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Abstract—A graph can be represented by a sparse array. In
that representation, the basic operations used to construct graph
algorithms are linear algebra operations over algebraic semirings.
The GraphBLAS forum was established in 2013 to define a set
of Basic Linear Algebra Subprograms for Graph Algorithms.
They started with a mathematical definition of the GraphBLAS
followed by a binding to the C Programming language. The result
was the GraphBLAS C specification currently at version 1.3.1.
A robust implementation of the GraphBLAS C specification is
available as the SuiteSparse GraphBLAS library.

The primary motivation of the GraphBLAS was to provide
a high performance foundation for graph algorithms. Many
members of the GraphBLAS forum were also motivated by
the simplicity of graph algorithms expressed in terms of linear
algebra. This simplicity, however, is difficult to fully appreciate
when the programming interface is the C programming language.
To see the full expressive power of the GraphBLAS, a high
level interface is needed so the elegance of the mathematical
underpinnings of the GraphBLAS is apparent.

In this paper we present python (pygraphblas) and MATLAB
(@GrB) interfaces to the SuiteSparse implementation of the
GraphBLAS. We use a subset of the GAP benchmark suite to
demonstrate the simplicity of these GraphBLAS interfaces and
show that in most cases, little performance is sacrificed by moving
to the more productive Python and MATLAB interfaces.

Index Terms—Graph Algorithms, Linear Algebra, Graph-
BLAS

I. INTRODUCTION

The GraphBLAS have come a long way since the effort
started in 2013 with a manifesto [[1]] calling for standard building
blocks for graph algorithms expressed in the language of
linear algebra. The GraphBLAS mathematics [2] have been
formally defined, a binding of the math to the C programming
language [3] was released, and a high quality implementation
of the C GraphBLAS specification exists with the SuiteSparse
GraphBLAS library [4] . The group continues to enhance the
GraphBLAS specification and is working to create a library of
high level algorithms on top of the GraphBLAS (LAGraph).

Much of the focus in the GraphBLAS community has been
on defining core specifications and delivering high performance.
It is not surprising that so much attention is on performance.
We can measure run times and compare against a cost model
for a system. Performance can be quantified, hence it is all too
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often how we compare different systems for expressing graph
algorithms.

To most programmers, however, performance just needs to
be “good enough”. As long as an algorithm scales to handle
interesting graphs and runs in a reasonable amount of time,
performance is not the most important criteria. Time-to-solution
is far more important and for all but the largest problems, the
time needed to solve a problem is dominated by the time to
write and debug the software. In other words, as long as the
performance is reasonably good, the most important feature of a
framework for expressing graph algorithms is programmability.

Software researchers don’t often discuss programmability. It
is hard to quantify and therefore difficult to turn into simple
numbers that can be compared between alternative systems.
We submit, however, that programmability is vitally important
and a feature of graph algorithm systems that deserves much
more attention.

In this paper, we will explore the programmability of the
GraphBLAS. It is hard to see the benefits of the GraphBLAS
as an abstraction for writing high quality software when it is
approached through the C programming language. If expressed
in terms of productivity languages such as Python or MATLAB,
the programmability benefits of the GraphBLAS become clear.
In particular, the mathematics of an algorithm are clearly
apparent in the source code. The source code is sparse without
the clutter required of the C GraphBLAS API. Finally, the
code is easy to read and comprehend.

In this paper, we explore Python and MATLAB interfaces
to the SuiteSparse GraphBLAS library. We use a subset of
the GAP benchmark suite to measure the abstraction overhead
of the high level interfaces relative to calling the C code
directly. We show the code for both interfaces and invite the
reader to notice how clear the underlying algorithm is in the
code. This is the major contribution of this paper. Not the
performance numbers or additional benchmark results, but the
conversation about frameworks for expressing graph algorithms
and programmability. We believe we should all spend more
time looking at code and less time talking about run times for
different programs.



