
AN IMPLEMENTATION OF THE PARALLEL k-CORE

DECOMPOSITION ALGORITHM IN GRAPHBLAS

An Undergraduate Research Scholars Thesis

by

PRANAV KONDURI

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Timothy Davis

May 2022

Major: Computer Science

Copyright © 2022. Pranav Konduri.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or biohaz-

ards must be reviewed and approved by the appropriate Texas A&M University regulatory research

committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement applies

to activities conducted at Texas A&M and to activities conducted at non-Texas A&M facilities

or institutions. In both cases, students are responsible for working with the relevant Texas A&M

research compliance program to ensure and document that all Texas A&M compliance obligations

are met before the study begins.

I, Pranav Konduri, certify that all research compliance requirements related to this Undergrad-

uate Research Scholars thesis have been addressed with my Research Faculty, Dr. Timothy Davis,

prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research Compliance &

Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT . 1

ACKNOWLEDGMENTS . 2

CHAPTERS

1. INTRODUCTION. 3

1.1 The k-core Decomposition Algorithm . 4
1.2 The Parallel k-Core Decomposition Algorithm (ParK) . 6
1.3 The SuiteSparse:GraphBLAS API . 9
1.4 LAGraph . 11

2. METHODS . 13

2.1 SuiteSparse:GraphBLAS . 13
2.2 The GraphBLAS KCore Algorithm . 17
2.3 A Speedier, Less Exhaustive Algorithm . 19
2.4 Decomposing the Graph . 20

3. RESULTS. 22

3.1 Timing . 22

4. CONCLUSION. 25

4.1 Future Work . 25

REFERENCES . 26

APPENDIX A: CORE C CODE OF AN IMPLEMENTATION OF THE BZ ALGORITHM .. 28

APPENDIX B: CORE C CODE OF THE GrB_KC ALGORITHM .. 31

APPENDIX C: CORE C CODE OF THE GrB_SKC ALGORITHM .. 33

APPENDIX D: CORE C CODE OF THE GrB_Decompose ALGORITHM 34

ABSTRACT

An Implementation of the Parallel k-core Decomposition Algorithm in GraphBLAS

Pranav Konduri
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Timothy Davis
Department of Computer Science and Engineering

Texas A&M University

The k-core of an undirected graph is the largest subgraph in which every vertex has a

degree of at least some number k. Computing the k-core, also known as the k-core decomposi-

tion algorithm, has significant applications in network analysis, visualization, bioinformatics, and

community detection. There exists a sequential procedure, developed by Batagelj and Zaversnik in

2003, that accurately performs k-core decomposition. This implementation has been consistently

referenced as the gold standard, due to its O(n + m) runtime. However, due to its large work-

ing set and lack of parallelism, its performance suffers on modern big-data graph problems where

sheer size tends to overwhelm runtime due to cache misses. A 2014 algorithm designed by Dasari,

Desh and Zubair M implements a parallel version of k-core decomposition (ParK) with significant

speedup on multithreaded architectures. This paper aims to describe the development and imple-

mentation of ParK using the SuiteSparse:GraphBLAS API in C, a robust framework that defines

a set of matrix and vector operations based on an algebra of semirings to perform computations

on graphs. We show that while the GraphBLAS algorithm underperforms versus the sequential

implementation in a full decomposition, a modified version of the algorithm that only computes a

partial decomposition given some value k is significantly faster.

1

ACKNOWLEDGMENTS

Contributors

I would like to whole-heartedly thank my faculty advisor, Dr. Davis, for affording me the

opportunity to study in such a fascinating field of computer science. I would also like to thank my

fellow undergraduate researchers, Conor Mai, Georgy Thayyil, Abeer Waheed, and Tanner Hoke,

for their invaluable guidance and support throughout the course of this research.

I would also like to thank my thesis advisor, Tawfik Hussein, for his motivating words

of encouragement and guidance throughout the process of the Undergraduate Research Scholars

program, and for his indefatigable patience with my and my cohort’s questions and concerns.

Thanks also go to my friends and colleagues and the department faculty and staff for making

my time at Texas A&M University a great experience.

Finally, thanks to my family for their encouragement, patience, and love.

The data analyzed and used for An Implementation of the Parallel k-core Decomposition

Algorithm in GraphBLAS was provided by the SuiteSparse Matrix Collection (formerly the Uni-

versity of Florida Sparse Matrix Collection).

Some figures in this thesis were provided, with permission, from Dr. Davis.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Undergraduate research was supported by the Computer Science Department at Texas

A&M University and additional research funding from Intel and Nvidia.

2

1. INTRODUCTION

The k-core of an undirected graph is the largest subgraph in which every vertex has a

degree of at least some number k. Used as a tool to analyze the clustering and sparsity of a graph,

the terminology “k-core” was first designated in 1983 by Seidman et al.[1]. The concept has

been integral in many graph applications such as network analysis, visualization, bioinformatics,

and community detection [2][3][4], and as a preprocessing step for many other preeminent graph

algorithms, such as the computation of the maximum clique [5]. Figure 1.1 outlines the cores of a

simple graph of size n = 13.

Figure 1.1: The 1 (blue), 2 (green), and 3-cores (red) of a simple graph

3

An important property of cores is that the k + 1-core is always a subgraph of the k-core,

as to go from k to k + 1, nodes of k may only be removed, not added. Another is that the largest

value of k in which the cardinality of the k-core is nonzero is called the kmax. For example, the

kmax of the graph presented in Figure 1.1 is 3 (the red nodes highlighted and encircled). All of the

nodes in the 3-core are valid vertices in the 1 and 2-cores as well, but a node in the 2-core is not

guaranteed to be a valid vertex in the 3-core.

