ

)
∂ u

∂r
+

(
− sinϕ

cosϕ

)
∂ u

∂ϕ
= −

(
cosϕ

sinϕ

)
J1(r) .

Using the above FEM results compare the true partial derivative ∂ u
∂x with the one obtained by FEM with second

order elements. Find the result in Figure 56. Observe the structure of the difference for the uniform mesh.

x y
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error u
x
, quadratic elements

0.2
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0.6 0.4
0.8 0.2

1 0

(a) uniform grid
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1 0

(b) nonumiform grid

Figure 56: Difference of ∂ u
∂x to the exact solution, using second order elements
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The above can be repeated using first order elements, leading to Figure 57. The size of the elements was set
such that the same number of degrees of freedom are used. Observe that superconvergence strikes again. In this
case I have a solid argument for the structural difference along the border.

x y
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(a) uniform grid

yx

-0.015

-0.01

-0.005

0

0.005

0.2 0.8
1

error u
x
, linear elements

0
0.4 0.6

0.01

0.6 0.4
0.8 0.2

1 0

(b) nonumiform grid

Figure 57: Difference of ∂ u
∂x to the exact solution, using first order elements

Find more information on superconvergence in [Zien13, §15.2] or a short demo in [Stah08, §6.8.2].

8.4 An example with limited regularity

Let Ω ∈ R2 be the unit square −1 < x, y < 1, with the fourth quadrant (x > 0, y < 0) cut out. For some of the
calculations identify (x, y) ∈ R2 with z = x+ i y ∈ C. Examine the functions

w(z) = z2/3 =
(
r eiϕ

)2/3
= r2/3 eiϕ 2/3 = r2/3 (cos(ϕ 2/3) + i sin(ϕ 2/3))

u(z) = r2/3 sin(ϕ 2/3)

u(x, y) = (x2 + y2)1/3 sin(
2

3
atan2(y, x))

This function satisfies −∆u = 0 and u(t, 0) = u(0,−t) = 0 for t > 0. Since ∂
∂r u = 2

3 r
−1/3 sin(23 ϕ) and

∂
∂ϕ u = 2

3 r
2/3 cos(23 ϕ) the partial derivatives of this function have a singularity at the origin. Compute

∥∇u∥2 = |∂ u

∂r
|2 + |1

r

∂ u

∂ϕ
|2 =

4

9
r−2/3 +

4

9

1

r2
cos2(

2

3
ϕ)∫∫

Ω

∥∇u∥2 dA =
4

9

∫ 1

0

(∫ 3π/2

0
r−2/3 + r−2 cos2(

2

3
ϕ) dϕ

)
r dr

=
4

9

∫ 1

0

(
3π

2
r−2/3 + r−2 3π

4

)
r dr =

2π

3

∫ 1

0
r1/3 dr +

π

3

∫ 1

0

1

r
dr = ∞

to observe that the gradient is not bounded in the L2 sense. Thus the standard error estimates based on Céa’s
Lemma do not apply. Expect approximation and convergence problems close to the origin. This is confirmed by
the code below and the resulting Figure 58. This example illustrates that non-convex domains with sharp corners
might cause convergence problems.

SingularDisc.m
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x_p = [0;1;1;-1;-1;0]; y_p = [0;0;1;1;-1;-1];

FEMmesh = CreateMeshTriangle("circle34",[x_p,y_p,-ones(size(x_p))], 0.01);
FEMmesh = MeshUpgrade(FEMmesh);

function res = gD(xy)
phi = mod(atan2(xy(:,2),xy(:,1)),2*pi);
res = (xy(:,1).ˆ2+ xy(:,2).ˆ2).ˆ(1/3).*sin(2/3*phi);

endfunction

u = BVP2Dsym(FEMmesh,1,0,0,’gD’,0,0);
figure(1); FEMtrimesh(FEMmesh,u);

xlabel("x"); ylabel("y"); title(’FEM solution’); view([30,30])

u_exact = gD(FEMmesh.nodes);
figure(2); FEMtrimesh(FEMmesh,-u+u_exact);
xlabel("x"); ylabel("y"); title(’Error of FEM solution’); view([30,30])
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Figure 58: A solution with singular partial derivatives at the origin

The gradient in Cartesian coordinates can be determined by(
∂ u
∂x
∂ u
∂y

)
=

(
cosϕ

sinϕ

)
∂ u

∂r
+

(
− sinϕ

cosϕ

)
∂ u

∂ϕ

=

(
cosϕ

sinϕ

)
2

3
r−1/3 sin(ϕ 2/3) +

(
− sinϕ

cosϕ

)
2

3
r+2/3 cos(ϕ 2/3)

and then visualized, leading to Figure 59. It is clearly visible that the FEM solution is not accurate where the
gradient has a singularity.

[ux,uy] = FEMEvaluateGradient(FEMmesh,u);
figure(3); FEMtrimesh(FEMmesh,ux);

xlabel("x"); ylabel("y"); title(’FEM solution, u_x’); view([30,30])

figure(4); FEMtrimesh(FEMmesh,uy);
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xlabel("x"); ylabel("y"); title(’FEM solution, u_y’); view([30,30])

figure(5); FEMtrimesh(FEMmesh,sqrt(ux.ˆ2+uy.ˆ2));
xlabel("x"); ylabel("y"); title(’FEM solution, norm of gradient’);
view([30,30])
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Figure 59: A solution with singular partial derivatives, graphs of ∂ u
∂x and ∥∇u∥

8.5 A potential flow problem

Consider a laminar flow between two plates with an obstacle between the two plates. Assume that the situation
is independent on one of the spatial variables and consider a cross section only shown in Figure 60. The goal is
to find the velocity field v⃗ of the fluid.
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Figure 60: Fluid flow between two plates, the setup

This problem is solved by introducing a velocity potential Φ(x, y). The velocity vector v⃗ is then given by

v⃗ =

(
vx

vy

)
= −

(
∂ Φ
∂x
∂ Φ
∂y

)
.

The flow is assumed to be uniform far away from the obstacle. Thus set the potential to Φ = 1 (resp. Φ = 0) at
the left (resp. right) end of the plates. Since the fluid can not flow through the boundaries of the plates use that
the normal component of the velocity has to vanish at the upper and lower boundary. The differential equation to
be satisfied by Φ is

∆Φ = div (gradΦ) = 0
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In Figure 61 the resulting flow is visualized. Observe the unrealistic velocities at the corners of the domain. The
model of laminar flow is not appropriate in this situation. Selecting a finer mesh is no solution to this problem.
Mathematically the effect is related to the effect illustrated in Section 8.4.
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Figure 61: Velocity field of a ideal fluid

The results are generated by the code below.

PotentialFlow.m
%% define the domain
xy = [0 0 -2; 5 0 -1;5 2 -2; 3 2 -2; 3 0.5 -2; 2 0.5 -2; 1 2 -2; 0 2 -1];
if 1 %% linear elements
FEMmesh = CreateMeshTriangle(’PotentialFlow’,xy,0.003);

elseif 1 %% quadratic elements
FEMmesh = CreateMeshTriangle(’PotentialFlow’,xy,4*0.003);
FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);

else %% cubic elements
FEMmesh = CreateMeshTriangle(’PotentialFlow’,xy,9*0.003);
FEMmesh = MeshUpgrade(FEMmesh,’cubic’);

endif
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x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
function res = gD(xy) res = 1-xy(:,1)/5; endfunction
u = BVP2Dsym(FEMmesh,1,0,0,’gD’,0,0);
figure(1); FEMtrimesh(FEMmesh,u)

xlabel(’x’); ylabel(’y’); zlabel(’potential’)

[xx,yy] = meshgrid(linspace(0,5-0.01,25),linspace(0,2-0.01,21));
[u_int,ux_int,uy_int] = FEMgriddata(FEMmesh,-u, xx, yy);

figure(2); quiver(xx,yy,ux_int,uy_int)
xlabel(’x’); ylabel(’y’);
hold on; plot([xy(:,1);0],[xy(:,2);0],’k’); hold off; axis equal

xx = linspace(0,5,101); yy = 0.25*ones(101,1);
[u_int,ux_int,uy_int] = FEMgriddata(FEMmesh,-u,xx,yy);
figure(3); plot(xx,ux_int)

xlabel(’x’); ylabel(’horizontal velocity’); ylim([0 0.5])

[ux,uy] = FEMEvaluateGradient(FEMmesh,u);
figure(4); FEMtrimesh(FEMmesh,sqrt(ux.ˆ2+ uy.ˆ2))

xlabel(’x’); ylabel(’y’); zlabel(’v=|grad u|’); zlim([0 0.5])

figure(5); FEMtricontour(FEMmesh,sqrt(ux.ˆ2+ uy.ˆ2),21)
xlabel(’x’); ylabel(’y’); zlabel(’| grad u|’)
hold on; plot([xy(:,1);0],[xy(:,2);0],’k’); hold off
xlim([0 5]); ylim([0 2]); axis equal

By integrating the horizontal velocities along vertical cuts observe the flux conservation, i.e whats coming in
on the left has to flow through the canal and leave on the right.

flux at inlet x = 0.0 ≈ 0.18337

flux in middle x = 2.5 ≈ 0.18328

flux at outlet x = 5.0 ≈ 0.18333

Selecting a finer mesh or using quadratic elements will make the differences smaller.

yy = linspace(0,2); xx = zeros(size(yy));
vx = FEMgriddata(FEMmesh,-ux, xx, yy); Flux_inlet_ = trapz(yy,vx)
yy = linspace(0,0.5); xx = 2.5*ones(size(yy));
vx = FEMgriddata(FEMmesh,-ux,xx,yy); Flux_middle = trapz(yy,vx)
yy = linspace(0,2); xx = 5*ones(size(yy));
vx = FEMgriddata(FEMmesh,-ux, xx, yy); Flux_outlet = trapz(yy,vx)

8.6 A potential flow problem in a circular pipe

An ideal liquid is flowing through a circular pipe with diminished radius in a central section. The outer radius is
given by

R(z) =

{
2 for |z| ≥ 1

2− cos2(π2 z) for |z| ≤ 1
.
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The upper half of a section is visible in Figure 62. Assuming that the solution is independent on the angle θ the
equation ∆Φ = 0 has to be reformulated in cylindrical coordinates and simplified.

0 = ∆Φ = div(gradΦ) = Φrr +
1

r
Φr +

1

r2
Φθθ +Φzz

0 = r

(
Φrr +

1

r
Φr +Φzz

)
= rΦrr +Φr + rΦzz =

∂

∂r
(rΦr) +

∂

∂z
(rΦz) .

Setting Φ = +1 at the left edge and Φ = −1 at the right edge, the BVP can be solved for the potential Φ(z, r)
with the help of FEMoctave. The velocity vector is again given by the gradient

v⃗ =

(
vz

vr

)
= −

(
∂ Φ
∂z
∂ Φ
∂r

)
.

