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ABSTRACT 

TriPoll In GraphBLAS  

Abeer Waheed 

Department of Computer Science and Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. Tim Davis 

Department of Computer Science and Engineering 

Texas A&M University 

Creating Graph algorithms as fast as possible, in as little time as possible, is a key goal 

for countless data scientists. To this end, GraphBLAS can be used. GraphBLAS is a standard that 

defines sparse matrix operations on semirings. When these operations are applied to matrices, 

they work in a similar manner to traditional Graph computations, and can further be used to write 

Graph Algorithms and solve Graph problems. This allows Graph Algorithms to leverage existing 

parallel techniques found in the heavily researched and older field of linear algebra, allowing for 

faster development times, lower complexity and strong performance. Using SuiteSparse: 

GraphBLAS (an implementation of the GraphBLAS standard), a GraphBLAS implementation of 

the TriPoll algorithm is built, and the process and results are examined. The goal is not 

necessarily to build the fastest algorithm, but rather to see what GraphBLAS can achieve while 

balancing complexity and speed. TriPoll is an algorithm that is capable of surveying triangles (3-

cycles) in Graphs with metadata on them. TriPoll was chosen to be implemented in GraphBLAS 

because it was recently published, has useful functionality, and is relevant, especially for social 

networks.  
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1. INTRODUCTION 

1.1 GraphBLAS Introduction and Overview 

GraphBLAS is a standard that defines matrix and vector operations built using semirings, 

which can be applied to matrices and vectors to mimic traditional Graph operations. Kepner and 

Gilbert [1] provide a deeper understanding of how matrix computaions can map to Graph 

Algortihms. Using GraphBLAS allows users to leverage parellel techniques found in linear 

algebra to improve preformance while keeping development time down.  Using the GraphBLAS 

standard has several advantages, including, but not limited to, opaque data types (which allow 

the user to focus on the algorithm rather than the minute details, allowing users to apply bulk 

operations on Graphs without worrying about each individual node and edge), and portibility 

(meaning that as a standard, if a new implementation of GraphBLAS is released that happens to 

be faster than the current implementation, the code should not have to be changed). These 

advantages allow users of GraphBLAS to provide a high level view of an algorithm in linear 

algebra, which allows for a reduction in development time and still provides competetive 

performance. Dr. Tim Davis showed the versatility of GraphBLAS in [4], where Dr. Davis was 

able to solve the Sparse Deep Neural Network Graph Challenge in 20 minutes of programmer 

time. GraphBLAS can, and already is, being used to solve large scale computational problems. 

1.1.1 Adjacency Matrices 

One of the most crucial elements of understanding GraphBLAS, and using linear algebra 

on Graphs, is understanding adjacency matrices. Traditionally, Graphs are represented using 

adjacency lists, which provide a list of all the nodes that are connected to a single node through 

edges. Adjacency matrices are another way to represent Graphs in the form of matrices, and can 



4 

 

be done for all Graphs regardless of type. Given an adjacency matrix A, if A (i, j) has a value, 

then there exists an edge from i to j in the graph. In this context, i represents the index of the row, 

j represents the index of the column, and A (i, j) is the value at row i and column j. So, for 

example, in a Graph, if there is an edge from Node 3 to Node 4, then in the adjacency matrix 

there should be a corresponding value at row 3, column 4 (A (3,4)). This can be easily extended 

to edge weights, where the value of the matrix entry A (i, j) represents the weight of the edge 

from i to j. If A (i, j) is 0, then the edge still exists, but its value is 0. Only when A (i, j) does not 

exist (has no value) can it be said that no edge from i to j exists. A value in A (i, j) does not 

imply that A (j, i) is present, which allows matrices to represent graphs that have direction. 

Matrices also need not be squares (the number of rows need not equal the number of columns), 

which can be useful when analyzing certain special graphs, such as bipartite graphs (among other 

Graphs). When analyzing larger Graphs, a question that may arise is how GraphBLAS stores 

such large Graphs. Graphs can have millions, or even billions of edges, so how they are stored 

should be of concern, as it may seem that matrices require extensive space to account for entries 

that do not exist (edges between nodes that do not exist). The answer lies in GraphBLAS’s use of 

opaque data structures. Edges that are not present in the Graph are not represented in the 

underlying data structure used to create the matrix, which allows for encoding of larger Graphs 

into GraphBLAS. One of the key advantages of GraphBLAS is that the underlying data structure 

does not matter to the user, and has instead been handled by the creator of the GraphBLAS 

implementations.  
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1.2 GraphBLAS Object Types 

GraphBLAS includes 9 types of objects, which can be used in mathematical operations. 