For the sake of this project, we will only be considering computing the k-core of symmetric,

undirected graphs; all graphs used in the project that were considered directed will have been made

undirected (a 1-way connection will be expanded to a 2-way connection). It is also important to

highlight that varying edge weights have no bearing on output, as connectivity is the only relevant

statistic.

1.1 The k-core Decomposition Algorithm

The 2003 algorithm composed by Batagelj and Zaversnik (hereby referred to as the BZ

algorithm) is currently the state-of-the-art procedure to calculate k-cores of a graph [6]. The entire

process has time complexity of O(m+ n), where n is the number of vertices and m is the number

of edges in the graph. This is due to a bin-sort pre-processing phase, as the vertices of the graph

must be ordered in increasing order of degree (Figure 1.2).

Algorithm 1 Batagelj-Zaversnik k-Core Decomposition Algorithm
1: Order the set of vertices vert in increasing degree order via bin-sort
2: core← ∅ (output array)
3: for Each v ∈ vert in order do
4: core[v]← Degree(v)
5: for Each vertex u ∈ Neighbors(v) in order do
6: if Degree(u) > Degree(v) then
7: Degree(u) = Degree(u)− 1
8: Reorder vert
9: end if

10: end for
11: end for
12: return core

4

Figure 1.2: BZ algorithm on Figure 1.1 after bin-sort

At each step of Algorithm 1, a vertex in our set is checked. If a vertex’s neighbor has a

degree over the value of the vertex, then we prune the edge connection between them, effectively

decreasing the degree of the neighbor node by one (Figure 1.3).

Figure 1.3: BZ algorithm on Figure 1.1 at 5th pass of for loop

5

Although the algorithm seems rudimentary, the process of obtaining a sorted array of ver-

tices vert is rather complicated, and must include some critical pre-processing steps. Two work

arrays, both of size n, must be held: one (vert) to contain the vertex indices in sorted order of

degree, and another (pos) to hold the position of each vertex in the vert array (that way values

do not get mixed up when shuffled). A third work array (bin) of size max(deg(v)) must also be

instantiated to hold the starting and ending values of each degree in the vert array. Due to this

bin-sort, the "reordering of V" (line 7 of the algorithm) then becomes trivial. By swapping the

vertex u into the location of the beginning of its bin, and then increasing the bin’s start position by

1 effectively moves the vertex "down" a bin without the complication of reordering a size n array.

This exchanges a costly O(n) operation for an O(1) operation. This is the key for the low time

complexity of the BZ algorithm.

1.2 The Parallel k-Core Decomposition Algorithm (ParK)

Although the BZ solution is computationally quick, it suffers from high space complexity

due to the large size of the numerous work vectors. With more and more complex graph problems

(with millions of vertices and billions of edges), memory latency becomes a significant problem

and tends to drag performance down. In 2014, Dasari, Desh, and Zubair of Old Dominion Univer-

sity in Norfolk, Virginia developed a Parallel k-core Decomposition implementation (hereby listed

as ParK) that instead only uses two smaller shared work vectors [7]. The time complexity of the

full algorithm converges at O(kmax∗n+m), and while it is slightly slower when implemented seri-

ally, the method is parallelizable to the point where significant speedup can be recorded, especially

on the larger graphs where the BZ algorithm tends to struggle.

6

Algorithm 2 ParK k-core Decomposition Algorithm
1: deg ← vector representing degree of each node in graph
2: curr ← ∅
3: next← ∅
4: core← ∅ (output array)
5: todo← n
6: level← 1
7: while todo > 0 do
8: Add all nodes of deg[v] = level to curr
9: while |curr| > 0 do

10: todo← todo− |curr|
11: for Each vertex v ∈ curr do
12: core[v]← deg[v]
13: for Each vertex u ∈ Neighbors(v) in order do
14: if deg[u] > deg[v] then
15: deg[u] = deg[u]− 1
16: if deg[u] = level then
17: Add u to next
18: end if
19: end if
20: end for
21: end for
22: curr ← next
23: next← ∅
24: end while
25: level← level + 1
26: end while
27: return core, level

The ParK algorithm (Algorithm 2) relies on two sections (in the original algorithm paper,

abstracted out as subroutines) to optimally compute the k-core of a graph. The scan subroutine

(shown at line 8), isolates all nodes of a graph whose degree is equal to the given level (at the

beginning of the algorithm, that level is 1). This process is slightly different from the BZ algorithm,

as the values need not be sorted: an O(n) pass through the degree array is required for each call

of the scan process. However, this call is easily parallelizable provided the addition of nodes into

the curr array is done atomically. The processSubLevel (lines 11-21) subroutine is similar to lines

4-10 of the BZ algorithm, but if a node’s degree value has been decreased to the given level, it

7

must immediately be added into atomically into the curr array, to be decreased as well. The next

array is a temporary holder for that next iteration. Once the processSubLevel does not add any new

values to remove from the graph (curr = ∅), the level increments and the process starts over again,

until all nodes have been processed (todo = 0).

Figure 1.4: The first outer for-loop pass of ParK on Figure 1.1

Note in Figure 1.4, that after the last value in curr has been processed, the degree value at

node 7 is decreased to 1 (the same value as level), and thus it is added into the next array to be

deleted on the next pass.

8

Figure 1.5: The second outer for-loop pass of ParK on Figure 1.1

Figure 1.5 outlines the next pass of the algorithm. Now that the next array is empty, the

2-core is the resulting subgraph of the original input graph once node 7 is removed. The ParK

algorithm will continue to iterate until every node is removed from the graph (similarly to BZ), at

which point level will be equivalent to kmax. On a 32 core machine, the ParK algorithm achieved

as much as 6x speedup on the largest matrices as compared to the BZ algorithm.

Although we will not be developing the ParK algorithm as described, we will be basing

our GraphBLAS implementation significantly on ParK, and benchmarking the based on an imple-

mentation of the sequential BZ algorithm. An implementation of the BZ algorithm (assisted with

utility GraphBLAS methods) is available at Appendix A [8].

