
The GraphBLAS in Julia and Python:
the PageRank and Triangle Centralities

Michel Pelletier
CEO

Graphegon, Inc.
Corvallis, OR, USA

michel@graphegon.com

Will Kimmerer
Julia Lab

MIT
Lexington, KY, USA

kimmerer@mit.edu

Timothy A. Davis
Computer Science and Engineering

Texas A&M University
College Station, TX, USA

davis@tamu.edu

Timothy G. Mattson
Parallel Computing Lab

Intel Corp.
Ilwaco, WA, USA

timothy.g.mattson@intel.com

Abstract—The GraphBLAS is a standard API for expressing
Graphs in the language of linear algebra. The goal is to provide
high performance while exploiting the fundamental simplicity of
Graph algorithms in terms of a common set of “Basic Linear
Algebra Subprograms”. A robust parallel implementation of
the GraphBLAS C specification is available as the SuiteSparse
GraphBLAS library [1]. The simplicity of the GraphBLAS, so
apparent “in the math”, is diminished when expressed in terms
of a low level language such as C. To see the full expressive power
of the GraphBLAS, a high level interface is needed so that the
elegance of the mathematical underpinnings of the GraphBLAS is
clearly apparent in the code. In this paper we introduce the Julia
interface to the SuiteSparse:GraphBLAS library and compare it
to the Python interface [2]. We implement the PageRank and
Triangle Centrality algorithms with remarkably little code and
show that no significant performance is sacrificed by moving
from C to the more productive Python and Julia interfaces.

Index Terms—Graph Algorithms, Linear Algebra, Graph-
BLAS, Programmability, Python, Julia

I. INTRODUCTION

The GraphBLAS are a community [3] driven effort to define
a framework for implementing graph algorithms. They are
defined by two documents; a mathematical definition [4] and
the C language binding [5]. With the GraphBLAS as well as
the wider community of graph algorithm researchers, much of
the focus is on performance. Performance can be quantified.
Hence when comparing different systems for expressing graph
algorithms, runtimes and other performance metrics serve as
the basis of comparisons.

The GraphBLAS, however, are not motivated purely by
performance. They are also motivated by the mathematical
elegance of Linear algebra and the concise and sometimes
simple representation of complex algorithms [6]. This elegance
can be described as its programmability. Software researchers
don’t often discuss programmability. It is hard to quantify
and therefore difficult to turn into simple metrics that can be
compared between alternative systems. We submit, however,
that programmability is vitally important and a feature of graph
algorithm systems that deserves much more attention.

In this paper, we explore the programmability of the Graph-
BLAS through Julia and Python interfaces to the SuiteSparse
GraphBLAS [1] library. We implement and benchmark two
centrality algorithms: the well studied PageRank Centrality
and a novel algorithm for Triangle Centrality [7] against a

high-performance C implementation using large social graphs
available from the SuiteSparse Matrix Collection [8]. We show
the code for both languages side by side and invite the reader
to notice how clear the underlying algorithm is in the code
while retaining the performance of the underlying parallel C
implementation.

While much has been written about the GraphBLAS and the
Python Interface [2], [9], this paper is the first introduction
to the Julia Interface. Given the rapid growth in adoption
of the Julia programming language [10], this interface has
the potential to become an important tool in graph algorithm
research. Another key contribution of this paper is the Triangle
centrality algorithm. As far as we know, this is the first paper to
show how to implement this algorithm using the GraphBLAS.

II. THE GRAPHBLAS

A graph can be represented by a sparse array. In that
representation, the basic operations used to construct graph
algorithms are linear algebra operations over algebraic semir-
ings. The result is a duality between matrix multiplication and
graph traversal. This duality is shown in Figure 1 (source [4]),
where matrix vector multiplication takes a single step in a
Breadth First Search across a graph.

Fig. 1. Matrix Vector Multiplication is a single step in Breadth First Search

Consider a graph with n vertices. We can represent this
graph as an n-by-n adjacency matrix A. The rows and
columns of A correspond to the vertices while the non zero
elements of A represent the edges with aij as the weight of
the edge from vertex i to vertex j. Most graphs are sparsely
connected, hence the adjacency matrix for a graph is usually
sparse.

Consider a second k-by-n matrix B. We can use this matrix
to select a subset of k vertices from the graph. The elements
of B are 0 except for those selecting a vertex with bji equal
to 1 to select the ith vertex as the jth element of the vertex
subset. The familiar matrix product over real arithmetic B×A
returns the cost (using the edge weights from A) of reaching
the set of vertices adjacent to the vertices selected by B. This
fundamental operation can be used to construct a wide range
of graph algorithms.

The expressive power of the GraphBLAS is greatly en-
hanced through the use of algebraic semirings. The pattern of
operations from the basic linear algebra operations are used,
but the operators and interpretation of values in matrices and
vectors (the domain) can be changed using a semiring.

In a semiring, the add and multiply operators in conven-
tional matrix multiplication are replaced with an additive
monoid (an associative and commutative operator with an
identity value) and a multiplicative operator. The conventional
semiring is PLUS-TIMES. Determining the next level of nodes
in a breadth-first search (BFS) can be written as a matrix-
vector multiplication using the Boolean semiring (AND-OR),
or if the least-numbered parent of a node is needed, the MIN-
FIRST semiring can be used, where the FIRST operator is
f(x, y) = x. The FIRST operator is handy as a multiplicative
operator when computing the vector-matrix multiply y = x′A,
when the sparse adjacency matrix A is unweighted (or has
weights that should be ignored).