II. THE GRAPHBLAS

Consider a graph with n vertices. We can represent this graph
as an n-by-n adjacency matrix A. The rows and columns of
A correspond to the vertices while the non zero elements of
A represent the edges with a;; as the weight of the edge from
vertex ¢ to vertex j. Most graphs are sparsely connected, hence
the adjacency matrix for a graph is usually sparse.

Consider a second k-by-n matrix B. We can use this matrix
to select a subset of k vertices from the graph. The elements
of B are 0 accept for those selecting a vertex with b;; equal
to 1 to select the ¢th vertex as the jth element of the vertex
subset. The familiar matrix product over real arithmetic B x A
returns the cost (using the edge weights from A) of reaching
the set of vertices adjacent to the vertices selected by B. This
fundamental operation can be used to construct a wide range
of graph algorithms.

The expressive power of the GraphBLAS is greatly enhanced
through the use of algebraic semirings. The pattern of opera-
tions from the basic linear algebra operations are used, but the
operators and interpretation of values in matrices and vectors
(the domain) can be changed using a semiring.

In a semiring, the add and multiply operators in conventional
matrix multiplication are replaced with an additive monoid
(an associative and commutative operator with an identity
value) and a multiplicative operator. The conventional semiring
is PLUS-TIMES. Determining the next level of nodes in a
breadth-first search (BFS) can be written as a matrix-vector
multiplication using the Boolean semiring (AND-OR), or if the
least-numbered parent of a node is needed, the MIN-FIRST
semiring can be used, where the FIRST operator is f(z,y) = x.
The FIRST operator is handy as a multiplicative operator
when computing the vector-matrix multiply y = x’A, when
the sparse adjacency matrix A is unweighted (or has weights
that should be ignored).

TABLE I: GraphBLAS Operations

function name description GraphBLAS notation
GrB_mxm matrix-matrix mult. C(M) =C® AB
GrB_vxm vector-matrix mult. ~ w’(m’) =w’ ©u'A
GrB_mxv matrix-vector mult.  w(m) =w ® Au
GrB_eWiseMult element-wise, CM)=C0o (A®B)
set-intersection wim) =wQ® (u® V)
GrB_eWiseAdd element-wise, CM)=C0Oo(A@B)
set-union w(m) =w 0o (udv)
GrB_extract extract submatrix CM)=C0oA(G4,))
w({m) =w O u(i)
GrB_assign assign submatrix CM)(1,j) =C(i,j)) A
w(m)(i) = w(i) Ou
GrB_apply apply unary op. C(M) =Cof(A)
wim) = wof(u)
GrB_reduce reduce to vector w(m) = wO[D;A(:, J)]
reduce to scalar 5 =350 [@i; A1, )]
GrB_transpose transpose C(M)=CQoA’
GrB_kronecker  Kronecker product ~C(M) = C ® kron(A, B)

Table [[] lists all GraphBLAS operations, where AB denotes
the multiplication of two matrices over a semiring. Upper case
letters denote a matrix, and lower case letters are vectors. The
©® is a binary accumulator operator.

The mask is a fundamental part of GraphBLAS, written as
C(M) = ..., allowing only selected parts of C to be updated.
For example, when traversing the nodes in a BFS, nodes that
have already been visited should be excluded. If q is a sparse
Boolean vector holding the set of nodes in the current level,
then all the nodes adjacent to any node in q is given by q'A.
To exclude nodes already seen, a mask can be used. Suppose v
is a vector of size n where v; = 0 if node 7 has not been visited.
If the mask m; is true, then this means the ith entry of the
result can be modified. In this case, the vector v can be used
as a mask, but it must be complemented, as q'(—v) = q’A.

III. GAP BENCHMARK SUITE

To understand the performance of graph algorithm frame-
works, a representative subset of algorithms over multiple
graphs should be considered. In this paper, we use the GAP
benchmark suite [S[]. This benchmark suite uses five input
graphs selected for topological diversity and five graph kernels
that cover the more common use cases from the literature.
The GAP benchmark suite also includes well-optimized ref-
erence codes multithreaded with OpenMP to provide a high-
performance baseline for assessing performance.