1.3 The SuiteSparse:GraphBLAS API

SuiteSparse:GraphBLAS is a full implementation of the GraphBLAS standard defining

a set of sparse matrix operations on an algebra of semirings. SuiteSparse:GraphBLAS utilizes

existing GraphBLAS operations and optimizes them for sparse graphs [9]. Adjacency matrices

are represented either as compressed-sparse columns (CSC), compressed-sparse rows (CSR), or

hypersparse variations of the two (hyper CSR, hyper CSC). Vectors, which are also defined, are

always stored in CSC.

9

Figure 1.6: Illustration of the Matrix-Vector Multiply in GraphBLAS. Used with permission of
Dr. Timothy Davis [10].

As illustrated by Figure 1.6, computations on adjacency matrices are equivalent to com-

putations on graphs. In this image, the transposed adjacency matrix is multiplied with the vector

containing only the nodes at positions 1 and 3 (from the second level of a BFS). The values within

those nodes refer to the parent node of the values in the current frontier (4 for both cases, as 4 was

the original source node). The populated indices in the resulting vector correspond to the neigh-

boring nodes in the graph: 2, 4, and 6. The values at these indices correspond to the parent of

that node (1 and 3, the original vector’s values). Thus, this matrix-vector multiply is equivalent to

multiple passes of a BFS [11]. This concept of highlighting neighbors through a multiply operation

is critical to the function of our implementation of the k-core decomposition algorithm.

When the size of the input dominates the overall runtime cost of these algorithms, sparse

matrices reduce the time cost. SuiteSparse:GraphBLAS does the hard work in deciding what spe-

cific computations would be most efficient for an individual call, so the developer can focus solely

on the broader-scale implementation. Matrix-vector multiplies, as well as many other GraphBLAS

methods, are executed in parallel and thus achieve significant speedup over sequential versions of

the same computations.

10

Figure 1.7: A selection of SuiteSparse:GraphBLAS methods. Used with permission of Dr.
Timothy Davis [12].

1.4 LAGraph

LAGraph is the public library and test harness for translating GraphBLAS code into al-

gorithms, an ongoing project dedicated to utilizing the power of the GraphBLAS libraries [13].

Despite not yet being ready for release as of March 2022, the LAGraph GitHub repository cur-

rently has code already fully implemented for strongly-tested implementations of Breadth-First

Search, Single Source Shortest Path, Triangle Count, Vertex Centrality, and many more popular

graph algorithms [14]. By using clever combinations of the methods shown above in Figure 1.7

(referenced from the SuiteSparse:GraphBLAS user guide) and more, even programmers with min-

imal knowledge of advanced graph theory can develop complex algorithms with ease. The team

11

currently working on the LAGraph repository include developers from Anaconda, Redis Labs,

IBM, Carnegie Mellon University, and undergraduate and graduate students at Texas A&M [10].

The goal of this project is to implement the Parallel k-Core Decomposition algorithm us-

ing the GraphBLAS framework and to submit the implementation into the LAGraph repository,

benchmarking versus an implementation of the BZ algorithm.

12

2. METHODS

The algorithm was developed entirely in the C language, as is the case with all of the

algorithms developed in the LAGraph test harness. Development, testing, and benchmarking were

all conducted on the Texas A&M Computer Science department’s BACKSLASH system.

2.1 SuiteSparse:GraphBLAS

The SuiteSparse:GraphBLAS standard depicts graphs in data as sparse matrices and defines

operations on those matrices as equivalent to computations on graphs. The sparse matrices them-

selves are stored in memory as sets of sparse vectors. Operations also can be applied for individual

vectors on one another as well to help facilitate other operations on graphs.

2.1.1 Methods Used

The key GraphBLAS methods we will be using in this project are:

• GrB_vxm: Similar to the aforementioned GrB_mxv, GrB_vxm multiplies a vector with a ma-

trix on a semiring, to produce a vector. The semiring applies onto the intermediate operations

of the matrix-vector multiply, thus allowing for specific customization for each algorithm.

• GrB_mxm: Multiplies a with another matrix on a semiring, to produce a matrix. Semiring

usage and application is similar to the GrB_vxm function.

• GrB_eWiseAdd (Element-wise addition): eWiseAdd performs an element-wise addition on

the values of two vectors (vectors only). The calculations persist on the union of the elements

of the two vectors (as opposed to the similar eWiseMult, which performs calculations only

on the intersection of the elements). Just like the GrB_vxm and GrB_mxm functions, you

must use or define a custom semiring to use to apply for the output vector.

• GrB_select: Applies an index unary operator onto the elements of a matrix or vector, keeping

those that match the selection operator. Used to parse vectors and matrices and only extract

entries whose values are above, equal, or below a certain value.

13

• GrB_assign: Assigns a subset of values from one source vector into some other destination

vector. This does not replace the original destination vector, but instead overwrites the values

in the destination vector, thereby preserving previous stored values.

• GrB_Matrix_diag: Creates a diagonal matrix of size n ∗ n given a vector of size n. A value

at index 1 of the vector is then recorded at position (1, 1) in the resulting output matrix.

• GrB_Vector_dup: Creates a new vector with the same size and elements as an existing

vector. This is effectively a deep copy of an existing vector.

• GrB_Vector_nrows: Returns the number of rows within a matrix. The resulting value is

stored as an int64_t data type. This is the same as computing the number of vertices within

a graph, or the size of a two-dimensional array.

• GrB_Vector_nvals: Returns the number of values present within a sparse vector. The re-

sulting value is stored as an int64_t data type. Note that this value does not return the full

size of the vector, but the specific number of values that are currently stored within the data.

This distinction is important, as this function is used to keep track of the amount of nodes to

process.