A full explanation of the types can be found in the GraphBLAS Specification [2]. The 9 types of 

objects are as follows:  

1. Types (GrB_Type)  

2. Unary Operators (GrB_UnaryOp)  

3. Binary Operators (GrB_BinaryOp)  

4. Select Operators (GrB_Select) 

5. Monoids (GrB_Monoid) 

6. Semirings (GrB_Semiring) 

7. Descriptors (GrB_Descriptor) 

8. Vectors (GrB_Vector) 

9. Matrices (GrB_Matrix) 

1.2.1 Types (GrB_Type) 

The predefined, built-in types for GraphBLAS are as follows: GrB_BOOL, GrB_INTx, 

GrB_UINTx, GrB_FP32, and GrB_FP64, where x represents 16, 32, or 64 bits. Any of these 

types, along with most user defined types (as long as they are static and contiguous) can be used 

when creating Matrix or Vector objects. 

1.2.2 Unary Operators (GrB_UnaryOp) 

A Unary Operator is an operator which acts on elements of GraphBLAS objects 

(Matrices or Vectors). It acts as a function with a single input, z = f(x) (z = -x, or z = x*x for 

example). GraphBLAS has several built-in Unary Operators, and the SuiteSparse implementation 
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extends these Operators with even more that do not fit in the spec. Users can also create their 

own Unary Operators.  

1.2.3 Binary Operators (GrB_BinaryOp) 

Similar to Unary Operators, a Binary Operators also acts on elements of GraphBLAS 

objects. The difference is that Binary Operators require two inputs, and act as a function  

z = f (x, y) (z = x+y, or z = x-y for example). GraphBLAS has several built-in Binary Operators, 

and the SuiteSparse implementation extends these Operators with even more built-in Operators. 

Users can also create their own Binary Operators. 

1.2.4 Select Operators (GrB_Select) 

A select Operator chooses whether or not to keep a certain value in a GraphBLAS object. 

For example, selecting the lower triangular part of a Matrix, a useful and essential operation in 

many algorithms, can be done using a GrB_Select operation. 

1.2.5 Monoids (GrB_Monoid) 

Monoids are Binary Operators (z = f (x, y)) with additional constraints, those being they 

must be associative, commutative, the types of z, x, y must be the same, and the identity value 

must follow the pattern f (x, c) = f (c, x) = x, where c is the identity value for the specific 

monoid. For example, multiplication is a monoid, where the identity value is 1 since x*1 = 1*x = 

x. User-created monoids are also possible when given an operator and an identity value that 

follow the above constraints. 

1.2.6 Semirings (GrB_Semiring) 

Semirings may well be the most important part of the GraphBLAS types when trying to 

create a Graph algorithm using GraphBLAS. It consists of an additive monoid and a 

multiplicative operator that is used in the place of a matrix multiply. Traditionally, a matrix 
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multiply is the dot product of the rows and columns of two matrices, where the rows of the first 

matrix are multiplied by the corresponding elements in the column of the second matrix, and 

then summed together to get a single element in the resulting matrix. However, the Semiring 

alters the traditional matrix multiply by replacing the multiplication with a new multiplicative 

operator, and the addition with an additive monoid. The traditional matrix multiplication 

becomes the plus-times semiring when thinking in terms of semirings. The multiplicative 

operator that replaces the scalar multiplication found in the plus-times semiring can be any 

binary-operator, even user defined ones, so long as the output type matches the type of the 

additive monoid. Not even counting user defined semirings, a large number of unique semirings 

can be created and used on Matrices. 