A common result from the study of graph algorithms is that
the graph processing is data-driven. The topology of a graph
can have a greater impact on the performance of a workload
than the algorithm. Hence, the GAP benchmark suite uses the
five input graphs listed in Table [l These graphs represent both
real-world data (Road, Twitter, Web) and synthetic generators
(Kron & Urand).

For the five kernels used in the GAP benchmark, specific
algorithms are not specified. The solutions for each kernel,
however, are specified with enough clarity to avoid ambiguity.
The kernels contain an interesting mix of traits, and are
sufficiently scalable to run on large graphs. In this paper, we
use two of the five kernels: PageRank (PR) and Betweenness
Centrality (BC).

A. Betweenness-centrality

The node-betweenness-centrality of a node ¢ in a graph is a
weighted sum of the number of shortest paths that pass through
node v. If o4 is the number of unique shortest paths from
node s to node ¢, and o (i) is the number of those paths that
go through node ¢, then the betweeness centrality of node
is >, 12i(0st(i)/0st). It is costly to compute for all pairs s
and ¢, so practical methods rely on sampling, where a small
number of source nodes s are selected at random.

The Brandes algorithm [[12] for computing the node
betweenness-centrality starts with a set of source nodes, and
performs a forward breadth-first search pass to find and count
the shortest paths through all nodes. A backward pass from the
last level back to the source nodes then computes the centrality
of each node.

B. PageRank

The PageRank kernel (PR) computes a measure of the
importance (rank) of each vertex in a graph based on the



Name Description # Vertices (M) | # Edges (M) | Directed | Degree | Degree Distribution | Approx. Diameter | References
Urand Uniform Random Graph 134.2 2,147.5 N 16.0 normal 7 [6]
Kron Kronecker Synthetic Graph 134.2 2,111.6 N 15.7 power 6 [71, 18]
Twitter | Twitter Follow Links 61.6 1,468.4 Y 23.8 power 14 [}
Web Web Crawl of .sk Domain 50.6 1,930.3 Y 38.1 power 135 [10]
Road Roads of USA 23.9 57.7 Y 2.4 bounded 6,304 [11]

TABLE II: Graphs used for evaluation

rank of the nodes connected to the vertex. For a graph with n
vertices, the PageRank algorithm is iterative. It starts with the
PageRank vector r of length n initialized to a small positive
number (usually 1/n) and then updates the vector according
to the recurrence relation:

() = (1=d)/n+d Yy (ri-1(u)/dou(u))

uFv

where v and u are vertices, d is a damping factor set equal to
0.85 and d,,,; is a vector for the out degree for each vertex. This
is an iterative algorithm. The GAP benchmark suite requires an
implementation to iterate until the sum of the absolute values of
the differences of two successive iterations is less than 1074,

IV. PYGRAPHBLAS

The Python programming language emphasizes simplicity
and readability, which aligns well with the high level usability
goals of the GraphBLAS. Like MATLAB, pygraphblas code
tends to look very similar to the linear algebraic description
of an algorithm, and they both share a spirit of clarity and
fast experimentation in exchange for some runtime overhead,
although this overhead is demonstrated to be negligible for
large graphs.

Python has evolved heavily into a data analysis and ma-
nipulation language, where users express high level concepts
with high level tools like numpy and pandas, but still have the
performance gained with low level optimizations applied. Much
like numpy uses BLAS to accomplish this goal, pygraphblas
uses the GraphBLAS library to do the actual work. Python’s
job is merely to schedule the work in a clear way. By standing
on the shoulders of performance optimizers who refine these
core libraries, we can see even further with less effort.

A key difference between the Python and MATLAB imple-
mentations is Python allows functions to modify their input
parameters, so this gives Python an edge as shown in the
benchmark results runtimes for Betweenness Centrality on the
road data set. For the most part, Python benchmarking times
were equal to the LAGraph C runtimes within the bounds of
error due to timing jitter, but some MATLAB runtimes were
slower due to the nature of this limitation in MATLAB.