• LAGraph_Property_RowDegree: An LAGraph utility function to calculate the row degree

of a graph. The degree of each node in the sparse matrix is then returned to a vector of size

n.

14

2.1.2 Index Unary Operators

Figure 2.1: A subset of significant SuiteSparse:GraphBLAS Operators, some of which we use.
Used with permission of Dr. Timothy Davis [12].

For each call of the GrB_select function, we exercise the option of using index unary oper-

ators, flags that check for the presence of some condition in the values of the vectors in the compu-

tation. Upon the success of this condition at an index of a vector, the function is then applied to the

value at that index. These operators are useful to parse vectors efficiently while only maintaining

values that are consistent with certain parameters (greater than a certain constant number, for ex-

ample). The values in Figure 2.1 above show a snippet of some of the possible operators, some of

which are used in the implementation of this algorithm. For the purpose of the k-core algorithm,

operators will primarily be used to check the degree of a node; if the degree of a node within the

vector is greater than or less than the current k-core level, some operation will then apply to it.

2.1.3 Masks and Descriptors

Another crucial part of the GraphBLAS standard is the ability to use masks, opaque objects

that change the output of many functions. Masks can be either vectors or matrices, and must match

the dimensions of the output data structure of the method. The purpose of a mask is just that: to

mask some elements from appearing in the output structure. If the output of some GraphBLAS

15

calculation intends to place a value at some index i, there must be a value present at i in the mask

as well. Normal masks imply that the value must be specifically a boolean TRUE for the mask to

apply properly, while structural masks only require the existence of any value in order to apply.

Structural masks are important, as they can ignore the values within the vector and just the presence

of values at certain locations. Computationally, structural masks are much faster to use.

Masks and input/output vectors and matrices within a computation are then further aug-

mented by descriptors, lightweight flags in a method that change how the other input parameters

should be modified before computations are performed. Most common is a complement, which

effectively reverses the mask; instead, anything that is NOT caught by the mask is then pushed into

the output array. Descriptors can also specify whether a mask should be evaluated as a structural

mask or not, if one of the input vectors or matrices should be transposed, or even to call to replace

all data in the output structure with the computation’s result.

2.1.4 Semirings

Per the SuiteSparse:GraphBLAS user guide, a semiring "defines all the operators required

to define the multiplication of two sparse matrices in GraphBLAS" [10]. Semirings can also be

applied for matrix-vector multiplications as well, or vector-vector multiplications. In GraphBLAS,

semirings contain two designations: a monoid specifying what occurs when we would normally

add values together, and a binary operator specifying what occurs when we would normally mul-

tiply values with one another. This means that instead of always returning products as outputs,

we could instead return a subtraction, or a division (or any number of other operations). Semir-

ings allow for greater user-level abstraction in function calls, and are arguably the most important

structures within GraphBLAS due to their flexibility.

16

2.2 The GraphBLAS KCore Algorithm

Algorithm 3 GraphBLAS k-Core Decomposition Algorithm
1: A← the graph to input (user parameter)
2: deg ← vector of degree of A using LAGraph_Property_RowDegree
3: curr ← ∅
4: done← ∅
5: delta← ∅
6: core← ∅ (output array)
7: todo← n
8: level← 1
9: while todo > 0 do

10: Add all nodes of Degree[v] = level to curr using GrB_select
11: Set all nodes remaining in deg to level in core using GrB_assign
12: while |curr| > 0 do
13: todo← todo− |curr|
14: Copy all values in curr into done using GrB_assign
15: Add all nodes that neighbor values of curr into delta using GrB_vxm (curr ∗ A)
16: Decrement values of delta matching values in deg using GrB_eWiseAdd
17: curr ← all nodes of deg <= level using GrB_select
18: end while
19: level← level + 1
20: end while
21: return core, level

As shown in Algorithm 3, the GraphBLAS k-core decomposition algorithm (hereby re-

ferred to as GrB_KC) uses a combination of the methods described to compute the k-core. Given a

graph, the algorithm computes the core number of each vertex (the maximum k-core that the node

is a part of). While the deg vector (computed by LAGraph_Property_RowDegree) has elements in

it, it is augmented at each level in order to compute the next k-core. The last set of nodes of the

degree vector, before being cleared, is the maximum k-core subgraph.

Within the outer while loop, we must do a procedure to optimally calculate the k-core a

specified given level k. The procedure is as follows:

1. Highlight all nodes in the degree vector that are equivalent to the k-core (all nodes where

17

Degree(v) = k). These values will be added to the vector curr. All nodes in curr are

slotted to be deleted from the k-core.

2. Decrement the total amount of nodes that need to be processed (variable todo) by the number

of values currently in curr.

3. Using GrB_assign, add all values of curr into done, a vector used to keep track of all nodes

that have been removed from the deg vector.

4. Using GrB_vxm with the LAGraph_plus_one_int64 semiring, compile a new vector delta

that keeps track of all nodes in the graph that have lost neighbors, as well as how many

neighbors they lost. The semiring replaces the multiplication operation with a single value

(one) while the addition operation adds all of those ones together. The function multiplies

the curr vector with the input matrix, while the semiring effectively increments by one each

time a neighbor of a node in the vector is found.

5. Using GrB_eWiseAdd, we recalculate the deg vector, decrementing delta from deg. This

is done by masking the operations of the eWiseAdd function with the done vector, using a

complemented mask (only the vertices NOT in done will be returned back into deg). This

will only return the nodes in the graph that have lost neighbors that we have not already

processed.

6. Using GrB_select, highlight the new values that need to be removed from the graph (if any).

These are any values with a value (a degree) less than or equal to the current value of level.

These values go into curr, which overwrite its previous ones as they have now been fully

processed.

7. Loop steps 2-6 until the curr vector is empty (all nodes remaining in the deg vector are part

of this level’s core. If the deg vector is empty, then the max core is equivalent current value

of level and the algorithm finishes).