 The use of these semirings usually corresponds to useful Graph operations. For example, 

using the min-plus semiring, which replaces the traditional addition operation with the minimum 

operation, and the traditional multiplication operation with the plus operation, results in 

corresponding entries in the matrix being added, and the minimum being placed in the resulting 

matrix. This turns out to be quite useful for shortest path algorithms. Another example would be 

the Matrix-Vector multiply, in which the neighbors of a node (the nodes that a single node can 

reach through an edge) can be found and, if built upon, can be used to create the Breadth-First-

Search algorithm. These, and many more Graph algorithms, can be built using user-defined or 

built-in semirings. 

1.2.7  Descriptors (GrB_Descriptor) 

The Descriptor type can be passed to a GraphBLAS operation to change the input or the 

output of an operation, such as transposing the input matrix. 
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1.2.8 Vectors (GrB_Vector) 

A vector is the traditional definition of a vector, which essentially corresponds to an array 

in C. Many of the previously defined operations described can be applied to Vectors. 

1.2.9 Matrices (GrB_Matrix) 

A matrix is the traditional definition of a matrix, which is essentially a set of rows and 

columns with values in those rows and columns. Many of the previously defined operations 

described can be applied to Matrices. 

1.3 TriPoll Introduction/Overview 

The TriPoll algorithm is an algorithm that surveys 3-cycles (triangles) in Graphs with 

embedded metadata and returns the metadata on those triangles. This metadata can take the form 

of anything from a simple number to a string of characters. The reference implementation [5] can 

be seen for more specific information. Triangle counting, a special case of the TriPoll algorithm 

where there is no metadata on the edges (or the edge metadata is 1), is already difficult to 

enumerate, and often times approximations are made instead. When working with metadata on 

edges though, finding every triangle and providing the metadata may be necessary.  

1.3.1 TriPoll Implementation in GraphBLAS 

The TriPoll Algorithm implemented in GraphBLAS takes in a Graph with Metadata on 

its edges, and returns the data of each triangle to the user, who can run a variety of different 

functions on it. The algorithm first reads in the problem, making sure that the input is valid, then 

finds the DODGr of the input Graph. The DODGr is an ordering of the vertices by Degree, 

which helps with computation time. Using the DODGr, the number of triangles is found through 

a Matrix Multiplication and a reduction operator. Then, the output matrix is used to find the 

nodes of the triangle. Currently, there are three implementations that have been created in 
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GraphBLAS to find the nodes of the triangles. Regardless of the method used, the metadata of 

the found triangle is extracted and given to the user, who can run any function they would like on 

them.  

 

  



10 

 

2. METHOD/STEPS 

2.1 Steps 

Here, the steps of the algorithm will be laid out. First, the input is checked to make sure it 

complies with the rules. Then, the DODGr is found in order to reduce computation time. Then, 

the number of triangles is found, and finally, the metadata of those triangle are found. 

The steps are as follows: 

1. Input Check 

2. DODGr find 

3. Triangle Count 

4. Triangle Metadata find 

2.1.1 Input Check 

2.1.1.1 Introduction 

The purpose of Invalid Input Validation is to make sure that the code is robust and 

responds to improper input properly, so the user can be informed of the issue quickly and easily. 

It also makes sure that the algorithm is able to properly free all of its data. This is especially 

important in GraphBLAS, as it allocates much of its initial data on startup. It also prevents the 

case where the algorithm is able to run, yet the invalid inputs produce the wrong results. Since 

the purpose of this code is to eventually be included in the LAGraph library, it is important that 

the code be robust and provide the correct results. 

2.1.1.2 Details 

Input validation is able to be done relatively simply because LAGraph already has a built-

in read function. This function takes in a Matrix Market File, and does all the relevant error 
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checks on it. LAGraph also has a flag that can detect if a Graph is directed, and essentially make 

it undirected by adding the missing edges. If the Matrix Market File does not exist, the function 

outputs a file not found error. If the file is not in the proper Matrix Market File format, the 

function will give an error and status number that can be used to find additional information. 

2.1.2 DODGr Find 

2.1.2.1 Introduction 

The DODGr of a graph is designed to take an undirected graph and make it directed by 

comparing the degrees (which is just the number of edges connected to that node) of the two 

nodes on each edge, and removing edges from nodes connecting high degrees to low degrees. 