Another important feature currently available only to Python
and C are user-defined types. These are custom matrix element
(graph node) types that have custom semiring operations.
pygraphblas uses the numba JIT compiler to compile Python
functions into user-defined type operations. An example of
using this feature can be found in the pygraphblas demo source
as a Jupyter Notebook [[13]].

Figures (1| and [2| describe the the PageRank and Betweenness
Centrality algorithms from the GAP benchmark used to
generate the performance results presented in Section

V. MATLAB INTERFACE TO GRAPHBLAS

SuiteSparse:GraphBLAS [4]] includes a MATLAB interface,
in which the GraphBLAS matrix becomes a @GrB MATLAB
object. All operators and many built-in functions have been
overloaded. If A and B are MATLAB and/or GraphBLAS
sparse matrices, then the MATLAB statement C=A*B is matrix
multiplication over the standard semiring. A GraphBLAS sparse
matrix can have many more types than a MATLAB sparse ma-
trix; MATLAB has double, logical, and double complex;
GraphBLAS adds 8 kinds of sparse integer matrices (signed
and unsigned, in 8, 16, 32, and 64 bits), and single complex.
The C API of GraphBLAS allows for arbitrary user-defined
types, but this feature is not available through the MATLAB
interface.

In the MATLAB interface, a semiring is specified as a
string of the form add.mult.type, where add is the additive
monoid, mult is the multiplicative operator, and type is the
type of the inputs = and y for the multiplicative operator. In this
notation, the expression C=A*B uses the conventional semirings:
+.%*.double for real matrices, or +.*.double complex for
complex ones. GraphBLAS allows for thousands of semirings,
combining many monoids ('+', '*', 'min', 'max', and
'any' for most types; logical monoids '|', '&', 'xor',
'xnor' for the MATLAB 'logical' type, bitwise monoids
'bitand', 'bitor', 'bitxor', 'bitxnor' for integers),
with dozens of binary multiplicative operators ('1st', '2nd"',
'+, 't/ and so on).

A. PageRank in GraphBLAS+MATLAB

At each iteration, the pagerank method computes an update
to the current rank vector r, with the PLUS-SECOND semiring
("+.2nd’' in MATLAB). The SECOND function is f(x,y) =y,
and it allows the edge weights of A to be ignored when
computing r+ = A’t (line 20, right side of Figure . It
performs its computations in 32-bit single precision, which
MATLAB cannot do with its sparse matrices, but which
GraphBLAS supports.

B. Betweenness centrality in GraphBLAS+MATLAB

The MATLAB method for computing the centrality is
illustrated on the right side of Figure 2] The forward pass
is a bulk BFS (with ns source nodes), so the frontier matrix
is ns-by-n. The frontier is updated much like the BFS, but
with a different semiring. The additive monoid is PLUS, not



1 def pagerank(A, d, damp=0.85, itermax=100):

2 # A: input graph, d: vector of out-degree for A
3 # damp: damping factor, itermax: max iterations
4 n = A.nrows

5 # initial PageRank: all nodes have rank 1/n

6 r = Vector.dense(FP32, n, 1.0 / n)

7 t = Vector.sparse(FP32, n)

8 # scale the out-degree vector by the damping factor
9 d.assign_scalar(damp, accum=FP32.DIV)

10 tfactor = (1 - damp) / n

11 for i in range(itermax):

12 # swap t and r every iteration

13 temp =t ; t=r ; r = temp

14 w=1t/d

15 r[:] = tfactor

16 #r += A * (t./d)

17 A .mxv(w, out=r, accum=FP32.PLUS,

18 semiring=FP32.PLUS_SECOND, desc=TransposeA)
19 t-=r

20 # halt if norm (r-t,1) < le-4

21 t.apply(FP32.ABS, out=t)

2 rdiff = t.reduce_float()

23 if rdiff < le-4:

24 break

25 return r

1 function r = pagerank (A, d, damp, itermax)

2 % r = PageRank of graph A, where A is n-by-n,

3 % d: vector of out degrees of A.