18

Step 1 of this procedure produces the same result as the Scan procedure in ParK, while

steps 4-6 produce a similar result as the processSubLevel procedure. What is fascinating is that

since the underlying GraphBLAS calls are parallel, the core of the algorithm is realistically only

six critical lines of code. A more complete version of the code is available at Appendix B.

Although it may seem as if there are a significant number of vectors being maintained at

each pass, it is important to keep in mind that the curr and delta work vectors are sparse, and

the number of values in each is often a small percentage of n (rarely more than 5%) for all tested

cases. This makes them incredibly efficient as work vectors compared to the BZ algorithm as we

minimize cache misses.

2.3 A Speedier, Less Exhaustive Algorithm

What stands out about the GraphBLAS interpretation of the ParK algorithm compared to

the other two implementations is that it is not strictly necessary to increment level by one each

time we empty out curr. BZ and ParK require this stipulation to be met as the degree of neighbor-

ing vectors are only decremented by one at a time and then immediately checked (BZ lines 5-10

and ParK lines 13-20). By using the LAGraph_plus_one_int64 semiring in a vxm call, we can

decrement nodes as a batch, allow the degree of neighbor nodes fall well below the value of level

(even to 0), and then pick them all up as a batch with a call to GrB_select. Thus, it is possible

in our implementation to increment level by a much greater number (perhaps a heuristic variable

depending on the maximum degree and/or density of the input graph), or start level at some much

higher value.

The reason why we do not do this for GrB_KC, is because we want to stay consistent with

the implementation of the other algorithms that provide the core number for each and every vertex.

Incrementing by a number greater than 1 each loop would give uncertainty to the core numbers for

vertices that are eliminated and not in the final k-core. For example, a node could be eliminated at

k = 84 but realistically be only part of k = 82 if the step size is >= 3.

However, it is worth mentioning that the primary use case for the k-core decomposition

algorithm is to return the k-core for one specific value k- a computation where the corneness

19

values for all nodes are not needed. While the BZ and ParK algorithms are forced to increment

from level 1 to k the GraphBLAS implementation can get to k immediately in one set of calls.

Thus, the augmented Single k-core Decomposition Algorithm is born:

Algorithm 4 GraphBLAS Single k-Core Decomposition Algorithm
1: A← the graph to input (user parameter)
2: k ← a pre-specified level (user parameter)
3: deg ← vector of degree of A using LAGraph_Property_RowDegree
4: curr ← ∅
5: done← ∅
6: delta← ∅
7: core← ∅ (output array)
8: todo← n
9: Add all nodes of Degree[v] < k to curr using GrB_select

10: while |curr| > 0 and |deg| > 0 do
11: todo← todo− |curr|
12: Copy all values in curr into done using GrB_assign
13: Add all nodes that neighbor values of curr into delta using GrB_vxm (curr ∗ A)
14: Decrement values of delta matching values in deg using GrB_eWiseAdd
15: curr ← all nodes of deg < k using GrB_select
16: end while
17: core← all remaining values in deg using GrB_assign
18: return core

By utilizing the fact that GrB_KC can quickly obtain the k-core level starting at an arbi-

trary number trivially, we can use an augmented procedure (Algorithm 4, hereby referred to as

GrB_SKC) exploiting that; obtaining only the values for a specific core at a significantly lower

computational cost. We no longer care about exhausting every value in deg, and can effectively

terminate the program after one iteration of an inner loop of GrB_KC. A more complete version

of the code is available at Appendix C. It would be best to use this method when a developer only

needs a specific core (i.e. the 4-core), but does not require the entire graph’s coreness values.

2.4 Decomposing the Graph

A notable issue with all of the algorithms thus far is that they only provide a vector output

labeling the nodes with values, and not an individual graph themselves. This issue can be solved

20

trivially with another procedure in GraphBLAS.

Algorithm 5 GraphBLAS Decompose Utility Algorithm
1: A← the graph to input (user parameter)
2: k ← a pre-specified level (user parameter)
3: core← vector of coreness values in a graph (user parameter)
4: deg ← all nodes of core >= k using GrB_select
5: C ← a diagonal matrix constructed from deg using GrB_Matrix_diag
6: D ← C ∗ A ∗ C using GrB_mxm (ANY_SECOND_I and MIN_SECOND_I semirings)
7: return D

Algorithm 5 is a simple utility function that takes in a graph A, a vector core (the output

of either BZ, ParK, GrB_KC, GrB_SKC), and a specified core-level k and outputs a subgraph

indicating the k-core. This is done by using two matrix-matrix multiplications in succession on a

diagonal matrix containing only the nodes present in the k-core. The choice of semirings guarantee

that the vertices and edge values originally stored in A are the same values that are stored for the

nodes that eventually are present in the subgraph D. This algorithm will not be benchmarked as it

is simply a relevant utility function. A more complete version of the code is available at Appendix

D.

21

3. RESULTS

3.1 Timing

As mentioned, results were benchmarked on Texas A&M’s BACKSLASH system, a 12-

CPU Intel Xeon E5-2695 v2 system with 12 cores per socket, and 2 threads per core. A typi-

cal maximum speedup on this platform is around the factor of 12. The test suite consisted of 7

sparse graphs, chosen from the SuiteSparse Matrix Collection (formerly known as the University

of Florida SuiteSparse Matrix Collection) [15].

Table 3.1 outlines the timing results of the BZ algorithm (sequential, one thread), the

GrB_KC algorithm (parallel, 20 threads), and the GrB_SKC algorithm (parallel, 20 threads, k =

kmax and k = 5). We chose to test different values of k for the GrB_SKC algorithm to signify

vastly different use cases. All timing results are displayed in seconds. Note that this project does

not include an implementation of the original ParK algorithm.