This is done mainly for two reasons: reducing computation by removing additional ways to count 

triangles, and forcing triangles into a single, easy to find style. If a graph is left undirected, there 

are technically six ways that it can be counted, resulting in, at the very least, more computation 

than necessary, and at the worst an inaccurate triangle count. The DODGr forces a triangle (with 

nodes P, Q, R) to have edges (P, Q), (P, R) and (Q, R). Figure 2.1 below shows the form of all 

triangles in the DODGr Graph. This allows for only one way to count each triangle. 

 

Figure 2.1: DODGr Triangle Example 
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2.1.2.2 Details 

At a high level, the DODGr compares the degrees of the nodes on every edge, and 

removes the edge from the higher degree node to the lower degree node. In the case where the 

nodes have the same degree, the DODGr needs a determinate way to choose between the nodes. 

In the reference implementation of TriPoll, this was done by using a determinate hash function. 

In the GraphBLAS implementation, this was done by choosing the upper Triangular portion of 

the input Graph to break ties. Since Graphs with self-edges (edges that go to themselves) are not 

allowed (and are useless when working with triangles), this works as an ordering for all nodes. 

This selection of nodes is done by taking the row degree of each row (where the row degree is 

the number of entries in each row) in the initial input matrix, and then placing it in a vector. That 

vector is then placed on the diagonal of an empty matrix, creating a new matrix with values only 

on its diagonal. Then this new matrix is multiplied by the original input matrix of the Graph 

using the ANY semiring, which essentially ignores the value of the original input and only uses 

the value of the new matrix. Doing this once with the original matrix multiplied by the new 

matrix, and again with the new matrix multiplied by the original matrix, creates 2 matrices, one 

where each entry A (i, j) holds the degree of its row (i), and the other where each entry A (i, j) 

holds the degree of its column (j). Then, simply subtracting the entries in the matrices and 

dropping the negatives removes the edges from the high degrees to the low degrees. In order to 

handle the case where the degrees of the 2 nodes are equal (or, in this case, where the value after 

the subtraction is 0), the DODGr essentially keeps the edges where the node degrees are equal if 

they are in the lower triangular part of the matrices (which are just the edges where the row 

number is greater than the column). It then uses this new matrix as a mask (a mask only allows 

values that are in the mask to be seen in the matrix being masked, and drops all values that are 
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not in the mask) for the input matrix of the Graph. The code for finding the DODGr is shown in 

Figure 2.2 below: 

 

Figure 2.2: DODGr Code 

2.1.3 Triangle Counting 

2.1.3.1 Introduction 

Triangle counting is the lesser of the two main purposes of this algorithm. Triangle 

counting has a wide range of uses, especially in data science, where it can be used to find small, 

cohesive communities. Many algorithms that have been previously created focus solely on just 

this part, but this algorithm accomplishes a larger goal. Nevertheless, the code for triangle 

counting in particular demonstrates the fast yet less complex goal that GraphBLAS excels at. 

2.1.3.2 Details 

Due to the DODGr found in the previous Section, the algorithm for triangle counting is 

extremely easy and efficient. The code for triangle counting simply multiplies the DODGr by its 

transpose (the row and the columns are flipped) using the ANY_PAIR semiring (which is a 

normal matrix multiply where the values are considered to be 1). This gives a single edge of 
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every triangle, specifically the edge from P to R. Then, it reduces the output matrix into a single 

number by adding up all the numbers in the output matrix, and that number ends up being the 

triangle count. This code is efficient and extremely simple, as can be seen in Figure 2.3 below: 

 

Figure 2.3: Triangle Count Code 

2.1.4 Triangle Metadata 

2.1.4.1 Introduction 

Finding the Triangle Metadata is the main purpose of this algorithm. Triangle metadata 

provides much more information to the user than only the triangle count, and has an even wider 

range of applications in data science. This, of course, was the hardest part of this algorithm, but 

is also the most useful and differentiating part of this algorithm. There are three implementations 

used to find triangle data, two that use purely GraphBLAS (Methods 0 and 1), and another that 

exports the matrix to arrays (Method 2). 

2.1.4.2 Details for Method 0 

Method 0 uses iterators (which are currently not in the spec, but are included in 

SuiteSparse) to iterate through the matrix to find the nodes that make up a triangle. First, three 

iterators are created and initialized to the first row of the matrix. One of these iterators (iterator3 

for the code in Figure 2.4) is used to iterate across every row and column of the matrix. For 

every entry found by iterator3, the column number (j) and the row number (i) are extracted. 