4 % damp: damping factor, itermax: max iterations

s if (nargin < 3) damp = 0.85 ; end

¢ if (nargin < 4) itermax = 100 ; end

7 n=size (A, 1) ;

8 % initial PageRank: all nodes have rank 1/n

9 r = GrB.ones (n, 1, 'single') / n ;

10 % scale the out-degree vector by the damping factor
nd=d/ damp ;

12 % teleport factor:

13 tfactor = cast ((1 - damp) / n,
14 desc.in® = 'transpose' ;

15 for iter = l:itermax

'single') ;

16 t=r;

17 % r (:) = tfactor ;

18 r = GrB.expand (tfactor, r) ;

19 %r +=A"* (t./d)

20 r = GrB.mxm (r, '+', A, '+.2nd', t./d, desc) ;
21 % halt if norm (r-t,1) < le-4

2 if (GrB.normdiff (r, t, 1) < le-4)

23 break ;

24 end

25 end

Fig. 1: PageRank in Python and MATLAB

MIN or OR, so that the number of paths can be counted (see
lines 28 and 44) with the +.1st semiring.

The parameter drc is a GraphBLAS descriptor that modifies
the operation. In this case, drc states that the mask is
complemented, and that the output (frontier) should be
cleared of all entries after it is used in the matrix multiply, but
before it is written to by the assignment.

Another example of a GraphBLAS operation is element-
wise “multiplication” (a Hadamard product). This is A.*B in
MATLAB notation, except that in GraphBLAS, any binary
operator can be used. The result is the set intersection of the
entries in the two operands. This is used with an accumulator
('+"), on line 46, to compute bc+=W. *paths.

C. Limitations of GraphBLAS+MATLAB

With one exception (subsasgn, discussed below), user-
written MATLAB m-files cannot modify their inputs. However,
many GraphBLAS operations perform small incremental modi-
fications to their input/output matrix (the matrix C or vector w
in Table [). This is particularly true if a very sparse mask M
is used. With C(M) = C ® AB, most of C does not change,
and it can be modified in place in many use cases of the C
API for GraphBLAS. In MATLAB, we currently do:

Cout = GrB.mxm (Cin, M, accum, semiring, A, B, desc) ;

In this case, the input matrix Cin is not incrementally
modified to produce the output matrix Cout. Instead, an
entirely new output matrix Cout is constructed. As will be
seen in Section [V this can have serious performance issues
when the updates are very sparse in the 4-source BFS in
betweenness-centrality for high-diameter graphs (the Road
graph in particular, as seen in Table [I1I) below).

A similar case occurs when computing C(I,J)=A. With
GraphBLAS matrices, this can be orders of magnitude faster
than the MATLAB built-in expression, particularly when the
matrix A is large, but it could be faster still. In its C API,
GraphBLAS provides a non-blocking mode where the updates
to C are left pending, and done in bulk later on, but this cannot
be exploited via its MATLAB interface.

Starting with A=spalloc(n,n,e) (an empty MATLAB
sparse matrix with space for e entries), or A=GrB(n,n) (an
empty GraphBLAS sparse matrix) constructing a matrix with
e entries one entry at a time takes O(e?) time, if the entries
are not provided in column-major order. Both the MATLAB
documentation and MATLAB Code Analyzer recommend
against the following [14]:

o]

(n,n) ; % or spalloc(n,n,e) or sparse(n,n)
l:e

some row index

some column index

some scalar value
i,7) = x;

A = Gr
for

B> RO

A an

end

GraphBLAS provides an optimal solution to this issue, in
its C API, where the following takes only O(eloge) time if
the entries are in arbitrary order, or O(e) time if the entries
are inserted in row- or column-major order:

GrB_Matrix_new (&A, GrB_FP64, n, n) ;
for (int64_t k = 0 ; k < e ; k++)

{
GrB_Index i = some scalar value
GrB_Index j = some scalar value
double x = some scalar value
GrB_Matrix_setElement (A, x, i, j) ;
}




def betweenness(sources, A, AT):

1

2 # input: set of source nodes; matrix A and transpose AT.
3 # output is n-by-1: centrality(i) = score for node i.