Observe that there are no singularities for the velocities, compared to the previous section 8.5, since there are no
sharp corners in the domain.
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Figure 62: Velocity field of a ideal fluid in a circular pipe
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PotentialFlowCircular.m
%% define the domain and mesh
R = 2; R_in = 1.0; area = 0.001;
z = linspace(-1+sqrt(area),1-sqrt(area),21)’; r = R-R_in*cos(pi/2*z).ˆ2; b = -2*ones(size(z));
zr = [-2 0 -1; -2 R -2; -1 R -2; [z,r,b]; 1 R -2; 2 R -1; 2 0 -2];
if 0 %% linear elements
FEMmesh = CreateMeshTriangle(’PotentialFlow’,zr,area);

elseif 0 %% quadratic elements
FEMmesh = CreateMeshTriangle(’PotentialFlow’,zr,4*area);
FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);

else %% cubic elements
FEMmesh = CreateMeshTriangle(’PotentialFlow’,zr,9*area);
FEMmesh = MeshUpgrade(FEMmesh,’cubic’);

endif

z = FEMmesh.nodes(:,1); z = FEMmesh.nodes(:,2);
function res = gD(zr) res = -zr(:,1)/2; endfunction
function res = a_coeff(zr) res = zr(:,2); endfunction

u = BVP2Dsym(FEMmesh,’a_coeff’,0,0,’gD’,0,0);

[zz,rr] = meshgrid(linspace(-2,2-0.01,35),linspace(0,R-0.01,41));
[u_int,uz_int,ur_int] = FEMgriddata(FEMmesh,-u, zz, rr);

figure(1); quiver(zz,rr,uz_int,ur_int)
xlabel(’z’); ylabel(’r’);
hold on; plot([zr(:,1);-2],[zr(:,2);0],’k’); hold off
xlim([-2,2]); ylim([0,R]);

[uz,ur] = FEMEvaluateGradient(FEMmesh,u);
figure(2); FEMtrimesh(FEMmesh,sqrt(uz.ˆ2+ ur.ˆ2))

xlabel(’z’); ylabel(’r’); zlabel(’v=|grad u|’)
zlim([0 1]); caxis([0,1])

zz = linspace(-2,2,101); rr = 0.5*ones(101,1);
[u_int,uz_int,ur_int] = FEMgriddata(FEMmesh,-u,zz,rr);
figure(3); plot(zz,uz_int)

xlabel(’z’); ylabel(’horizontal velocity’);
ylim([0 1.1*max(uz_int)]

figure(4); FEMtricontour(FEMmesh,sqrt(uz.ˆ2+ ur.ˆ2),31)
xlabel(’z’); ylabel(’r’); zlabel(’|grad u|’)
hold on; plot([zr(:,1);-2],[zr(:,2);0],’k’); hold off
xlim([-2 2]); ylim([0 R]); axis equal

The total flux accross a vertical line z = const can be determined by the integral

flux =

∫ R(z)

0
vz(r, z) 2π r dr = 2π

∫ R(z)

0
−∂ Φ(z, r)

∂z
r dr .

rr = linspace(0,R); zz = -1.9*ones(size(rr));
vz = FEMgriddata(FEMmesh,-uz, zz, rr);
Flux_inlet = trapz(rr,rr.*vz)*2*pi
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rr = linspace(0,R-R_in); zz = 0*ones(size(rr));
vz = FEMgriddata(FEMmesh,-uz,zz,rr);
Flux_middle = trapz(rr,rr.*vz)*2*pi
rr = linspace(0,R); zz = 1.9*ones(size(rr));
vz = FEMgriddata(FEMmesh,-uz, zz, rr);
Flux_outlet = trapz(rr,rr.*vz)*2*pi
-->
Flux_inlet = 3.3115
Flux_middle = 3.2897
Flux_outlet = 3.3115

The accurracy of the numerical results

flux at inlet z = −1.9 ≈ 3.3115

flux in middle x = +0.0 ≈ 3.2897

flux at outlet x = +1.9 ≈ 3.3115

could be improved by a finer mesh. This would verify the conservation of flux at different z–levels.

8.7 A minimal surface problem

Let u(x, y) be the hight of a surface above the border of a 2-dimensional domain Ω is given by a function g(x, y).
Then the function u representing the surface of minimal with has to solve a nonlinear PDE.

div(
1√

1 + | gradu|2
gradu) = 0 in domain Ω

u = g on Γ = ∂Ω

This software is not directly capable of solving non linear problems, but a simple iteration will lead to an
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Figure 63: A minimal surface

approximation of the solution.
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• start with an initial solution u0(x, y) = 0

• repeat until the change in solution is small enough

– compute the coefficient function

a(x, y) =
1√

1 + |∇u(x, y)|2

– Solve the boundary value problem

div(a(x, y) gradu) = 0 in domain Ω

u = g on Γ = ∂Ω

The code below implements this algorithm for a square Ω and leads to the result in Figure 63. While iterating the
area of each surface is determined by integrating

area =

∫∫
Ω

√
1 + |∇u|2 dA

and the average difference of subsequent solutions is computed.

MinimalSurface.m
xy = [1,0,-1;0,1,-1;-1,0,-1;0,-1,-1];
FEMmesh = CreateMeshTriangle("square",xy,0.01);
%FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);

x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
function res = BC(xy) res = abs(xy(:,1)); endfunction

u = BVP2Dsym(FEMmesh,1,0,0,’BC’,0,0);
difference = zeros(5,1); area = difference;
for ii = 1:5
[˜,grad] = FEMEvaluateGP(FEMmesh,u);
coeff = sqrt(1+grad(:,1).ˆ2+ grad(:,2).ˆ2);
area(ii) = FEMIntegrate(FEMmesh,coeff);
u_new = BVP2Dsym(FEMmesh,coeff,0,0,’BC’,0,0);
difference(ii) = mean(abs(u_new-u));
u = u_new;

endfor

Area_Difference = [area,difference]
figure(1); FEMtrisurf(FEMmesh,x,y,u)

xlabel(’x’); ylabel(’y’); zlabel(’z’)
-->
Area_Difference = 2.30454229746 0.00271116350

2.30609424101 0.00030136719
2.30586894444 0.00003705316
2.30589632291 0.00000508928
2.30589260378 0.00000078521

By choosing quadratic or cubic elements, or a finer mesh, one can observe the the computed minimal area
will be smaller. This should not come as a surprise, the better the resolution, the smaller the minimal area.
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8.8 Computing a capacitance

8.8.1 State the problem

Examine a circular plate capacitance as shown in Figure 64. Based on the radial symmetry one should be able to
consider a two dimensional section only for the computations.
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Figure 64: The capacitance and the section used for the modeling

Consider the voltage u as unknown. On the upper conductor assume u = 1 and on the lower conductor
u = −1. Based on the symmetry consider a section only and use u = 0 in the plane centered between the
conductors. Use the Laplace operator in cylindrical coordinates. Thus the following boundary value problem has
to be solved.

div(x gradu(x, y)) = 0 in domain

u(x, 0) = 0 along edge y = 0

u(x, y) = 1 along edges of upper conductor
∂
∂n u(x, y) = 0 on remaining boundary

(50)

Assume that the domain is embedded in the rectangle 0 ≤ x ≤ R and 0 ≤ y ≤ H . The lower edge of the
conductor is at y = h and 0 ≤ x ≤ r. If h ≪ r expect the gradient of u to be 1/h between the plates and zero
away from the plates. Thus

flux =

∫∫
disk

n⃗ · gradu dA = 2π

∫ R

0
x
∂ u

∂y
dx ≈ 2π

∫ r

0
x
1

h
dx =

π r2

h
.

Because the electric field will not be homogeneous around the boundaries of the disk expect deviations from the
result of an idealized circular disk. With the divergence theorem and a physical argument one can verify that
the flux trough the midplane is proportional to the capacitance. By applying the following steps compute the
capacitance by analyzing the solution of a boundary value problem.

1. Create a mesh for the domain in question.

2. Define parameters and boundary conditions.

3. Solve the partial differential equation and visualize the solution.

4. Compute the flux through the midplane as an integral to determine the capacitance.

8.8.2 Create the mesh and solve the BVP

According to Figure 64 create a mesh with the following data.
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h = 0.2 distance between midplane and lower edge of capacitance

r = 1.0 radius of disk of the capacitance

H = 0.5 height of the enclosing rectangle

R = 2.5 radius of the enclosing rectangle

As input for the mesh generating code triangle (see [www:triangle]) use

• the coordinates of the corner points, numbered according to Figure 64

• a list of all the connecting edges and the type of boundary conditions to be used

• information of the desired area of the triangles to be generated

Then use two different sizes of the triangles since a finer mesh between the plates is required, expecting large
variations in the solution. The file capacitance.poly provides this information. The numbering of the
nodes is visible in Figure 64. With the above use the program triangle to generate a mesh.

triangle -pqa capacitance.poly

The mesh consists of 2189 nodes, forming 4036 triangles.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

Figure 65: A mesh on the domain
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Figure 66: The contour lines of the resulting voltage

To solve the BVP (50) one needs a definition of the coefficient function and the Dirichlet boundary function.
Then set up and solve the system of linear equations. This leads to a system for 1937 unknowns. Now generate a
plot of the voltage u(x, y) and its level curves. Find the results in Figure 67.
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Figure 67: Voltage plot and electric field between the plates of the capacitance

8.8.3 Compute the capacitance

It remains to compute the flux through the midplane. For this start out by computing the gradient of the voltage
u along the line y = 0. Find the plot of the normal component in Figure 67. The graph confirms that between the
plates the gradient is approximately 1/h = 1/0.2 = 5 and vanishes away from the plate. Then a trapezoidal rule
is used to determine the flux accross the midplane with the integral.

flux =

∫∫
disk

n⃗ · gradu dA = 2π

∫ R

0
x
∂ u

∂y
dx

For the selected values of h, H , r and R obtain a factor of 1.5 between result of the boundary value problem and
the idealized approximation π r2/h. Thus the simple formula is not a good approximation, the distance h is too
large compared to the radius r.