Then, another of the three iterators (iterator1 in Figure 2.4) is set to iterate starting at row i. The 

final iterator (iterator2 in Figure 2.4) is set to the start iterating at the row corresponding to the 
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column of iterator3 (row j). Then, the two iterators corresponding to row i and row j (iterator1 

and iterator2 in Figure 2.4) are set to iterate across each of their respective rows. As they are 

iterating across their rows, the column values are being extracted and compared. If one of the 

iterator’s column values is lower than the other, then only that iterator is moved to the next 

column, and this continues until one of the two iterators reaches the end of the its row. A triangle 

is found when the two iterators are at the same column value. This is because, using iterator1, 

there is a known edge (i, j). Using iterator2, there is another edge (j, j2). Using iterator3, there is 

a final edge (i, j1). If j1 = j2, then a triangle has been found, where P = i, Q = j, and R = j1 = j2. 

After a triangle is found, the metadata at each of the edges is extracted, and the metadata along 

with the nodes for the triangle are given to the user defined function. After either one of the 

iterators reaches the end of the row, the iterator used to iterate across the entire matrix (iterator3 

in Figure 2.4) is moved to the next column value, and the process is repeated. When the iterator 

reaches the end of the row, it is moved to the next row until the entire matrix has been iterated 

across. The code for Method 0 is shown in Figure 2.4 below: 
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Figure 2.4: Triangle Metadata Method 0 Code 
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2.1.4.3 Details for Method 1 

Method 1 uses only GraphBLAS available in the spec to achieve the goal of finding the 

nodes of the triangles, and returning the metadata on the edges. The principle used in this Section 

to find the metadata comes from the output matrix of the Triangle Count. The Triangle Count 

output has a single edge of every triangle, and that edge is always the edge from P to R. Since the 

orientation of all the triangles is known due to the DODGr, this information can be used to find 

the missing node, and extract the data. Namely, due to the DODGr, there are 3 edges specifically 

in the order ((P, R), (P, Q), (Q, R)) corresponding to every triangle. Since the P and R nodes for 

the triangle are known, only the Q node need be found. In the DODGr matrix, the overlap of the 

outgoing nodes P, and the incoming nodes of R, is the value of the Q node. The outgoing edges 

of P are the row vector corresponding to P, and the incoming edges of R are the column vector 

corresponding to R. Everywhere in the triangle count output matrix where there is a value, the 

column and row vectors of the DODGr are extracted (for example, for the value at (1,2), row 1 

and column 2 are extracted from the DODGr). Then, an eWiseMult (which finds the intersection 

of two vectors vectors) is applied to the column and row vectors, and wherever that intersection 

is, the missing Q value of the triangle is found. Then, the data can be extracted and given to the 

user so they can run the user defined function. The code for the algorithm is shown in Figure 2.5 

below: 
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Figure 2.5: Triangle Metadata Method 1 Code 

2.1.4.4 Details for Method 2 

Method 2 extracts the DODGr matrix to multiple C arrays using the export command in 

GraphBLAS. Specifically, it exports the matrix in the CSR format. In the CSR format, there are 

three arrays used to represent the matrix: indptr, indices, and value. The indptr array is an array 

of size number of rows+1, where the index of this array represents the current row, and the value 

at the index represents the starting index in the indices array that correspond to the columns of 

the current row. The indices array is an array of numbers where each value represents the column 
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to a corresponding row. Using indptr, the starting index and ending index of the columns 

corresponding to a row in the indices array can be found. The values array represents the value 

corresponding to the row and column index. The GraphBLAS C API [2] contains more 

information on the details of the export command and the CSR format. The idea is to use the 

previously found DODGr, and export it to the 3 arrays mentioned above. The code is shown in 

Figure 2.6 below: 

 