4 # initialize frontier and path count matrix (paths):

5 n = A.nrows

6 ns = len(sources)

7 paths = Matrix.dense (FP32, ns, n, 0)

8 frontier = Matrix.sparse(FP32, ns, n)

9 for i, s in enumerate(sources):

10 paths[ i, sources[i]] =1
11 frontier[i, sources[i]] = 1

15 # S[k] is the pattern of the frontier at level k:

16 S =[]

17 # first frontier: frontier<!paths> = frontier*A

18 frontier.mxm(A, out=frontier, mask=paths,

19 semiring=FP32.PLUS_FIRST, desc=descriptor.oocr)

20

21 # breadth-first search stage:

2 for depth in range(n):

23 # S[depth] = pattern of frontier, as a bool matrix
24 s = Matrix.sparse(BOOL, ns, n)

25 frontier.apply(BOOL.ONE, out=s)

26 S.append(s)

27 # accumulate path counts: paths += frontier

28 paths.assign_matrix(frontier, accum=FP32.PLUS)

29 # update frontier: frontier<!paths> = frontier*A
30 frontier.mxm(A, out=frontier, mask=paths,

31 semiring=FP32.PLUS_FIRST, desc=descriptor.oocr)
32 if frontier.nvals ==

3 break

34

35 # betweenness centrality computation phase:

36 bc = Matrix.dense(FP32, ns, n, 1)

37 W = Matrix.sparse(FP32, ns, n)

38 for i in range(depth - 1, 0, -1):

39 # update from successors, mask with kth frontier:
40 # W<S[k]> = bc ./ path

41 bc.emult(paths, FP32.DIV, out=W,

42 mask=S[i], desc=Replace)

43 # W<S[k-1]> = W*A'

44 W.mxm(AT, out=W, mask=S[i-1],

45 semiring=FP32.PLUS_FIRST, desc=Replace)

46 # bc += W .* paths

47 W.emult(paths, FP32.TIMES, out=bc, accum=FP32.PLUS)
48

49 # centrality (i) = sum (bc(:,i)) - ns, for all nodes 1i:
50 centrality = Vector.dense (FP32, n, -ns)

51 bc.reduce_vector(accum=FP32.PLUS, out=centrality,

52 desc=TransposeA)

53 return centrality

1 function centrality = betweenness (sources, A, AT)

2 % input: set of source nodes; matrix A and transpose AT.
3 % output is n-by-1: centrality(i) = score for node 1i.

4 % initialize frontier and path count matrix (paths):

s n = size (A,1) ;

6 ns = length (sources) ;

7
8
9

paths = GrB (ns, n, 'single', 'by row') ; paths (:,:) =0 ;
frontier = GrB (ns, n, 'single', 'by row') ;
for i = 1:ns

10 paths (i, sources (i)) =1 ;

11 frontier (i, sources (i)) =1 ;

12 end

13 drc = struct ('out', 'replace', 'mask', 'complement') ;

14 drs = struct ('out', 'replace', 'mask', 'structural') ;

15 % S{k} is the pattern of the frontier at level k:
16 S = cell (1, n) ;

17 % first frontier: frontier<!paths> = frontier*A

18 frontier = GrB.mxm (frontier, paths, '+.lst',

19 frontier, A, drc) ;

20

21 % breadth-first search stage:

2 for depth = 1:n

23 % S {depth} = pattern of frontier, as a logical matrix
24 S {depth} = spones (frontier, 'logical') ;

25 % accumulate path counts: paths += frontier

26 paths = GrB.assign (paths, '+', frontier) ;

27 % update frontier: frontier<!paths> = frontier*A
28 frontier = GrB.mxm (frontier, paths, '+.1st',