Capacitance.m
FEMmesh = ReadMeshTriangle(’capacitance.1’);
%% FEMmesh = MeshUpgrade(FEMmesh,’quadratic’); %% uncomment fora quadratic mesh
figure(1); FEMtrimesh(FEMmesh) %% display the generated mesh

function res = a(xy) res = xy(:,1); endfunction
function res = Volt(xy) res = xy(:,2)>0.1; endfunction

u = BVP2Dsym(FEMmesh,’a’,0,0,’Volt’,0,0);
figure(2); FEMtrimesh(FEMmesh,u);

view([38,48]); xlabel(’radius r’); ylabel(’height z’); zlabel(’voltage’)
figure(3); FEMtricontour(FEMmesh,u,21);

xlabel(’radius r’); ylabel(’height z’);

[ux,uy] = FEMEvaluateGradient(FEMmesh,u);
xi = linspace(0,2.5,101)’; yi = zeros(101,1);
uy_i = FEMgriddata(FEMmesh,uy,xi,yi);
figure(4); plot(xi,uy_i)

xlabel(’radius r’); ylabel(’u_z’); ylim([-1,6])
Integral = [2*pi*trapz(xi,xi.*uy_i), pi*1ˆ2/0.2]
-->
Integral = 23.782 15.708
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8.9 Torsion of beams, Prandtl stress function

Examine the torsion of a shaft with constant cross section. Based on a few assumtions determine the deformation
of the shaft under torsion. The problem is presented in [VarFEM] and more detailed in [Sout73, §12].
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Figure 68: Torsion of a shaft

8.9.1 The setup with the warp function and the Prandtl stress function

Consider a vertical shaft with constant cross section. The centers of gravity of the cross section are along the
z axis and the bottom of the shaft is fixed. The top surface is twisted by a total torque T . The situation of a
circular cross section is shown in Figure 68. There is no exact specification of the forces and twisting moments
applied to the two ends. Based on Saint-Venant principle (see [Sout73, §5.6]) assume that the stress distribution
in the cross sections does not depend on z, except very close to the two ends. The twisting leads to a rotation of
each cross section by an angle β where β = z · α. The constant α is a measure of the change of angle per unit
length of the shaft. Its value α has to be determined, using the moment T . Based on this determine the horizontal
displacements for small angles β by the right part of Figure 68 and a linear approximation

u1(x, y) = r cos(β + θ)− r cos(θ) ≈ −β r sin θ = −y β = −y z α
u2(x, y) = r sin(β + θ)− r sin(θ) ≈ +β r cos θ = +xβ = +x z α

.

It is assumed that the vertical displacement is independent of z and given by a warping function ϕ(x, y). This
leads to the displacements

u1 = −y z α , u2 = x z α , u3 = αϕ(x, y)

and thus the strain components

εxx = εyy = εzz = εxy = 0 , εxz = −
1

2
α y +

1

2
α
∂ ϕ

∂x
, εyz =

1

2
αx+

1

2
α
∂ ϕ

∂y
.

Using Hooke’s law find the stress components

σx = σy = σz = τxy = 0 , τxz =
E α

2 (1 + ν)
(−y + ∂ ϕ

∂x
) , τyz =

E α

2 (1 + ν)
(x+

∂ ϕ

∂y
) .
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The problem is neither plane stress (τxz ̸= 0, τyz ̸= 0) nor plane strain (ϕ ̸= 0). Using the stresses determine the
horizontal forces and the torsion along a hypothetical horizontal cross section. Since the origin is the center of
gravity of the cross section Ω the first moments vanish and

T =

∫∫
Ω

x τyz − y τyz dA =
E α

2 (1 + ν)

∫∫
Ω

x (x+
∂ ϕ

∂y
)− y (−y + ∂ ϕ

∂x
) dA

=
E α

2 (1 + ν)

∫∫
Ω

x2 + y2 + x
∂ ϕ

∂y
− y

∂ ϕ

∂x
dA =

E α

1 + ν
J .

Using the torsional rigidity J with

J =

∫∫
Ω

x2 + y2 + x
∂ ϕ

∂y
− y

∂ ϕ

∂x
dA

determine the constant α by

α =
2 (1 + ν)

J E
T

and thus for a shaft of height H the total change of angle β as

β = H · α =
2 (1 + ν)

J E
H · T .

The only difficult part is to determine the function ϕ, then J is determined by an integration.

The above computations allow to compute the energy E in one cross section Ω by

E =

∫∫
Ω

σxz τxz + σyz τyz dA =
E α2

4 (1 + ν)

∫∫
Ω

(−y + ∂ ϕ

∂x
)2 + (x+

∂ ϕ

∂y
)2 dA

=
E α2

4 (1 + ν)

∫∫
Ω

(
∂ ϕ

∂x
)2 + (

∂ ϕ

∂y
)2 − 2 y

∂ ϕ

∂x
+ 2x

∂ ϕ

∂y
+ x2 + y2 dA .

The warp function ϕ has to minimize this expression. Using calculus of variations (e.g. [VarFEM]) one can show
that ϕ has to solve the boundary value problem

div (∇ϕ) = ∆ϕ = 0 in the cross section Ω

n⃗ · ∇ϕ =

(
y

−x

)
· n⃗ on the boundary ∂Ω

. (51)

Since the stress components are given by

σx = σy = σz = τxy = 0 , τxz =
E α

2 (1 + ν)
(−y + ∂ ϕ

∂x
) , τyz =

E α

2 (1 + ν)
(x+

∂ ϕ

∂y
)

the boundary condition can be written as (
τxz

τyz

)
· n⃗ = 0 .

This equation implies that there is no stress on the lateral surface of the shaft. This condition is consistent with
the mechanical setup.
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The Prandtl stress funktion χ is characterized by

∂χ

∂y
= −y + ∂ϕ

∂x
=

2 (1 + ν)

E α
τxz and − ∂χ

∂x
= x+

∂ϕ

∂y
=

2 (1 + ν)

E α
τyz .

By differentiating the above equations by y (resp. x) and subtracting and using ∂
∂x

∂ ϕ
∂y = ∂

∂y
∂ ϕ
∂x find

∆χ =
∂2χ

∂x2
+

∂2χ

∂y2
= −2 .

To determine the boundary conditions for χ assume that there are no external forces on the boundary.(
τxz

τyz

)
· n⃗ = 0 =⇒

(
∂ χ
∂y

−∂ χ
∂x

)
· n⃗ = ∇χ · t⃗ = 0 ,

where t⃗ is a tangential vector of the boundary curve. Assuming that there are no holes21, this implies that one can
work with χ = 0 on the boundary Γ. Thus the Pandtl stress function is a solution of the boundary value problem

−∆χ = 2 in Ω

χ = 0 on Γ
. (52)

The torsional rigidity is determined by

J =

∫∫
Ω

x2 + y2 + x (−∂ χ

∂x
− x)− y (+

∂ χ

∂y
+ y) dA = −

∫∫
Ω

x
∂ χ

∂x
+ y

∂ χ

∂y
dA

For ductile materials the von Mises stress indicates the possible fractures in the material. In this case it is given
by

σvM =

√
3

2
(τ2xz + τ2yz) =

E α

2 (1 + ν)

√
3

2

√
(
∂ χ

∂x
)2 + (

∂ χ

∂y
)2 =

E α

2 (1 + ν)

√
3

2
∥∇χ∥ .

8.9.2 On a disk with radius R

On a disk with radius R the solution is given by χ(x, y) = 1
2 (R

2 − x2 − y2). Thus the nonzero stresses are

τxz = +
E α

2 (1 + ν)

∂ χ

∂y
= − E α

2 (1 + ν)
y and τyz = −

E α

2 (1 + ν)

∂ χ

∂x
= +

E α

2 (1 + ν)
x .

The BVP (51) for the warp function ϕ is

div (∇ϕ) = ∆ϕ = 0 in the cross section Ω

n⃗ · ∇ϕ = 1√
x2+y2

(
y

−x

)
·

(
x

y

)
= 0 on the boundary ∂Ω

with the unique solution ϕ(x, y) = 0, i.e. no warping. The torsional rigidity is given by

J =

∫∫
Ω

x2 + y2 dA = 2π

∫
0
r2 r dr =

π

2
R4

and the von Mises stress is given by

σvM =
E α

2 (1 + ν)

√
3

2

√
(
∂ χ

∂x
)2 + (

∂ χ

∂y
)2 =

E α

2 (1 + ν)

√
3

2

√
x2 + y2 =

E α

2 (1 + ν)

√
3

2
r .

21This restriction can be removed.
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8.9.3 On a square

To examine the stiffness of a square cross section with a circular cross section examine a square with the same
area as a circle with radius R = 1. Thus the length of a side is

√
π ≈ 1.77. The code below solves the boundary

value problem (52) and then computes the torsional rigidity by integrating

J = −
∫∫
Ω

x
∂ χ

∂x
+ y

∂ χ

∂y
dA .

The numerical result of J ≈ 1.39 has to be compared to the result of J = π
2 ≈ 1.57 for the disk with Radius 1.

Thus the square cross section leads to less torsional rigidity. Then examine the von Mises stress by plotting

f(x, y) =

√
(
∂ χ

∂x
)2 + (

∂ χ

∂y
)2 = ∥∇χ∥ .

Find the result in Figure 69(a). The maximal value of ≈ 1.20 is larger than the maximal value 1 for the disk.
Thus for the same twisting angle the square is exposed to a larger von Mises stress.
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(b) on a rectangle

Figure 69: The von Mises stress caused by torsion of a bar with square or rectangular cross section

TorsionSquare.m
N = 10;
l = sqrt(pi)/2; al = 1; %% al = sqrt(2); % use this for the rectangle
Mesh = CreateMeshTriangle(’Torsion’,...
[-al*l -1/al*l -1; al*l -1/al*l -1; al*l 1/al*l -1; -al*l 1/al*l -1],pi/2/Nˆ2);
Mesh = MeshUpgrade(Mesh,’quadratic’);

chi = BVP2Dsym(Mesh,1,0,2,0,0,0);

[chiGP,gradChi] = FEMEvaluateGP(Mesh,chi);
xGP = Mesh.GP(:,1); yGP = Mesh.GP(:,2);
f = xGP.*gradChi(:,1) + yGP.*gradChi(:,2);
J = FEMIntegrate(Mesh,-f)

[chi_x,chi_y] = FEMEvaluateGradient(Mesh,chi);
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figure(1); FEMtrisurf(Mesh,sqrt(chi_x.ˆ2 + chi_y.ˆ2))
xlabel(’x’); ylabel(’y’);

-->
J = 1.3873

8.9.4 On a rectangle

The above can be repeated for a rectangle with the same are but a ratio of 2 for the length of the sides. The value
of J ≈ 1.13 indicates that the rectangle is even softer and the maximal von Mises stress of ≈ 1.16 is slightly
smaller than for the square cross section.

8.10 Dynamic heat conduction problems

The dynamic heat equation with a thermal conductivity a(x, y) is of the the given in equation (4). For the
simplified case with no external heating, no convection and the boundary either insulated or at a given temperature
arrive at the initial boundary value problem

∂
∂t u−∇ · (a∇u) = 0 for (x, y, t) ∈ Ω× (0, T ]

u = g for (x, y, t) ∈ Γ1 × (0, T ]

n⃗ · (a∇u) = 0 for (x, y, t) ∈ Γ2 × (0, T ]

u = u0 on Ω at t = 0

. (53)

In Figure 70 the upper half of the domain is shown, at the lower edge the symmetry constraint ∂
∂n u = 0 is used.

Assume insulation on all of the boundary, except the left edge Γ1 at x = 0, where the temperature equals 1 . As
initial temperature we use u0(x, y) = 0 and observe how the domain is warming up as time advances.