Figure 2.6: Triangle Metadata Method 2 Code 
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As seen in Figure 2.6, the algorithm starts with a loop with n iterations, where n is the 

number of rows in the matrix. The next loop uses z=indptr[i] as a start, and z=indptr[i+1] as an 

end. Here, z represents the index for the indices arrays corresponding to the current column. So, 

z=indptr[i] to z=indptr[i+1] represents the index of the columns corresponding to row i. In the 

code, the variable j represents the actual column value corresponding to the index z (using the 

indices array and z as an index). The variable p1 represents the starting index of the columns 

corresponding to when the row is the current column (so the row j). p1_end is the ending index 

of those same columns. Variable p2 represents the starting index of the columns corresponding 

to the current row (which is row i). Variable p2_end represents the ending index of those same 

columns. In the while loop, the i1 and i2 represent the actual columns corresponding to the 

index’s p1 and p2 respectively. At a high level, there is an edge from i to j, and also two other 

edges, one from j to i1, and the other from i to i2. If the nodes i1 and i2 were the same, then there 

would be a triangle ((i, j), (i, i1) (j, i1)), where the i-value corresponds to the P value, j 

corresponds to the Q value, and i1 (which equals i2 when there is a triangle) corresponds to the R 

value. This is precisely the function of the while loop in the code; it compares the value for i1 

and i2, and (since the columns are in order) increases the lower of the two. Whenever they 

happen to be equal, there is a triangle, so the algorithm gives the metadata and the nodes to the 

user defined function.  

 

 

  



21 

 

3. RESULTS 

3.1 Example Run of Algorithm 

Here, an example of the algorithm running is shown, with outputs provided at every step. 

The input Graph to be used in the example run is shown in Figure 3.1. The circles represent 

Nodes, and the numbers on the edges represent metadata. The number of triangles that should be 

found is 2. For this run, the user function that will be run on the triangles is a simple max 

function, which will return the max value of the metadata of the edges, which should result in a 

value of 3 for the triangle with nodes (1,0,2), and a value of 6 for the triangle with nodes (3,2,4). 

 

Figure 3.1: Input Graph used for Example Run 

The first step to test is the Input Check. Here, if an unsupported Graph is given as input, 

then TriPoll in GraphBLAS outputs an error. For the purpose of this demonstration, the input 

will be assumed to be valid. 
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The second step is finding the DODGr of the input Graph. The input Graph as a matrix is 

shown in Figure 3.2.  The matrix after applying the DODGr code (shown in Figure 2.2) is 

included in Figure 3.3. The matrix in Figure 3.3 is shown in the traditional Graph form in Figure 

3.4. In Figures 3.2 and 3.3, (0,2) represents an edge from Node 0 to Node 2, and the number 

beside it (2 in this case) represents the metadata on that edge. As can be seen in Figure 3.4 and 

3.3, the triangles are in the proper form for the DODGr, as described in Section 2.1.2, where 

nodes 1 = P, 0 = Q, and 2 = R for the first triangle, and nodes 4 = P, 3 = Q, 2 = R for the second 

triangle. 

 

Figure 3.2: Input Graph as a matrix 

 

Figure 3.3: Input Graph DODGr 
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Figure 3.4: DODGr of Input Graph 

For the Triangle Count step, Figure 3.5 shows the output of running the code for Triangle 

Count shown in Figure 2.3. As mentioned in Section 2.1.3, summing the numbers in the output 

matrix should give you the number of triangles, which it does. 

 

Figure 3.5: Output of Triangle Count step 

For the Final Triangle Metadata Find step, Figure 3.6 shows the output of running the 

code for either of the three methods described in Section 2.1.4. The function, as mentioned 

above, simply outputs the nodes that make up the vertices of the triangle and the max value on 

the metadata on the edges. Of course, this is a simple example with simple numbers, but this can 

be run on Graphs with hundreds of thousands, or even millions, of triangles. 
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Figure 3.6: Output of Triangle Metadata Step 

3.2 Performance Testing 

The performance for of the three methods mentioned in Section 2.14 is shown below in 

Table 3.1. All three methods were run on the backslash TAMU server, which has a 12 core, 24 

thread Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz, and 768GB of RAM. Each was run 10 

times, and the average of the times was taken. The matrices being used are the bcsstk13.mtx file, 

and the cryg2500.mtx files included in LAGraph/data. The cvxbqp1.mtx and 

mawi_201512020000.mtx files from the SuiteSparse Matrix Collection were also included. Here, 

the printouts were disabled, as the number of triangles would overwhelm the terminal and be the 

limiting factor. The user defined function was the same as in the Example run (which was a 

simple max function). Also, time to read in Matrices were not included. An x means that the time 

was above 5 minutes, so the operation was canceled. 