29 frontier, A, drc) ;

30 if (GrB.entries (frontier) == 0)

31 break ;

32 end

313 end

35 % betweenness centrality computation phase:

3 bc = GrB (ns, n, 'single', 'by row') ;
37 be (:,:) =1 ;
33 W= GrB (ns, n, 'single', 'by row') ;

39 for k = depth:-1:2
40 % update from successors, mask with kth frontier:
41 % W<S{k}> = bc ./ path

2 W = GrB.emult (W, S{k}, '/', bc, paths, drs) ;

43 % W<S{k-1}> = W*A'

44 W = GrB.mxm (W, S{k-1}, '+.1st', W, AT, drs) ;

45 % bc += W .* paths

46 bc = GrB.emult (bc, '+', W, '*', paths) ;

47 end

48

49 % centrality (i) = sum (bc(:,i)) - ns, for all nodes 1i:
so centrality = GrB (n, 1, 'single', 'by col') ;

s1 centrality (:) = -ns ;

GrB.vreduce (centrality, '+', '+', bc,

(
52 centrality =
('in®@', 'transpose') ;

53 struct

Fig. 2: Betweenness-Centrality in Python and MATLAB

The updates are placed in an unordered list and A is
constructed once the work is done, via the GraphBLAS non-
blocking mode. However, in MATLAB, the resulting matrix A
cannot be modified if passed as an input to another GraphBLAS
m-file in MATLAB, and thus A must be finalized after each
assignment. This leads to O(e?) time if this construction
is performed in MATLAB as in the first example above,
with A(i, j)=x. The MATLAB method takes O(e) time in
only one case, where the entries are inserted in column-
major order in a MATLAB sparse matrix A initialized with
A=spalloc(n,n,e).

The inability to fully exploit non-blocking mode is currently

the most critical limiting factor in using GraphBLAS via
MATLAB.

There is one strategy that we are exploring that will mitigate
against this issue, in one important case: C(I,J)=A or C(M)=A
when C is dense and I and J are very small or M is very sparse.

Our MATLAB interface in SuiteSparse:GraphBLAS over-
loads the C=subsasgn(C,S,A) method, so that the syntax
C(I,3)=A and C(M)=A can be used for @GrB objects in
MATLAB (the input S is a cell array containing the index
vectors I and J, or the mask matrix M). The subsasgn method
is the single exception in MATLAB where C can be modified
in-place, but we have not yet been able to exploit this feature.



The difficulty is that the subsasgn m-file must first extract
the contents of the C object, pass it to a C mexFunction
interface to the C GraphBLAS library, which must then modify
the matrix C in place, and the resulting content must be inserted
back into the @GrB object C. This should be feasible, but we
have not yet been able to exploit this technique in our MATLAB
interface to GraphBLAS. If it can be done, it would drastically
reduce the time to compute the betweenness centrality on the
Road graph.

Even if this technique is exploited, however, it will not
address the repeated insertion of individual entries in arbi-
trary order via the syntax A(i,j)=x. That approach will
always be slower in the MATLAB interface to GraphBLAS
when the entries are inserted out of order, in contrast to
GrB_Matrix_setElement(A,x,i,j) in the C interface to
GraphBLAS. There are better ways to build a MATLAB or
GraphBLAS sparse matrix, by passing all the entries to a single
constructor function: A=sparse(I,J,X) to build a MATLAB
sparse matrix, or A=GrB.build(I,J,X) to build the same
matrix as a @GrB object in MATLAB.

Thus, in spite of the inability of most MATLAB m-files and
mexFunctions to modify their inputs, MATLAB remains a
powerful and expressive tool for writing graph algorithms via
GraphBLAS. As presented in Section graph algorithms are
typically able to achieve comparable performance as the same
algorithm written in the C interface to GraphBLAS, while
being much easier to write.