0 0.5 1 1.5 2 2.5

0

0.5

1

y

x

Figure 70: The mesh for a dynamic heat problem

8.10.1 With a narrow section in the domain

The first case to be examined uses a narrow section between to bigger sections. The dimension of the narrow
section can be changed by modifying the parameters h = 0.2 and l = 0.5.

• In Figure 71 observed the delayed heating of the section on the right.
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• In Figure 72 the temperature along the edge y = 0 for 0 ≤ x ≤ 2.5 and 0 ≤ t ≤ 10 is shown, as surface
and contour lines.

• In Figure 73 the temerature at the corner (x, y) = (2.5 , 0) is shown as function of time.
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Figure 71: The evolution of the temperature surface at different times
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(b) contours along the edge y = 0

Figure 72: The temperature surface at different times along y = 0

HeatDynamic.m
%% parameters
h = 0.2; l = 0.5; Nt = 60; %% number of time steps
FEMmesh = CreateMeshTriangle(’Test’,...

[0 0,-2; 2+l 0 -2; 2+l 1,-2; 1+l 1 -2; 1+l h -2; 1 h -2; 1 1 -2; 0 1 -1],0.01);
FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);

figure(1); FEMtrimesh(FEMmesh);
axis equal; xlabel(’x’); ylabel(’y’)

[u t] = IBVP2D(FEMmesh,1,1,0, 0, 0, 0,1, 0, 0, 0, 0, 10, [Nt,10]);

figure(2); FEMtrimesh(FEMmesh,u(:,end))
xlabel(’x’); ylabel(’y’); zlim([0,1]); view([10 30]); caxis([0,1]);
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Figure 73: The temperature as function of time at the endpoint (2.5 , 0)

text(0.2,0.2,0.2,sprintf(’t = %4.2f’,t(end))); zlabel(’temperature’)
figure(3); FEMtrimesh(FEMmesh,u(:,Nt/2+1))

xlabel(’x’); ylabel(’y’); zlim([0,1]); view([10 30]); caxis([0,1])
text(0.2,0.2,0.2,sprintf(’t = %4.2f’,t(Nt/2+1))); zlabel(’temperature’)

figure(4); FEMtrimesh(FEMmesh,u(:,Nt/3+1))
xlabel(’x’); ylabel(’y’); zlim([0,1]); view([10 30]); caxis([0,1])
text(0.2,0.2,0.2,sprintf(’t = %4.2f’,t(Nt/5+1))); zlabel(’temperature’)

x = linspace(0,2+l,51); u_int = zeros(size(t,2)-1,size(x,2));
for jj = 2:size(t,2)
u_int(jj-1,:) = FEMgriddata(FEMmesh,u(:,jj),x,zeros(size(x)));

endfor

figure(10); mesh(x,t(2:end),u_int)
xlabel(’x’); ylabel(’t’); zlabel(’temperature at y=0’)

figure(11); [c,h] = contour(x,t(2:end),u_int,[0:0.1:1]);
clabel(c,h);
xlabel(’x’); ylabel(’t’);

figure(12); plot(t(2:end),u_int(:,end))
xlabel(’t’); ylabel(’temperature at x=end and y=0’)

8.10.2 With a section with lower conductivity

On the modified domain visible in Figure 74 in the middle section the conductivity is considerably smaller than
in the two side section, i.e.

a(x, y) =

{
1 for 0 ≤ x ≤ 1 and x ≥ 1.5
1
6 for 1 < x < 1.5

• In Figure 75 observed the delayed heating of the section on the right.

• In Figure 76 the temperature along the edge y = 0 for 0 ≤ x ≤ 2.5 and 0 ≤ t ≤ 10 is shown, as surface
and contour lines.

• In Figure 77 the temperature at the corner (x, y) = (2.5 , 0) is shown as function of time.

Observe the similar, but not identical, behavior of the two cases examined.
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Figure 74: The mesh for a dynamic heat problem
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Figure 75: The evolution of the temperature surface at different times
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Figure 76: The temperature surface at different times along y = 0
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Figure 77: The temperature as function of time at the endpoint (2.5 , 0)

HeatDynamicCoefficient.m
%% parameters
h = 1.2; l = 0.5; Nt = 60; %% number of time steps
FEMmesh = CreateMeshTriangle(’Test’,...

[0 0,-2; 2+l 0 -2; 2+l 1, -2; 1+l 1 -2; 1+l h -2; 1 h -2; 1 1 -2; 0 1 -1],0.01);
FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);
%%FEMmesh = MeshUpgrade(FEMmesh,’cubic’);

figure(1); FEMtrimesh(FEMmesh);
axis equal; xlabel(’x’); ylabel(’y’)

function res = a(xy)
l = 0.5;
res = ones(size(xy,1),1);
res(find(abs(xy(:,1)-1-l/2)<l/2)) *= 1/6;

endfunction

[u t] = IBVP2D(FEMmesh,1,’a’,0, 0, 0, 0,1, 0, 0, 0, 0, 10, [Nt,10]);

figure(2); FEMtrimesh(FEMmesh,u(:,end))
xlabel(’x’); ylabel(’y’); zlim([0,1]); view([10 30]); caxis([0,1]);
text(0.2,0.2,0.2,sprintf(’t = %4.2f’,t(end))); zlabel(’temperature’)

figure(3); FEMtrimesh(FEMmesh,u(:,Nt/2+1))
xlabel(’x’); ylabel(’y’); zlim([0,1]); view([10 30]); caxis([0,1])
text(0.2,0.2,0.2,sprintf(’t = %4.2f’,t(Nt/2+1))); zlabel(’temperature’)

figure(4); FEMtrimesh(FEMmesh,u(:,Nt/3+1))
xlabel(’x’); ylabel(’y’); zlim([0,1]); view([10 30]); caxis([0,1])
text(0.2,0.2,0.2,sprintf(’t = %4.2f’,t(Nt/5+1))); zlabel(’temperature’)

x = linspace(0,2+l,51); u_int = zeros(size(t,2)-1,size(x,2));
for jj = 2:size(t,2)
u_int(jj-1,:) = FEMgriddata(FEMmesh,u(:,jj),x,zeros(size(x)));

endfor

figure(10); mesh(x,t(2:end),u_int)
xlabel(’x’); ylabel(’t’); zlabel(’temperature at y=0’)
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figure(11); [c,h] = contour(x,t(2:end),u_int,[0:0.1:1]);
clabel(c,h);
xlabel(’x’); ylabel(’t’);

figure(12); plot(t(2:end),u_int(:,end))
xlabel(’t’); ylabel(’temperature at x=end and y=0’)

8.10.3 Cooling of a cylinder

Examine a cylinder with elliptical cross section and an initial temperature distribution u0(x, y), independent on z.
The boundary temperature is fixed at 0 . The domain and initial temperature profile are visible in Figure 78. The
selected, nonsymmetric initial temperature is

u0(x, y) = exp(−(x− 0.5)2 − 2 y2) · (4− x2 − y2) .

The initial boundary value problem is solved for times 0 ≤ t ≤ 2. A few snapshots are visible in Figure 79. By
looking at different time slices an animation can be generated.
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Figure 78: The domain and initial temperature
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Figure 79: The temperature at different times
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CylinderCooling.m
R = 2; N = 50; alpha = linspace(0,2*pi*N/(N-1),N)’;
Tend = 2; Nt = 60; %% number of shown time steps
FEMmesh = CreateMeshTriangle(’circle’,[R*cos(alpha),1.5*R*sin(alpha),-ones(size(alpha))],0.1);

figure(1); FEMtrimesh(FEMmesh)
xlabel(’x’) ; ylabel(’y’); axis equal

FEMmesh = MeshUpgrade(FEMmesh,’cubic’);

function res = u_init(xy)
x = xy(:,1); y = xy(:,2);
res = exp(-(x-0.5).ˆ2-2*y.ˆ2) .* (2ˆ2 -x.ˆ2-y.ˆ2);

endfunction

figure(2); FEMtrimesh(FEMmesh,u_init(FEMmesh.nodes))
xlabel(’x’); ylabel(’y’); zlabel(’temperature’);

[u,t] = IBVP2Dsym(FEMmesh,1,1,0, 0, 0, 0, 0, ’u_init’,0, Tend, [Nt,10]);

figure(3); FEMtrimesh(FEMmesh,u(:,Nt/4+1))
xlabel(’x’); ylabel(’y’); zlim([0,1]); view([10 30]); caxis([0,1])
text(-1.8,-2,0.9,sprintf(’t = %4.2f’,t(Nt/4+1))); zlabel(’temperature’)

figure(4); FEMtrimesh(FEMmesh,u(:,Nt/2+1))
xlabel(’x’); ylabel(’y’); zlim([0,1]); view([10 30]); caxis([0,1])
text(-1.8,-2,0.9,sprintf(’t = %4.2f’,t(Nt/2+1))); zlabel(’temperature’)

figure(5); FEMtrimesh(FEMmesh,u(:,3*Nt/4+1))
xlabel(’x’); ylabel(’y’); zlim([0,1]); view([10 30]); caxis([0,1]);
text(-1.8,-2,0.9,sprintf(’t = %4.2f’,t(3*Nt/4+1))); zlabel(’temperature’)

figure(11) %% show the animation
steps = 2;
for jj = 0:30
FEMtrimesh(FEMmesh,u(:,jj*steps+1))
text(-1.8,-2,0.9,sprintf(’t = %4.2f’,t(jj*steps+1))); zlabel(’temperature’)
xlabel(’x’); ylabel(’y’); zlim([0,1]); view([10 30]); caxis([0,1])
pause(0.2)

endfor

Obviously the temperature is decaying as time advances. To examine this behavior determine the tem-
petarures along the center line at y = 0, as function of time. In Figure 80.

x = linspace(-R,R,31); u_center = zeros(length(x),length(t));
for jj = 1:length(t)
u_center(:,jj) = FEMgriddata(FEMmesh,u(:,jj),x,zeros(size(x)));

endfor

figure(21); mesh(t,x,u_center)
xlabel(’time t’); ylabel(’x’); zlabel(’temperatur’)

figure(22); contour(t,x,u_center,51)
xlabel(’time t’); ylabel(’x’);

The decay of the temperature at the center point (0, 0) is visible in Figure 81, with linear and logarithmic
scale. The exponential decay is clearly displayed in the logarithmic scale. This is consistent with the theoretical
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Figure 80: The temperature at different times along y = 0

result

u(t, x, y) =
∞∑
n=1

cn e
−λn t un(x, y) (54)

where λ1 < λ2 ≤ λ3 ≤ λ4... and un(x, y) are the eigenvalues and eigenfunctions of the boundary value problem

−∇ · ∇un = λn u for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ
.

For large times t in equation (54) the first eigenvalue will dominate, i.e.

u(t, x, y) ≈ c1 e
−λ1 t u1(x, y) .