Table 3.1: Details of Graphs Used and Timing Results Between BZ and GrB algorithms

graph n (×106) m (×106) kmax BZ GrB_KC GrB_SKC (kmax) GrB_SKC (5)
amazon0601 0.40 2.44 10 0.16 0.65 0.15 0.03

as-Skitter 1.70 11.10 111 0.89 2.98 0.08 0.26
cit-Patents 3.77 16.52 64 4.59 4.77 0.17 0.06

in-2004 1.38 16.92 488 2.20 18.41 0.09 <0.01
soc-Pokec 1.63 30.62 47 0.35 9.18 < 0.01 0.02

hollywood-2009 1.14 113.89 2208 5.13 184.812 0.17 0.04
indochina-2004 7.41 194.11 6869 3.21 6.94 0.39 0.04

Although in some cases the GrB_KC algorithm displays performance closer to the sequen-

tial BZ algorithm, there is no speedup witnessed. Although this may seem like a disappointing

statistic, it makes sense; as discussed, the GraphBLAS standard is best at producing intermediate

results en masse as opposed to sequentially like the BZ algorithm is optimized for. When using

the GrB_SKC algorithm with k = kmax (the highest possible value of k that can be passed in that

22

would return a degree vector of any kind), the algorithm shows significant speedup (up to 50x, as

seen with the soc-Pokec graph). With a more conventional choice of k at 5, even further speedup is

witnessed in most test cases (barring the as-Skitter dataset), in which computation takes less than

a tenth of a second to complete.

Figure 3.1: Speedup versus 1-thread version of GrB_KC for Multiple Threads

Figure 3.2: Speedup versus 1-thread version of GrB_SKC for Multiple Threads

23

As seen in Figures 3.1 and 3.2, multithreading does achieve noticeable performance in-

creases when compared to 1-thread timing of the same program. By utilizing an API whose calcu-

lations already work in parallel, a developer’s code can be written more simply.

24

4. CONCLUSION

The most important lesson learned through the development of this algorithm is to play to

the API’s strengths. SuiteSparse:GraphBLAS is best when it has the ability to do lots of com-

putations within a single call, so augmenting the parameters of our question, ever so slightly, to

identify that strength resulted in an effective algorithm in GrB_SKC. While the original goal of

the project (to create an implementation of the parallel k-core algorithm through GrB_KC) was

completed, it is fascinating that by isolating a specific use case, GraphBLAS vastly outperforms

the BZ algorithm.

4.1 Future Work

There is still plenty of work to be done with the implementation of this algorithm. Al-

though it has been stated that SuiteSparse:GraphBLAS decides the specific computations for you

to optimize performance, speedup could perhaps be achieved further still by analyzing heuristics

related to the graph itself and pre-choosing optimal settings. These settings can range from how

certain data is stored in internal structures (vectors and matrices), to extra parameters allowing for

greater user flexibility.

It is also worth mentioning that this implementation was largely based off of the ParK

algorithm presented in 2014. There exists another, more complex parallel k-core algorithm devel-

oped by Kabir and Madduri [8] of the Pennsylvania State University in 2017 that found noticeable

speedup even over the ParK algorithm (on certain input graphs) called PKC. Due to its compar-

ative complexity to ParK, PKC was not chosen as the guideline for developing GrB_KC. Further

developments in improving our GraphBLAS implementation may warrant a PKC-based solution.

25

REFERENCES

[1] S. B. Seidman, “Network structure and minimum degree,” Social Networks, vol. 5, no. 3,
p. 269–287, 1983.

[2] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “Large scale networks
fingerprinting and visualization using the k-core decomposition,” in Advances in neural in-
formation processing systems, pp. 41–50, 2006.

[3] Y. Cheng, C. Lu, and N. Wang, “Local k-core clustering for gene networks,” in 2013 IEEE
International Conference on Bioinformatics and Biomedicine, pp. 9–15, 2013.

[4] E. Miho, R. Roškar, V. Greiff, and S. T. Reddy, “Large-scale network analysis reveals the
sequence space architecture of antibody repertoires,” Nature Communications, vol. 10, no. 1,
2019.

[5] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin, “Parallel maximum clique algorithms
with applications to network analysis,” SIAM Journal on Scientific Computing, vol. 37, no. 5,
pp. C589–C616, 2015.

[6] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores decomposition of networks,”
CoRR, vol. cs.DS/0310049, 2003.

[7] N. S. Dasari, R. Desh, and M. Zubair, “ParK: An efficient algorithm for k-core decomposition
on multicore processors,” 2014 IEEE International Conference on Big Data (Big Data), 2014.

[8] H. Kabir and K. Madduri, “Parallel k-core decomposition on multicore platforms,” 2017
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2017.

[9] T. A. Davis, “Graph algorithms via SuiteSparse: GraphBLAS: triangle counting and k-truss,”
in 2018 IEEE High Performance extreme Computing Conference (HPEC), pp. 1–6, 2018.

[10] T. A. Davis, “SuiteSparse:GraphBLAS: Graph Algorithms in the Language of Linear Alge-
bra,” Jan 2022.

26

[11] J. V. Kepner and J. R. Gilbert, Graph algorithms in the language of linear algebra. Society
for Industrial and Applied Mathematics, 2011.

[12] T. A. Davis, “User Guide for SuiteSparse:GraphBLAS,” Nov 2021.

[13] T. Mattson, T. A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira, and C. Yang, “LA-
Graph: A community effort to collect graph algorithms built on top of the GraphBLAS,” 2019
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2019.

[14] GraphBLAS, “LAGraph/src/algorithm at reorg · GraphBLAS/LAGraph.” https://
github.com/GraphBLAS/LAGraph/tree/reorg/src/algorithm.

[15] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,” ACM Trans.
Math. Softw., vol. 38, December 2011.