VI. PERFORMANCE RESULTS

Table compares the performance of four different im-
plementations of the PageRank and Betweenness-Centrality
algorithms, on an Intel® Xeon® E5-2698 v4 CPU with 20
hardware cores. The same compiler (gcc 5.4.0) was used, and
40 threads were used for each method (the value returned
by omp_get_max_threads), with hyperthreading enabled.
SuiteSparse:GraphBLAS v3.3.0 [[4] was used.

« the GAP benchmark code by Scott Beamer [J5].

o LAGraph [15], using the C API of GraphBLAS.

« pygraphblas with Python 3.8, presented in Section

« @GrB with MATLAB R2018b, presented in Section E

Benchmark Urand | Kron | Twitter | Web Road
PR: GAP benchmark 25.3 19.8 15.2 53 1.0
PR: LAGraph (in C) 27.7 22.1 17.9 8.9 1.5
PR: pygraphblas 28.2 22.8 18.3 | 10.3 23
PR: MATLAB @GrB 60.3 56.2 52.6 | 39.5 13.8
BC: GAP benchmark 46.4 315 10.8 3.0 1.5
BC: LAGraph (in C) 62.2 40.6 14.1 79 61.2
BC: pygraphblas 61.9 40.4 13.6 7.8 61.1
BC: MATLAB @GrB 76.2 53.5 240 | 314 | 1773.1

TABLE III: Performance results (run time in seconds)

The Python results show that pygraphblas adds very little
interpretation overhead to GraphBLAS algorithms, as compared
with the C code in LAGraph, since the bulk of the work is
performed by GraphBLAS. Python’s job is merely to schedule
the work of matrix operations in an optimal order. Because

Python uses the non-blocking mode SuiteSparse:GraphBLAS,
where operations can return in lazy fashion before being
completed, the Python interpreter can quickly schedule many
operations and let the implementation pick the best approach
for deferring work until the last possible moment.

The only significant difference between the Python and C
benchmark times were for the Road graph, which has a very
high diameter but is otherwise a small graph. The number of
iterations is high but the actual amount of parallelizable work
per iteration is low. This forces to the surface a very small
but measurable per iteration serial overhead of the interpreter’s
inner loop. For larger graphs that can take full advantage of
multi-core systems, like the rest of the datasets measured, the
Python interpreter overhead is negligible.

The MATLAB implementation uses an object-oriented
interface @GrB, and a set of C mexFunction interfaces. The
implementation is elegant and expressive. For many of the
larger problems, the performance is competitive. It is limited
by the inability of a MATLAB mexFunction to modify its
inputs. This is particularly true of the Road graph for the BC
problem. The graph has a very high diameter, and each iteration
makes a small change to a dense matrix of size 4-by-n. The
entire matrix must be reconstructed at each iteration, leading
to a high run time. As a result, each iteration takes Q(n) time,
while doing as little as (1) useful work.

Subjectively speaking, the small cost in runtime associated
with using Python, and in most cases MATLAB, is traded
off with a vast increase in code readability, expressibility,
and rapid development time. Users can gain near-optimal
performance, within a few percent of state of the art hand-
crafted C code, with no compilation complexity or highly
specific knowledge of platform optimization. For example,
we wrote a high-performance deep neural network inference
algorithm in MATLAB and C in a mere 20 minutes; the code
worked the first time we tried it, and it was 100x faster than
the reference implementation [[16].

This benefit also carries from one platform to the next. A
GraphBLAS algorithm can be developed on a laptop, and then
copied verbatim to a GPU cluster with no changes needed
to take advantage of a completely different architecture. A
GPU implementation of SuiteSparse:GraphBLAS is in progress,
in collaboration with NVIDIA, as is an implementation that
exploits optimized kernels in the Intel Math Kernel Library, in
collaboration with Intel.

VII. CONCLUSION

We have shown that programmers can use Python and MAT-
LAB interfaces to the GraphBLAS without unduly sacrificing
performance. These interfaces realize a critical motivation for
many of us working on the GraphBLAS; namely, that graph
algorithms, when expressed in the language of linear algebra,
are quick to develop and easy to understand.
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