Using the Octave command polyfit() with data from the right section in the logarithmic plot in Figure 81
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Figure 81: The temperature decay at the center (0, 0)

estimate the decay by the exponential exp(−1.06 t). Using BVP2Deig() the exponent is estimated by λ1 ≈
1.04, i.e. rather close to the above result by polyfit(), which indicates

log(u(0, 0, t)) ≈ 0.1556− 1.0638 t or u(0, 0, t) ≈ 1.1684 e−1.0638 t for t large.
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figure(23); plot(t,u_center(16,:))
xlabel(’time t’); ylabel(’temperature at center’)

figure(24); semilogy(t,u_center(16,:))
xlabel(’time t’); ylabel(’temperature at center’)

p = polyfit(t(40:end),log(u_center(16,40:end)),1)
EigVal = BVP2Deig(FEMmesh,1,0,1,0,3)’
-->
p = -1.0638 0.1556
EigVal = 1.0425 2.1314 3.1506

Observe that λ2 ̸= λ3, since the domain is not circular. If the above computations are rerun on a circle of radius
R = 2 obtain λ1 ≈ 1.45 and λ2 = λ3 ≈ 3.68. The first eigenvalue λ1 ≈ 1.45 is larger, thus the cylinder will
cool down faster and the second and third eigenvalues coincide, caused by the circular symmetry of the domain.

8.10.4 Heat waves

In Figure 82 a domain Ω ⊂ R2 is visible. The heat equation (a special case of the IBVP (4)) to be solved is

∂
∂t u(x, y, t)−∆u(x, y, t) = f(x, y, t) for (x, y, t) ∈ Ω× (0, T ]

∂
∂n u(x, y, t) = 0 for (x, y, t) ∈ Γ× (0, T ]

u(x, y, 0) = 0 on Ω

.

The function f(x, y, t) equals cos(0.5π t) for x ≤ −0.9 and zero otherwise. Thus there a periodic excitation
with period 5 at the very left end of the appendix for −1 ≤ x ≤ −0.9.
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Figure 82: The domain for a heat wave propagation

The solution is generated by the command IBVP2D() and then evaluated along the slice at height y = 1 for
different values of the time t, using FEMgriddata(). Find the result in Figure 83.

• In Figure 83(a) the periodic behavior of the temperature is clearly visible.

• In Figure 83(b) observe the phase shift as one moves away from the heat source.

Observe that the behavior of the solution is very different from a wave equation in 8.11, even is the setup is
comparable.
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Figure 83: The propagation of a heat wave

HeatWave.m
l = 1; h = 0.1; L = 4; d = 2; H = 2;
FEMmesh = CreateMeshTriangle(’test’,...

[-l,0,-2;0 0 -2;0,-d,-2;L,-d,-2; L,H,-2;0,H,-2;0,h,-2;-l,h,-2],0.01);
figure(1); FEMtrimesh(FEMmesh)

xlabel(’x’); ylabel(’y’); axis equal
FEMmesh = MeshUpgrade(FEMmesh,’cubic’);

function res = f(xy,t)
res = cos(0.2*pi*t)*ones(size(xy,1),1);
res(xy(:,1)>-0.9) = 0;

endfunction

function res = u0(xy) res = zeros(size(xy,1),1); endfunction

m = 1; a = 1; b0 = 0; bx = by = 0; f = 0; gn1 = gn2 = 0;
tic();
[u,t] = IBVP2D(FEMmesh,m,a,b0,bx,by,’f’,0,gn1,gn2,’u0’,0,30,[2*60,10]);
%%[u,t] = IBVP2Dsym(FEMmesh,m,a,b0,’f’,0,gn1,gn2,’u0’,0,30,[2*60,10]);
SolverTime = toc()

figure(2); FEMtrimesh(FEMmesh,u(:,end))
xlabel(’x’); ylabel(’y’); xlim([0,L]);

umax = 0.3*max([-min(u(:)),max(u(:))]);
figure(3)
if 0 %% animation
for jj = 1:length(t)
FEMtrimesh(FEMmesh,u(:,jj))
xlabel(’x’); ylabel(’y’)
zlim(umax*[-1 1]); caxis(0.3*umax*[-1 1]);
text(0.8*L,0.8*H,umax,sprintf(’t = %4.2f’,t(jj)))
xlim([0,L])
pause(0.1);
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endfor
else
FEMtrimesh(FEMmesh,u(:,end))
xlabel(’x’); ylabel(’y’)
zlim(umax*[-1 1]); caxis(0.3*umax*[-1 1]);
text(0.8*L,0.8*H,umax,sprintf(’t = %4.2f’,t(end)))

endif

x = linspace(0,L,101); u_line = zeros(size(t,1),size(x,2));
for jj = 1:length(t)
u_line(jj,:) = FEMgriddata(FEMmesh,u(:,jj),x,ones(size(x)));

endfor

figure(4); mesh(x,t,u_line)
xlabel(’x’); ylabel(’t’);

figure(5); contour(x,t,u_line,0.003*[-1:0.1:+1])
xlabel(’x’); ylabel(’t’);

8.11 Wave propagation, Kirchhoff diffraction

8.11.1 A dynamic solution

In Figure 84 half of a domain Ω ⊂ R2 is visible, the lower half is generated by a reflection at the lower edge. For
the computation this is taken into account bu the symmetry boundary condition ∂ u

∂n = 0. The wave equation (a
special case of the IBVP (6)) to be solved is

∂2

∂t2
u(x, y, t)−∆u(x, y, t) = f(x, y, t) for (x, y, t) ∈ Ω× (0, T ]

∂
∂n u(x, y, t) = 0 for (x, y, t) ∈ Γ× (0, T ]

u(x, y, 0) = ∂
∂t u(x, y, 0) = 0 on Ω

. (55)

The function f(x, y, t) equals sin(3π t) for x ≤ −0.9 and zero otherwise. Thus there a periodic excitation at the
very left end of the appendix for −1 ≤ x ≤ −0.9. The wave speed equals 1 and the appendix (more precise: the
two appendices) is a source of waves.
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Figure 84: The domain for the wave propagation

Figure 85 shows the solution u(x, y, 11) at time t = 11.
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• The wave speed equals 1, thus at t = 11 the first waves are about to arrive at x = 10 for y = 0 and at
y = +10 for x = 0.

• In the top right section the unperturbed waves generated by the outlet of the appendix at y = 0 are visible.

• In the top left corner the upward moving waves interfere with the waves reflected at the upper edge at
y = 9.

• At the lower edge at y = −2 the waves are reflected leading to interference. The result is identical to the
situation of a second source at y = −4.

• In the lower part of the figure observe the result of the calssical double–slit diffactiuon pattern by Kirchhoff,
see e.g. en.wikipedia.org/wiki/Double-slit experiment.

Figure 85: Wave propagation, leading to a Kirchhoff diffraction pattern

Observe that the behavior of the solution is very different from a heat equation in 8.10.4, even is the setup is
comparable.

In the code below you can play with the different parameters and select whether an animation is shown on
the screen of the final snapshot. .

WavePropagation.m
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l = 1; h = 0.1; L = 10; d = 2; H = 9;
FEMmesh = CreateMeshTriangle(’test’,...

[-l,0,-2;0 0 -2;0,-d,-2;L,-d,-2; L,H,-2;0,H,-2;0,h,-2;-l,h,-2],0.01);
figure(1); FEMtrimesh(FEMmesh)

xlabel(’x’); ylabel(’y’); axis equal
FEMmesh = MeshUpgrade(FEMmesh,’cubic’);

function res = f(xy,t)
res = sin(3*pi*t)*ones(size(xy,1),1);
res(xy(:,1)>-0.9) = 0;

endfunction
function res = v0(xy); res = zeros(size(xy,1),1); endfunction
function res = u0(xy) res = zeros(size(xy,1),1); endfunction

m = 1; a = 1; b0 = 0; bx = by = 0; f = 0; gn1 = gn2 = 0;
tic();
[u,t] = I2BVP2D(FEMmesh,m,0,a,b0,bx,by,’f’,0,gn1,gn2,’u0’,’v0’,0,11,[56,10]);
SolverTime = toc()

umax = 0.3*max([-min(u(:)),max(u(:))]);
figure(2)
if 0 %% animation
for jj = 1:length(t)
FEMtrimesh(FEMmesh,u(:,jj))
xlabel(’x’); ylabel(’y’)
zlim(umax*[-1 1]); caxis(0.3*umax*[-1 1]);
text(0.8*L,0.8*H,umax,sprintf(’t = %4.2f’,t(jj)))
view(0,90); xlim([0,L]); ylim([-d,H]);
pause(0.1);

endfor
else
FEMtrimesh(FEMmesh,u(:,end))
xlabel(’x’); ylabel(’y’)
zlim(umax*[-1 1]); caxis(0.3*umax*[-1 1]);
text(0.8*L,0.8*H,umax,sprintf(’t = %4.2f’,t(end)))
view(0,90); xlim([0,L]); ylim([-d,H]);

endif

8.12 Sound waves in R2 and R3

The standard wave equation ∂2

∂t2
u−∆u = 0 can be written in cylindrical

∂2

∂t2
u(ρ, ϕ, z, t) =

1

ρ

∂

∂ρ
(ρ

∂u

∂ρ
) +

1

ρ2
∂2

∂ϕ2
u+

∂2

∂z2
u

or spherical coordinates

∂2

∂t2
u(r, ϕ, θ, t) =

1

r2
∂

∂r
(r2

∂ u

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂ u

∂θ
) +

1

r2 sin2 θ

∂2 u

∂ϕ2
.

This allows to reduce some problems to two space dimensions.
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8.12.1 A sound wave in R3 with cylindrical coordinates

Assuming that the solution u(ρ, z, t) is independent on ϕ and multiplying the wave equation by ρ arrive at

ρ
∂2

∂t2
u(ρ, z, t)− ∂

∂ρ
(ρ

∂u

∂ρ
)− ∂

∂z
(ρ

∂ u

∂z
) = 0 (56)

and thus it is in the from of the general hyperbolic equation (6) and can be solved numerically with I2BVP2D().
On a domain 0 ≤ ρ ≤ R and 0 ≤ θ ≤ π we assume zero initial velocity d

dt u(ρ, z, 0) = 0 and initial displacement

u(ρ, z, 0) =

{
1 + cos(10 r) for 0 ≤ r ≤ π

10

0 for π
10 ≤ r

.

where we use r =
√

ρ2 + z2. The result of solving this initial boundary value problem will be a spherical wave
moving with speed 1 and a decaying amplitude. Find the result at time t = 1.75 in Figure 86. Using an energy
argument the amplitude of the wave front is expected to decay like c 1

t . Using linear regression this is confirmed
in Figure 86.