27

https://github.com/GraphBLAS/LAGraph/tree/reorg/src/algorithm
https://github.com/GraphBLAS/LAGraph/tree/reorg/src/algorithm

APPENDIX A: CORE C CODE OF AN IMPLEMENTATION OF THE BZ

ALGORITHM

1 /*
2 * Given an input graph, returns a vector indicating the coreness
3 * number of each node, or the largest k such that the node is a
4 * part of the k-core.
5 *
6 * IN/OUT: *core, a pointer to an uint_64_t array of size n
7 * IN/OUT: kmax, the largest k such that the k-core is non-empty
8 * IN: G, an input graph
9 *

10 */
11 int GrB_BZ (uint64_t *core, uint64_t *kmax, LAGraph_Graph G)
12 {
13 //export the graph into CSR format using LG_check_export
14 GrB_Index *Ap = NULL, *Aj = NULL, *Ai = NULL ;
15 void *Ax = NULL ;
16 GrB_Index Ap_size, Aj_size, Ax_size, n, ncols, Ap_len, Aj_len, Ax_len ;
17 size_t typesize ;
18 LG_check_export (G, &Ap, &Aj, &Ax, &Ap_len, &Aj_len, &Ax_len, &typesize

, msg) ;
19
20 //create the arrays
21 uint64_t *vert = NULL, *pos = NULL, *bin = NULL;
22 uint64_t *deg = NULL;
23 uint64_t maxDeg = 0;
24 deg = malloc(n, sizeof(uint64_t)) ;
25 vert = malloc(n, sizeof(uint64_t)) ;
26 pos = malloc(n, sizeof(uint64_t)) ;
27
28 for(uint64_t i = 0; i < n; i++){
29 deg[i] = Ap[i+1] - Ap[i];
30 if (deg[i] > maxDeg)
31 maxDeg = deg[i];
32 }
33 //setup bin array
34 bin = calloc(maxDeg + 1, sizeof(uint64_t)) ;
35
36 for(uint64_t i = 0; i < n; i++){
37 bin[deg[i]]++;
38 }
39
40 uint64_t start = 0;
41 for(uint64_t d = 0; d < maxDeg + 1; d++){
42 uint64_t num = bin[d];
43 bin[d] = start;
44 start = start + num;
45 }

28

46
47 //Do bin-sort
48 //vert -- contains the vertices in sorted order of degree
49 //pos -- contains the positon of a vertex in vert array
50 for(uint64_t i = 0; i < n; i++){
51 pos[i] = bin[deg[i]];
52 vert[pos[i]] = i;
53 bin[deg[i]] ++;
54 }
55
56 for(uint64_t d = maxDeg; d >= 1; d --)
57 bin[d] = bin[d-1];
58 bin[0] = 0;
59
60 int64_t level = 0;
61
62 //Compute k-core
63 for(int64_t i = 0; i < n; i++){
64 //get the vertex to check
65 uint64_t v = vert[i];
66 //populate output matrix
67 core[v] = deg[v];
68 if(bin[deg[v]] == i){
69 level = deg[v];
70 }
71
72 uint64_t start = Ap[v];
73 int64_t original_deg = Ap[v+1] - Ap[v]; //original deg before

decremented
74 for(uint64_t j = 0; j < original_deg; j++){
75 uint64_t u = Aj[start + j]; //a neighbor node of v
76
77 //if we need to lower the neighbor’s deg value, and relocate in

bin
78 if(deg[u] > deg[v]){
79 uint64_t du = deg[u];
80 uint64_t pu = pos[u];
81 uint64_t pw = bin[du];
82 uint64_t w = vert[pw]; //the vertex situated at the

beginning of the bin
83
84 //swap around the vertices- w goes to the end, u goes to

the beginning
85 if(u != w){
86 pos[u] = pw; vert[pu] = w;
87 pos[w] = pu; vert[pw] = u;
88 }
89
90 //increase starting index of bin @ du
91 bin[du]++;
92 //decrease degree of u
93 deg[u]--;
94 }
95 }

29

96 }
97 return (GrB_SUCCESS);
98 }

30

APPENDIX B: CORE C CODE OF THE GrB_KC ALGORITHM

1 /*
2 * Given an input graph, returns a vector indicating the coreness
3 * number of each node, or the largest k such that the node is a
4 * part of the k-core.
5 *
6 * IN/OUT: *core, a pointer to a GrB_Vector
7 * IN/OUT: kmax, the largest k such that the k-core is non-empty
8 * IN: G, an input graph
9 *

10 */
11 int GrB_KCore (GrB_Vector *core, uint64_t *kmax, LAGraph_Graph G)
12 {
13 uint64_t level = 0;
14 GrB_Vector deg = NULL, curr = NULL, done = NULL, delta = NULL;
15 GrB_Index nvals, todo;
16 LAGraph_Property_RowDegree(G, msg) ;
17 GrB_Vector_dup(°, G->rowdegree) ; //original deg vector is

technically 1-core since 0 is omitted
18 GrB_Vector_nvals(&todo, deg) ;
19
20 while(todo > 0){
21 level++;
22 // Creating curr;
23 GrB_select (curr, GrB_NULL, GrB_NULL, GrB_VALUEEcurr_INT64, deg,

level, GrB_NULL) ; // get all nodes with degree = level
24 GrB_Vector_nvals(&nvals, curr);
25
26 //assign remaining values of deg to output
27 GrB_assign (*core, deg, NULL, level, GrB_ALL, n, GrB_NULL) ;
28 // while curr not empty
29 while(nvals > 0){
30 // Decrease todo by number of nvals
31 todo = todo - nvals ;
32 //add anything in curr as true into the done list (using

structural mask)
33 GrB_assign (done, curr, NULL, (bool) true, GrB_ALL, n,

GrB_DESC_S);
34
35 // Create delta (the nodes who lost friends, and how many they

lost)
36 GrB_vxm (delta, GrB_NULL, GrB_NULL, LAGraph_plus_one_int64,

curr, A, GrB_NULL);
37
38 // Create new deg vector- keep anything not in done vector (

using complement and structural mask)
39 GrB_eWiseAdd(deg, done, GrB_NULL, GrB_MINUS_INT64, deg, delta,