Table 3.1: Performance of TriPoll in GraphBLAS 

 Jagmesh7.mtx 

(6,312 edges) 

bcsstk13.mtx 

(81,880 edges) 

cvxbqp1.mtx 

(299,968 edges) 

mawi_201512020000.mtx 

(74,485,420 edges) 

Method 0 Time (s) .001859 .02376 .03004 5.321 

Method 1 Time (s) .1661 5.162 111.4 x 

Method 2 Time (s) .001846 .002006 .02817 5.074 
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4. CONCLUSION 

4.1 Conclusions on Using GraphBLAS 

GraphBLAS, and specifically the SuiteSparse: GraphBLAS, provides a powerful and 

expressive way to write Graph algorithms. However, as can be seen in the performance 

difference in the three methods in Section 3.2, the best way to use GraphBLAS is dependent on 

what the user is looking for. Method 1 uses only in-spec (following the GraphBLAS standard 

[2]) GraphBLAS to find the triangle metadata. In-spec GraphBLAS does not have an obvious 

way to find the exact nodes of each triangles using fast, bulk operations. Instead, it requires using 

single operations, which is not the main purpose of GraphBLAS and not where it excels in terms 

of performance. Method 1 was filled with single operations (specifically extracting elements), 

and because GraphBLAS stores its data opaquely, operations that seem like they would take 

constant time may be in fact taking logarithmic time or even greater. Although Method 1 is the 

slowest of the three (by a large amount), it is also the least complex. If the user is looking for the 

least complex option while still providing respectable performance, then Method 1 is a good 

option. Method 1 demonstrates that complexity can be largely reduced while keeping 

performance respectable, and may be useful if the user is less concerned with performance. 

However, when looking for better performance, Method 2 or Method 0 are recommended. 

Method 2 exported the matrix into 3 arrays in CSR format, and found the nodes of the 

triangle that way. Method 2 still used GraphBLAS to find the DODGr of the Graph and the 

triangle count. It was only after these preliminaries were finished using GraphBLAS that the 

matrix was exported to finish the algorithm. This method represents another way GraphBLAS 

can be used for maximizing performance: using GraphBLAS where it can significantly reduce 
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complexity while keeping performance high, and then exporting the matrix to finish the 

algorithm.  The benefit of using this method is maintaining very high performance while still 

lowering complexity (in certain parts of the algorithm) by using GraphBLAS. The downside is 

that it is the most complex of the three methods.  

Method 0 was recently added to the SuiteSparse implementation of GraphBLAS. It 

follows a similar pattern to Method 2, except that now the entire process takes place in 

GraphBLAS (in-place) using iterators. This allows for a less complex method that uses less 

space than method 2, all while keeping performance similar to Method 2. Method 0 shows the 

versatility and performance of GraphBLAS (and specifically SuiteSparse: GraphBLAS), where 

complexity is reduced, but performance is kept similar to Method 2 while keeping everything in 

GraphBLAS. 

The goal of GraphBLAS is not necessarily to provide the best performance (although that 

may end up happening); rather, it is to provide strong performance while reducing complexity 

and keeping development time low. Method 1 is the least complex of the three methods, but is 

also noticeably slower than both Method 0 and Method 2. Method 2 is the fastest method, but is 

also the most difficult to both write and understand. Method 0 is a medium between the two 

methods. It is similar to Method 2 in that performance is very strong, but it is also similar to 

Method 1 in that it is purely in GraphBLAS, and it is easier to understand and write than Method 

2.  

Each of these Methods could be quite easily improved to increase performance through 

code optimization and parallelization. For example, the triangle counting code shown and used in 

this research is not the fastest, applying Wolf et al. [4] triangle counting code could be one of 

many ways to increase speed. That being said, the purpose of this research was not to maximize 
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performance, but rather to illustrate what GraphBLAS can offer for different users when trying 

to balance complexity and speed. GraphBLAS, as can be seen through methods 0-2, has much to 

offer users no matter if what they are looking for is performance, low complexity, or even a 

middle ground.  
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