(a) the spherical wave
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Figure 86: A spherical sound wave at time t = 1.75, and the decaying amplitude with the best fitting c
t

SoundWaveSpherical.m
R = 2; H = 2; N = 60;
FEMmesh = CreateMeshRect(linspace(0,R,N),linspace(0,H,N),-2,-2,-2,-2);
FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);

function res = u_0(xy)
r = sqrt(xy(:,1).ˆ2+xy(:,2).ˆ2);
res = 1+cos(10*r); res(r>pi/10) = 0;

endfunction
function res = rho(xy,dummy); res = xy(:,1); endfunction;
function res = v_0(xy) ; res = zeros(size(xy,1),1); endfunction

tic();
[u,t] = I2BVP2D(FEMmesh,’rho’,0,’rho’,0,0,0,0,0,0,0,’u_0’,’v_0’,0,1.75,[100,10]);
ComputationTime = toc()
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figure(1); clf
if 0 %% animation
for jj = 1:length(t)
FEMtrimesh(FEMmesh,u(:,jj))
xlabel(’rho’); ylabel(’z’); zlim([-0.5 0.5]); caxis(0.1*[-0.5,0.5])
pause(0.1)

endfor
else
FEMtrimesh(FEMmesh,u(:,end))
xlabel(’\rho’); ylabel(’z’)

endif

max_u = max(u) - min(u); t_start = find(t>0.6,1); t_tail = t(t_start:end)’;

[p,˜,˜,p_var] = LinearRegression(1./t_tail,max_u(t_start:end)’);
figure(2); plot(t,max_u,t_tail, p./t_tail)

xlabel(’time t’); ylabel (’amplitude’); legend(’amplitude’,’best fit’)

8.12.2 A sound wave in R2

In a rectangle 0 ≤ x, y ≤ R solve the standard wave equation

∂2 u

∂t2
− ∂2 u

∂x2
− ∂2 u

∂y2
= 0

with Neumann boundary conditions ∂ u
∂n = 0, initial zero velocity and initial displacement

u(x, y, 0) =

{
1 + cos(10 r) for 0 ≤ r ≤ π

10

0 for π
10 ≤ r

.

where we use r =
√

x2 + y2. The result of solving this initial boundary value problem will be a circular wave
moving with speed 1 and a decaying amplitude. Find the result at time t = 4 in Figure 87. Using an energy
argument the amplitude of the wave front is expected to decay like c 1√

t
. Using linear regression this is confirmed

in Figure 87.

SoundWave.m
R = 4.5; H = 4.5; N = 60;
FEMmesh = CreateMeshRect(linspace(0,R,N),linspace(0,H,N),-2,-2,-2,-2);
FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);

function res = u_0(xy)
r = sqrt(xy(:,1).ˆ2+xy(:,2).ˆ2);
res = 1+cos(10*r);
res(r>pi/10) = 0;

endfunction
function res = v_0(xy) ; res = zeros(size(xy,1),1); endfunction
tic();
[u,t] = I2BVP2D(FEMmesh,1,0,1,0,0,0,0,0,0,0,’u_0’,’v_0’,0,4,[100,10]);
ComputationTime = toc()

figure(3); clf
if 0 %% animation
for jj = 1:length(t)
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Figure 87: A circular sound wave at time t = 4 and the decaying amplitude with the best fitting c√
t

FEMtrimesh(FEMmesh,u(:,jj))
xlabel(’x’); ylabel(’y’);
zlim(0.1*[-2 2]); caxis(0.5*[-2 2])
pause(0.1)

endfor
else
FEMtrimesh(FEMmesh,u(:,end))
xlabel(’x’); ylabel(’y’)

endif

max_u = max(u) - min(u); t_start = find(t>1,1); t_tail = t(t_start:end)’;
[p,˜,˜,p_var] = LinearRegression(1./sqrt(t_tail),max_u(t_start:end)’);
figure(12); plot(t,max_u,t_tail, p./sqrt(t_tail))

xlabel(’time t’); ylabel (’amplitude’); legend(’amplitude’,’best fit’)

8.13 The EIT forward problem

For a conductivity σ on a bounded domain Ω ⊂ R2 consider the PDE

∇ · (σ∇u) = 0 in Ω ⊂ R2 (57)

• Apply a voltage u on the boundary and measure the resulting current density J

J(z) = σ(z)
∂ u(z)

∂n
for z ∈ ∂Ω

to obtain the Dirichlet to Neumann map

Λσ : u → σ
∂ u

∂n
on ∂Ω (58)

also called voltage to current density map.
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• Apply a current density J on the boundary and measure the resulting voltage u. For a static situation the
total current into Ω has to be zero, i.e.∮

∂Ω
J(s) ds =

∮
∂Ω

σ
∂ u

∂n
ds = 0

to obtain the Neumann to Dirichlet map

Rσ : σ
∂ u

∂n
→ u on ∂Ω (59)

also called current density to voltage map.

Figure 88: The conductivity with the conducting “heart” on the left and the insulating “lung” on the right

From either one of these maps it is possible to determine the conductivity σ in the domain. This is called Electrical
Impedance Tomography, or short EIT. For a good, readable description consider the book [MuelSilt12] or the
article [MuelSilt20]. The Neumann to Dirichlet mapRσ is more reliable to measure, based on less susceptibility
to noise. Using FEM examine the forward problem, i.e. apply a known current pattern and determine the resulting
voltage u4 on the boundary. In real live this is performed by measurements. Examine the domain (a chest cross
section) in Figure 88 with the graph of the conductivity σ shown. On the left a simple heart with high conductivity,
caused by the blood. On the left a section with very low conductivity, caused by the air filled lung. Then two
current patterns are examined:

1. A current input at the lower edge of the cross section in Figure 89 and a matching current outlet at an angle
of approximately 120◦. Thus the current is expected to go through the heart, mainly.

2. A similar current input at the lower edge and a matching current outlet at an angle of approximately 60◦.
Thus the current is expected to go through the lung, mainly.

The boundary Γ of the domain Ω is given by(
Rx cosα

Ry sinα

)
for 0 ≤ α ≤ 2π with Rx = 1 and Ry = 0.5 ,

with a conductivity of σ = 1. A simple calculation on the ellipse leads to an arc length of

ds =
√

R2
x sin

2 α+R2
y cos

2 α dα .
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The “heart” is given by
(x+ 0.5)2 + y2 ≤ 0.252 with conductivity σ = 4 .

The “lung” is given by

(x− 0.4)2 + y2 ≤ 0.352 with conductivity σ =
1

4
.
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Figure 89: Contours of the voltages

FEMoctave is used twice to determine the voltage u in the domain, leading to the level curves in Figure 89.
Observe that the two setups are rather similar, but not exactly symmetrical.

Since the normal derivative ∂ u
∂n on all of the boundary is specified, the BVP does not have a unique solution.

An arbitrary constant can be added and consequently the standard FEMoctave code will fail. If the additional
condition

umean =
1

area(Ω)

∫∫
Ω

u dA = 0

is required, the problem has a unique solution again, and there is hope to obtain a good aproximation by FEM. To
get around this problem use the open and free source code of FEMoctave and modify the solver in BVP2Dsym.m.
Add an additional equation

n∑
i=1

ui = 0

by one additional line, containing n=size(A,1); A(n+1,:)=1; b(n+1)=0; . It is a good idea to rename
the function, e.g. to BVP2DsymMean.m.

BVP2DsymMean.m
function u = BVP2DsymMean(Mesh,a,b0,f,gD,gN1,gN2)
if nargin ˜= 7
print_usage();

endif
switch Mesh.type
case ’linear’ %% first order elements
[A,b] = FEMEquation (Mesh,a,b0,0,0,f,gD,gN1,gN2); % compute with compiled code

case ’quadratic’ %% second order elements
[A,b] = FEMEquationQuad(Mesh,a,b0,0,0,f,gD,gN1,gN2);
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case ’cubic’ %% third order elements
[A,b] = FEMEquationCubic(Mesh,a,b0,0,0,f,gD,gN1,gN2); % compute with compiled code

endswitch
%% add the zero mean condition
n = size(A,1); A(n+1,:) = 1; b(n+1) = 0;
u = FEMSolve(Mesh,A,b,gD); %% solve the linear system

endfunction

Using the current density J⃗ = −σ∇u the vector fields in Figure 90 can be determined. With FEMgriddata()
determine∇u and then multiply by the conductivity σ to obtain J⃗ . Using the same starting points along y = −0.4
a few streamlines are shown.

• In Figure 90(a) the current takes the path of least resistance and is attracted by the highly conducting
“heart”.

• In Figure 90(b) the current tries to avoid the “lung” section with the low conductivity.

If the conductivity would be constant in all of the domain Ω, then the two graphics in Figure 90 would be perfectly
symmetric.
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Figure 90: The vector field for the current density J⃗ and a few streamlines

As a reference the situation of constant σ = 1 is computed too and the resulting voltages on the boundary
are shown in Figure 91. The deviations from the reference on the boundary Γ contain information about the
conductivity inside of the domain Ω. The deviations from the reference are shown in Figure 92. Many of those
“measurements” allow to determine the Neumann to Dirichlet map, leading to the conductivity σ by an EIT
algorithm.

EITforward.m
global Rx Ry dalpha my_angle
N = 2*64; %% number of angle segments
alpha = linspace(0,2*pi*(N-1)/N,N)’; Rx = 1; Ry = 0.5;
dalpha = 2*(alpha(2)-alpha(1));
x = Rx*cos(alpha); y = Ry*sin(alpha);
BC = -2*ones(size(x));
my_angle = 120 %% select the configuration, use 60 or 120
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Figure 91: Voltage along the boundary
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Figure 92: Differences of the voltage and the reference voltage
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function res = sigma(xy) %% the conductivity
x = xy(:,1); y = xy(:,2);
res = ones(size(x));
res((x+0.5).ˆ2+y.ˆ2<=0.25ˆ2) *= 4 ; %% heart on the left
res((x-0.4).ˆ2+y.ˆ2<=0.35ˆ2) *= 1/4; %% lung on the right

endfunction

FEMmesh = CreateMeshTriangle(’EIT’,[x,y,BC],0.003);
FEMmesh = MeshUpgrade(FEMmesh,’cubic’);

figure(1); FEMtrimesh(FEMmesh,sigma(FEMmesh.nodes)); %% show the conductivity
xlabel(’x’); ylabel(’y’); zlabel(’\sigma’); view(20,50)

function res = flux_n(xy) %% define the current density on the boundary
global dalpha my_angle Rx Ry
alpha = atan2(xy(:,2)/Ry,xy(:,1)/Rx); %% assure correct angle
res = zeros(size(alpha));
res(abs(alpha+pi/2) < dalpha) = -1;
switch my_angle
case 60
res(abs(alpha-pi/3) < dalpha) = +1;

case 120
res(abs(alpha-pi*2/3) < dalpha) = +1;

endswitch
res = res./sqrt(Rxˆ2*sin(alpha).ˆ2 + Ryˆ2*cos(alpha).ˆ2); %% adjust for the arc length

endfunction

u_0 = BVP2DsymMean(FEMmesh, 1 ,0,0,0,’flux_n’,0); %% the reference result
u = BVP2DsymMean(FEMmesh,’sigma’,0,0,0,’flux_n’,0); %% the actual result

figure(2); FEMtrimesh(FEMmesh,u) %% show the solution
xlabel(’x’); ylabel(’y’);

figure(3); clf; FEMtricontour(FEMmesh,u,41) %% show the contour levels
hold on;
plot([x;x(1)],[y;y(1)],’k’); %% add the boundary
hold off
xlabel(’x’); ylabel(’y’); axis equal

u_boundary = FEMgriddata(FEMmesh,u, x,y);
u_0_boundary = FEMgriddata(FEMmesh,u_0,x,y);

figure(4); plot(alpha*180/pi,u_boundary,alpha*180/pi,u_0_boundary)
xlabel(’angle [deg]’); ylabel(’u’); xlim([0,360])
legend(’true’,’reference’) %% show the voltages on the boundary

figure(5); plot(alpha*180/pi,u_boundary-u_0_boundary)
xlabel(’angle [deg]’); ylabel(’u-u_0’); xlim([0,360])
legend(’true-reference’) %% show the difference