GrB_DESC_RSC) ;
40
41 // Update curr, set new nvals

31

42 GrB_select (curr, GrB_NULL, GrB_NULL, GrB_VALUELE_INT64, deg,
level, GrB_NULL) ;

43 GrB_Vector_nvals(&nvals, curr) ;
44 }
45 }
46 (*kmax) = level;
47 return (GrB_SUCCESS);
48 }

32

APPENDIX C: CORE C CODE OF THE GrB_SKC ALGORITHM

1 /*
2 * Given an input graph and an integer k, returns a vector indicating
3 * the nodes belonging to the k-core of the graph.
4 *
5 * IN/OUT: *core, a pointer to a GrB_Vector
6 * IN: G, an input graph
7 * IN: k, a level at which to apply the k-core algorithm
8 */
9 int GrB_SKCore (GrB_Vector *core, LAGraph_Graph G, int k)

10 {
11 GrB_Vector deg = NULL, curr = NULL, done = NULL, delta = NULL;
12 GrB_Index currnvals, degnvals;
13 LAGraph_Property_RowDegree(G, msg) ;
14 GrB_Vector_dup(°, G->rowdegree) ;
15 GrB_Vector_nvals(°nvals, deg) ;
16
17 GrB_select (curr, GrB_NULL, GrB_NULL, GrB_VALUELT_INT64, deg, k,

GrB_NULL)) ; // get all nodes with degree = level
18 GrB_Vector_nvals(&currnvals, curr);
19
20 while(currnvals > 0 && degnvals > 0){
21 //add anything in curr as true into the done list (using structural

mask)
22 GrB_assign (done, curr, NULL, (bool) true, GrB_ALL, n, GrB_DESC_S))

; //structure to take care of 0-node cases
23
24 // Create delta (the nodes who lost friends, and how many they lost

) (push version)
25 GrB_vxm (delta, GrB_NULL, GrB_NULL, LAGraph_plus_one_int64, curr, A

, GrB_NULL);
26
27 // Create new deg vector- keep anything not in done vector (using

complement and structural mask)
28 GrB_eWiseAdd(deg, done, GrB_NULL, GrB_MINUS_INT64, deg, delta,

GrB_DESC_RSC) ;
29
30 // Update curr, set new nvals
31 GrB_select (curr, GrB_NULL, GrB_NULL, GrB_VALUELT_INT64, deg, k,

GrB_NULL) ;
32 GrB_Vector_nvals(&currnvals, curr) ;
33 GrB_Vector_nvals(°nvals, deg) ;
34 }
35 //Assign values of deg to decomp (all nodes remaining in deg are part

of the k-core)
36 GrB_assign (*core, deg, NULL, k, GrB_ALL, n, GrB_NULL) ;
37 return (GrB_SUCCESS);
38 }

33

APPENDIX D: CORE C CODE OF THE GrB_Decompose ALGORITHM

1 /*
2 * Decomposes a matrix into a subgraph of nodes only
3 * included in the k-core
4 *
5 * IN/OUT: *D, a pointer to a GrB_Matrix containing the decomposition
6 * IN: G, an input graph
7 * IN: *core, a pointer to a GrB_Vector outlining the
8 * core of each node in the graph
9 * IN: k, a level at which to decompose the graph by.

10 * All nodes with a value less than
11 * k in decomp will be omitted from the output graph
12 */
13 int GrB_Decompose (GrB_Matrix *D, LAGraph_Graph G, GrB_Vector *core,

uint64_t k)
14 {
15 GrB_Index nrows, n;
16 GrB_Matrix A = NULL, C = NULL;
17 GrB_Vector deg = NULL;
18
19 A = G->A;
20 GrB_Vector_size(&n, *core) ;
21
22 //Create Vectors and Matrices
23 GrB_Vector_new(°, GrB_INT64, n) ;
24 GrB_Matrix_new(&C, GrB_INT64, n, n) ;
25 GrB_Matrix_new(D, GrB_INT64, n, n) ;
26 //create deg vector using select
27 GrB_select (deg, GrB_NULL, GrB_NULL, GrB_VALUEGE_INT64, *core, k,

GrB_NULL) ;
28
29 //create decomposition matrix
30 GrB_Matrix_diag(C, deg, 0) ;
31 GrB_mxm (*D, NULL, NULL, GxB_ANY_SECONDI_INT64, C, A, GrB_NULL) ;
32 GrB_mxm (*D, NULL, NULL, GxB_MIN_SECONDI_INT64, *D, C, GrB_NULL) ;
33 return (GrB_SUCCESS);
34 }

34

	ABSTRACT
	ACKNOWLEDGMENTS
	INTRODUCTION
	The k-core Decomposition Algorithm
	The Parallel k-Core Decomposition Algorithm (ParK)
	The SuiteSparse:GraphBLAS API
	LAGraph

	METHODS
	SuiteSparse:GraphBLAS
	The GraphBLAS KCore Algorithm
	A Speedier, Less Exhaustive Algorithm
	Decomposing the Graph

	RESULTS
	Timing

	CONCLUSION
	Future Work

	REFERENCES
	APPENDIX A: CORE C CODE OF AN IMPLEMENTATION OF THE BZ ALGORITHM
	APPENDIX B: CORE C CODE OF THE GrB_KC ALGORITHM
	APPENDIX C: CORE C CODE OF THE GrB_SKC ALGORITHM
	APPENDIX D: CORE C CODE OF THE GrB_Decompose ALGORITHM