%% create the vector field for the current density
[xx,yy] = meshgrid(linspace(-Rx,Rx,21),linspace(-0.8*Ry,0.8*Ry,21));
[ui,uxi,uyi] = FEMgriddata(FEMmesh,u,xx,yy);
conductivity = reshape(sigma([xx(:),yy(:)]),size(xx));
uxi = conductivity.*uxi;
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uyi = conductivity.*uyi;

figure(6); quiver(xx,yy,uxi,uyi,2) %%% show the vector field
xlabel(’x’); ylabel(’y’)
hold on;
plot([x;x(1)],[y;y(1)],’k’); %% add the boundary
hold off

%% create and show the streamlines
streamline(xx,yy,uxi,uyi,[-0.3 -0.2,-0.1,0,0.1,0.2 0.3],-0.8*Ry*ones(1,7));

Since the condition ∮
∂Ω

J(s) ds =

∮
∂Ω

σ
∂ u

∂n
ds = 0

is critical it is a good idea to examine the numerical approximation of the flux through the boundary. For this use
the nornal vector

n⃗ =
1√

R2
x sin

2 α+R2
y cos

2 α

(
Ry cosα

Rx sinα

)

and the integrate over the segements where the flux is not zero∫
section

⟨n⃗,∇u⟩ ds .

To evaluate this numerically use FEMgriddata() to determine the values of the gradient (∂ u
∂x ,

∂ u
∂y ) and then

trapz() to perform a numerical integration. Observar that along the bounadry the lengh segement is given by

ds =
√

R2
x sin

2 α+R2
y cos

2 α dϕ .

The code below leads to in inlet flux of ≈ 0.1975 and to outlet fluxes at either ≈ 0.1980 at 60◦ or ≈ 0.1964 at
120◦.
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Figure 93: Flux density at inlet and outlet
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AnalyzeBoundary.m
%% script to analyze the flux on the boundary
%% assumes that EITforward.m war run before
Angle = -90 % use 60, 120 or -90
Angle = deg2rad(Angle);
Section = pi/20; phi = Angle + linspace(-Section,+Section,100)’;
x_b = 0.999*Rx*cos(phi); y_b = 0.999*Ry*sin(phi);

[u_boundary,ux_boundary,uy_boundary] = FEMgriddata(FEMmesh,u,x_b,y_b);

ds = sqrt(Rxˆ2*sin(phi).ˆ2 + Ryˆ2*cos(phi).ˆ2);
n = [Ry*cos(phi)./ds, Rx*sin(phi)./ds];

flux = (ux_boundary.*n(:,1) + uy_boundary.*n(:,2));
figure(1); plot(rad2deg(phi),flux)

xlabel(’\phi [deg]’); ylabel(’flux density’)
TotalFlux = trapz(phi,flux.*ds)

8.14 Elasticity: a pipe under pressure

Examine a pipe with a circular cross section and inner radius R and a wall with thickness ∆R. On the inside
a pressure P is applied. The pipe under pressure will expand and the wall material will stretch. For ductile
materials (e.g. copper, steel) the maximal value of the von Mises stress is a good criterion to decide whether the
pipe will withstand the pressure, or break.

As exemplary situation examine:

• a pipe with inner radius R = 0.1 m and a wall thickness of ∆R = 0.01 m. A quarter of a cross section is
visible in Figure 94.

• a pressure of P = 10 atm = 106 Pa = 106 N
m2 .

• with a copper pipe, i.e. a yield strength of ≈ 33 MPa.

• or a steel pipe, i.e. a yield strength of ≈ 350 MPa.
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Figure 94: One quarter of a section through the pipe, the original domain (green) and the deformed domain (red)

To examine this problem with FEMoctave start by defining the domain and the boundary conditions.
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• Define the domain with the help of polar coordinates R ≤ r ≤ R + ∆R and 0 ≤ ϕ ≤ π
2 . Use

GenerateMeshRect() to create a rectangular mesh and then MeshDeform() to create the domain
in Figure 94.

• At the lower edge at y = 0 the edge is free to move in x–direction and no displacement in y–direction.
This is implemented with the code −21 for the boundary condition.

• At the left edge at x = 0 the edge is free to move in y–direction and no displacement in x–direction. This
is implemented with the code −12 for the boundary condition.

• At the inner edge at r = R pressure P is applied, leading to the code −33 for the boundary condition.

• At the outer edge at r = R+∆R there is no force, leading to the code −22 for the boundary condition.

• For good accuracy second order elements are used by calling MeshUpgrade().

PipePressure.m
E = 110e9; nu = 0.35; %%% copper
%%E = 200e9; nu = 0.25; %%% steel
R = 0.1; dR = 0.01;
nR = 5; nPhi = 51; %% number of layers in radial and angular direction
Estar = E/(1-nuˆ2); nustar = nu/(1-nu);

global P
P = 10e5; %% 10 atm pressure
FEMmesh = CreateMeshRect(linspace(R,R+dR,nR+1),linspace(0,pi/2,nPhi+1),-21,-12,-33,-22);
function new_xy = Deform(xy)
new_xy = [xy(:,1).*cos(xy(:,2)),xy(:,1).*sin(xy(:,2))];

endfunction
FEMmesh = MeshDeform(FEMmesh,’Deform’);
FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);

With the domain and the correct boundary conditions the problem can be solved.

• Start by defining the force density corresponding to the inside pressure P , i.e.

at

(
R cosα

R sinα

)
apply the force density

(
P cosα

P sinα

)
.

• Assuming that the pipe will not stretch in the direction orthogonal to the cross section we end up with a
plane strain problem. Thus use PlaneStrain() ti find approximations to the displacements u1 and u2.

PipePressure.m
%% define the radial pressure to be applied on the inside
function res = gN1(xy)
global P
angle = atan2(xy(:,2),xy(:,1)); res = P*cos(angle);

endfunction
function res = gN2(xy)
global P
angle = atan2(xy(:,2),xy(:,1)); res = P*sin(angle);

endfunction

[u1,u2] = PlaneStrain(FEMmesh,E,nu,{0,0},{0,0},{’gN1’,’gN2’});
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factor = 400;
figure(111); trimesh(FEMmesh.elem,FEMmesh.nodes(:,1)+factor*u1,...

FEMmesh.nodes(:,2)+factor*u2,’color’,’red’,’linewidth’,2);
hold on ; trimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),...

’color’,’green’,’linewidth’,1);
hold off; axis equal; xlabel(’x’); ylabel(’y’);

The last few lines in the above code generate the domain visible in Figure 94.

With the displacements determine all stresses at the nodes by using EvaluateStress(). Since four return
arguments are asked for the plane strain setup is used. Then use EvaluateVonMises() to find the values
of the von Mises stress, visible in Figure 95(a). The maximal value of the von Mises stress is approximated by
10 MPa, which is smaller than the yield strength 33 MPa of copper. Thus the pipe is expected to withstand the
applied pressure, but the margin of error is not very large. The pipe will start cracking on the inside, where the
von Mises stress is largest.

PipePressure.m
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(FEMmesh,u1,u2,E,nu);
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy,sigma_z);

figure(2); FEMtrimesh(FEMmesh,vonMises); xlabel(’x’); ylabel(’y’);
title(’von Mises stress’); view([25,25])

vonMises_min_max = [min(vonMises),max(vonMises)]
-->
vonMises_min_max = 8.3695e+06 1.0082e+07
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Figure 95: The von Mises stress in the cross section and the principal stresses along a radius of the pipe under
pressure

To analyze the pipe further choose an angle, e.g. α = π
4 = 90◦, and evaluate along a straight line with this

angle for radii R ≤ r ≤ R+∆R.

• Start by selecting the angle 0 ≤ α ≤ π
2 and define the x and y values along the arc with this angle.

• Use the above values of the stresses and EvaluatePrincipleStress() find the values of the prin-
ciple stresses at the nodes.
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• Then calls of FEMgriddata() will determine the values of the principle stresses along the selected
arc. Use σ3 = ν (σ1 + σ2) to compute the third principle stress. Then a call of plot() will generate
Figure 95(b).

• The minimal value −9.9770 · 105 ≈ 1 MPa of σ2 shows that this is the normal stress in radial direction on
the inside of the pipe, coinciding with the given pressure P .

• The maximal value −7 · 100 ≈ 0 MPa of σ2 corresponds to the zero pressure on the outside.

• The values of σ1 are considerably larger than the values of σ2. This illustrates that the wall of the pipe is
severely stretched in angular direction.

PipePressure.m
%% evaluation at one angle, all radii
alpha = pi/4; Nr = 101; Nmid = (Nr+1)/2; %% use an odd number for Nr
r = linspace(R,R+dR,Nr)’; x = r*cos(alpha); y = r*sin(alpha);

[sigma_1,sigma_2] = EvaluatePrincipalStress(sigma_x,sigma_y,tau_xy);
sigma_1r = FEMgriddata(FEMmesh,sigma_1,x,y);
sigma_2r = FEMgriddata(FEMmesh,sigma_2,x,y);
sigma_3r = nu*(sigma_1r+sigma_2r);
sigma_2r_min_max = [min(sigma_2r),max(sigma_2r)]

figure(3); plot(r,[sigma_1r,sigma_2r,sigma_3r]);
xlabel(’radius’); ylabel(’principal stresses’)
legend(’\sigma_1’,’\sigma_2’,’\sigma_3’,’location’,’west’)

-->
sigma_2r_min_max = -9.9770e+05 -7.1114e+03

At the midpoint in the wall of the pipe the stress matrix (tensor, to be precise) can be evaluated with the help
of three calls of FEMgriddata().[

σx τxy

τxy σy

]
≈

[
+4.7572 −5.2252
−5.2252 +4.7616

]
· 106

Then use a rotation matrix and the transformation rule for second order tensors to determine the stresses in the
rotated coordinate system.[

+cosα +sinα

− sinα +cosα

] [
σx τxy

τxy σy

] [
+cosα − sinα

+sinα +cosα

]
≈

[
−0.46582 +0.00217

+0.00217 +9.9846

]
· 106

The result shows the normal, compressing pressure of −0.47 MPa in radial direction and the stretching pressure
of +10 MPa in angular direction.

PipePressure.m
%% examine stress at middle point
x_mid = x(Nmid); y_mid = y(Nmid);

sigma_x = FEMgriddata(FEMmesh,sigma_x,x_mid,y_mid);
sigma_y = FEMgriddata(FEMmesh,sigma_y,x_mid,y_mid);
tau_xy = FEMgriddata(FEMmesh,tau_xy ,x_mid,y_mid);
RotMat = [cos(alpha) -sin(alpha);+sin(alpha) cos(alpha)];
stress = [sigma_x,tau_xy;tau_xy,sigma_y]
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stress_rotated = RotMat’*stress*RotMat
-->
stress = 4.7572e+06 -5.2252e+06

-5.2252e+06 4.7616e+06

stress_rotated = -4.6582e+05 2.1668e+03
2.1668e+03 9.9846e+06

With the provided code in PipePressure.m it is easy the modify the parameters of the above problem,
e.g. change from copper to steel, examine larger radii or thinner walls.

For a pipe with a thin wall an analytical approximation is possible. Examine the section shown in Figure 94
and assume that the normal stress σφ in angular direction is independent on the radius. Then use a balance of
force law in y–direction and an integration over the angle to conclude

σφ∆R =

∫ π/2

0
P sinφ R dφ = P R .

In the above example this leads to

σφ =
P R

∆R
=

106 · 0.1
0.01

= 107 ,

which is very close to the above result generated by FEMoctave. With the known angular stress and Hooke’s law
estimate the angular stretch, i.e.

εφ =
σφ
E

=
107

110 · 109
≈ 9.09 · 10−5 .

Since the angular stretching factor εφ equals the radial stretching factor εr estimate the change of radius by

R −→ R (1 + εr) = R+ 9.09 · 10−6 .

This is not too far from the FEMoctave result of max{u1} ≈ 8.8 · 10−6. The the FEM approximation allows to
examine pipes with thick walls and also examines behavior within the wall.

8.15 Elasticity: a crook with a weight attached

Examine the two L–shaped steel beams in Figure 96(a). Each beam has length L = H = 0.1 with a square cross
section of 0.01× 0.01. The top edge is fixed and at the right end there is a force of 100 N (i.e. a weight of 10 kg)
pulling the beam downwards. The corner at (x, y) = (0, 0) is slightly rounded, since the highest stresses are
expected to show up in this area, see Figure 96(b). The applied force of 100 N leads to a surface force density of
gN2 =

100 N
0.012 m2 = 106 N

m2 .
Start out by defining the domain and generating the mesh with the help of CreateMeshTriangle().

Since second order elements do not suffer from shear-locking use MeshUpgrade() to generate second order
elements.

Crook.m
W = 0.01; H = 0.1; Load = 1e6;;
Layers = 2*5; gap = W/5;

if 0 %% no rounding
Domain = [-W -W -22; -W H -11; 0 H -22; 0 gap -22;..

0 0 -22; gap 0 -22; H 0 -23; H -W -22];
else %% with a rounded corner
Domain = [-W -W -22; -W H -11; 0 H -22; 0 gap -22;...
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gap*0.366 gap*0.366 -22; gap 0 -22; H 0 -23; H -W -22];
endif

FEMmesh = CreateMeshTriangle (’Crook1’,Domain,(W/Layers)ˆ2);
figure(1); FEMtrimesh(FEMmesh); xlabel(’x’); ylabel(’y’); axis([-W 3*gap -W 3*gap])
FEMmesh = MeshUpgrade(FEMmesh,’quadratic’);
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Figure 96: Original and deformed domain for the hook with attached weight at the right edge

Then find the approximate displacements u1 and u2 by calling PlaneStress(). The code segement
belows estimates the maximal vertical displacement by −8.96 · 10−4 m, i.e. approximately 0.9 mm. To verify
the order of magnitude one may use two arguments:

1. For a bending Euler beam with the dimensions of one arm obtain

u2(L) = −
4F

EW H3
L3 ≈ − 4 · 102

200 · 109 0.014
0.13 = −2 · 10−4 ,

i.e. a displacement of 0.2 mm.

2. The slope of the lower arm at the left starting points is estimated by −6.56 · 10−3 and with the length
H = L = 0.1 this leads to another contribution of ≈ 0.56 mm.

The sum of the two contributions is not too far from the result by FEMoctave.

Crook.m
E = 200e9; nu = 0.25; %%% steel
[u1,u2] = PlaneStress(FEMmesh,E,nu,{0,0},{0,0},{0,-Load});

MaximalDisplacement = min(u2)
[˜,slope_x,˜] = FEMgriddata(FEMmesh,u2,0,-W/2)
-->
MaximalDisplacement = -8.9570e-04
slope_x = -6.5645e-03

To generate Figure 96(a) with the scaled deformation also shown, start out by creating a coarse mesh and
evaluate the displacement at those nodes. Then show the original and deformed mesh with different colors.

Crook.m
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CoarseMesh = CreateMeshRect([-W:W/3:H],[-W:W/3:H],-11,-11,-11,-11);
x = CoarseMesh.nodes(:,1); y = CoarseMesh.nodes(:,2);
u1i = FEMgriddata(FEMmesh,u1,x,y); u2i = FEMgriddata(FEMmesh,u2,x,y);
x(isnan(u1i)) = NaN;

factor = H/10/abs(min(u2));
figure(2); clf;
trimesh(CoarseMesh.elem,x,y,’color’,’green’,’linewidth’, 1); hold on;
trimesh(CoarseMesh.elem,x+factor*u1i,y+factor*u2i,’color’,’red’,’linewidth’,1)
axis equal; hold off

To examine the mechanical load of the structure evaluate the stresses by calling EvaluateStress(). By
asking for three return arguments a plane stress model is used. Is is easy to generate graphs of the whole structure,
but more insight might be gained by a closer look at some slices.

• At height y = H
2 = 0.05 examine the normal stress σy in y–direction. The result in Figure 97(a) show a

compression in the left segment and traction on the right. This corresponds to the bending on the vertical
arm. By integrating σy along this slice one should obtain the value of the force applied on the right edge of
the crook, i.e.

W

∫ 0

−W
σy(x, 0.05) dx ≈ Force = 100 .

For the moment with respect to the origin (0, 0) we expect

W

∫ 0

−W
xσy(x, 0.05) dx ≈ H · Force = 10 .

Both results are confirmed by the code below. The values of the normal stress σx are approximately zero.

• At x = H
2 = 0.05 examine the normal stress σx in x–direction along a vertical slice. The result in

Figure 97(b) shows a compression in the lower segment and traction in the upper segment. This corresponds
to the downward bending on the horizontal arm. For the moment with respect to the point (H2 , 0) we expect

W

∫ 0

−W
y σx(0.05, y) dy ≈

1

2
H · Force = 5 .

The values of the normal stress σy are approximately zero. By integrating the shearing stress τxy obtain
again the applied force, i.e.

W

∫ 0

−W
τxy(0.05, y) dy ≈ Force = −100 .

• Observe that the stress values in the vertical arm are considerably larger than in the horizontal arm. The
values in Figure 97(b) are at x = 0.05. For larger values of x the strains σx will be even smaller.

Crook.m
[sigma_x,sigma_y,tau_xy] = EvaluateStress(FEMmesh,u1,u2,E,nu);

dist = linspace(-W,0,100)’; HH = H/2*ones(size(dist));
sigma_y_slice_H = FEMgriddata(FEMmesh,sigma_y,dist,HH);
figure(3); plot(dist,sigma_y_slice_H/1e6);

xlabel(’x’); ylabel(’\sigma_y [MPa]’);xlim([-W,0])
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Figure 97: A horizontal slice with σy shown and a vertical slice with σx shown

sigma_y_slice_H(isnan(sigma_y_slice_H)) = 0;
Integral_sigma_y = W*trapz(dist,sigma_y_slice_H)
Integral_Moment = W*trapz(dist,dist.*sigma_y_slice_H)

sigma_x_slice_V = FEMgriddata(FEMmesh,sigma_x,HH,dist);
tau_xy_slice_V = FEMgriddata(FEMmesh,tau_xy,HH,dist);
figure(4); plot(dist,sigma_x_slice_V/1e6);

xlabel(’y’); ylabel(’\sigma_x [MPa]’);xlim([-W,0])
Integral_Moment_x = W*trapz(dist,dist.*sigma_x_slice_V)
Integral_tau_xy = W*trapz(dist,tau_xy_slice_V)
-->
Integral_sigma_y = 99.769
Integral_Moment = 10.002
Integral_Moment_x = 5.0005
Integral_tau_xy = -99.985

Since steel is a ductile material one can use the von Mises stress to decide whether the crook will withstand
the force of 100 N. Use EvaluateVonMises() to find the values of the von Mises stress at the nodes and
then FEMtrisurf() and FEMtricontour() to generate Figure 98. The contour lines in Figure 98 is sup-
plemented with the borders of the domain. The spikes of the von Mises stress at the corner (0, 0) should be
no surprise to mechanical engineers. One possible measure to reduce the maximal value of von Mises is the
rounding visible in Figure 96(b). To obtain more insight the von Mises stress is evaluated along the straight line
connecting (−W,−W ) and (0, 0), using FEMgriddata(), leading to Figure 99. Since the yield strength of
steel is ≈ 330 MPa the crook should be able to support the force of 100 N .

Crook.m
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy);

figure(5); FEMtrisurf(FEMmesh,vonMises/1e6);
xlabel(’x’); ylabel(’y’); zlabel(’von Mises [MPa]’); view(160,25)
colorbar(); shading interp

figure(6); clf
FEMtricontour(FEMmesh,vonMises/1e6,1e1*[0:0.5:6]);
xlabel(’x’); ylabel(’y’); title(’von Mises [MPa]’);

SHA 17-11-22



8 EXAMPLES, EXAMPLES, EXAMPLES 182

(a) the surface, in MPa (b) the contour lines

Figure 98: The von Mises stress on the crook, as surface and level curves
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Figure 99: The von Mises stress on the 45◦ line through the origin

SHA 17-11-22



8 EXAMPLES, EXAMPLES, EXAMPLES 183

caxis(1e2*[0 0.7]); axis equal; colorbar(); hold on
plot([Domain(:,1);Domain(1,1)],[Domain(:,2);Domain(1,2)],...
’color’,’black’,’linewidth’,1); hold off

dist = linspace(-W,gap,100)’; HH = H/2*ones(size(dist));
vonMises_slice = FEMgriddata(FEMmesh,vonMises,dist,dist);
figure(7); plot(dist,vonMises_slice*1e-6);

xlabel(’x,y’); ylabel(’von Mises [MPa]’)
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