TABLE I
GRAPHBLAS OPERATIONS

Function Description Notation
GrB_mxm matrix-matrix mult. C〈M〉 = C�AB
GrB_vxm vector-matrix mult. w′〈m′〉 = w′ � u′A
GrB_mxv matrix-vector mult. w〈m〉 = w �Au
GrB_eWiseMult element-wise, C〈M〉 = C� (A⊗B)

set-intersection w〈m〉 = w � (u⊗ v)
GrB_eWiseAdd element-wise, C〈M〉 = C� (A⊕B)

set-union w〈m〉 = w � (u⊕ v)
GrB_extract extract submatrix C〈M〉 = C�A(i, j)

w〈m〉 = w � u(i)
GrB_assign assign submatrix C〈M〉(i, j) = C(i, j)�A

w〈m〉(i) = w(i)� u
GrB_apply apply unary op. C〈M〉 = C�f(A)

w〈m〉 = w�f(u)
GrB_reduce reduce to vector w〈m〉 = w�[⊕jA(:, j)]

reduce to scalar s = s� [⊕ijA(i, j)]
GrB_transpose transpose C〈M〉 = C�A′

GrB_kronecker Kronecker product C〈M〉 = C� kron(A,B)

Table I lists all GraphBLAS operations [5], where AB
denotes the multiplication of two matrices over a semiring.
Upper case letters denote a matrix, and lower case letters are
vectors. The � is a binary accumulator operator.

The mask is a fundamental part of GraphBLAS, written as
C〈M〉 = ..., allowing only selected parts of C to be updated.
For example, when traversing the nodes in a BFS, nodes that
have already been visited should be excluded. If q is a sparse
Boolean vector holding the set of nodes in the current level,

then all the nodes adjacent to any node in q is given by
q′A. To exclude nodes already seen, a mask can be used.
Suppose v is a vector of size n where vi = 0 if node i has
not been visited. If the mask mi is true, then this means the
ith entry of the result can be modified. In this case, the vector
v can be used as a mask, but it must be complemented, as
q′〈¬v〉 = q′A.

III. PYTHON AND JULIA GRAPHBLAS BINDINGS

Each GraphBLAS Operation is implemented in a language-
specific way in both Python and Julia. When it comes to
exposing a library to a language, a series of aesthetic decisions
are made to address the ergonomics of using functionality from
the perspective of a programmer that does not know the details
of the underlying library language.

In the case of SuiteSparse, which is written in C, decisions
were made as to how to best expose all the features of the
library in a way that comports with the expectations of Python
and Julia programmers. This consideration is often referred to
making code look “Pythonic” in Python and “Julian” in Julia.

For example, the C language has no optional function argu-
ments, so unused arguments must be passed as NULL. Optional
arguments are supported in both Python and Julia, and in both
cases reasonable defaults are chosen for programmers so they
do not need to consider which arguments should be NULL or
not.

Another consideration for programmers are choices of de-
fault operators for particular operations. The GraphBLAS
C API does not dictate which operations are the default
for a given operation and the operator argument is always
required when working with the C API. However this burden
is typically not expected to be carried in high level languages,
so binding authors make default choices.

Some choices are obvious, for example the default semir-
ing for Matrix Multiplication (GrB_mxm() and friends)
is plus_times, which mirrors the behavior found in
dense library like numpy. Another default choice is to use
plus_monoid when using GrB_reduce() functions.

In Table II we show most of the GraphBLAS operations in
both Python and Julia. In many of those cases, there is either a
functional API or an operator equivalent API for both Python
and Julia. This shows how different styles of expression can
be used by different programmers to suite their specific cases
and tastes.

A. Python

The Python programming language emphasizes simplicity
and readability, which aligns well with the high level usability
goals of the GraphBLAS. Like Julia, Python code tends to look
very similar to the linear algebraic description of an algorithm,
and they both share a spirit of clarity and fast experimentation.
Python provides this clarity and ease in exchange for some
run-time overhead, although this overhead is demonstrated to
be negligible for large graphs.

The core operations of the GraphBLAS express Linear
Algebra, and thus the algebraic operators of Python can be

TABLE II
GRAPHBLAS OPERATIONS IN PYTHON AND JULIA

Python Function Syntax Python Operator Syntax Julia Function Syntax Julia Operator Syntax

A.min_plus(B,out=C)
with FP32.min_plus:

C=A@B
C = mul(A,B,(min, plus)) C = *(min,+)(A,B)

A.eadd(B,out=C,mask=M)
with Mask(M):

C=A|B
C = eadd(A,B,mask=M) C = ⊕(A,B,mask=M)

A.emult(B,out=C,accum=FP32.min)
with Accum(FP32.min):

C=A&B
emul!(C,A,B,accum=/) C./=A .* B

A.assign(B,slice(1,2),slice(3,4) A[1:2,3:4]=B setindex!(A,1:2,3:4,B) A[1:2,3:4]=B

A.assign(B,mask=C) A[C]=B setindex!(A,B,mask=C) A[mask=C]=v

A.assign_row(1,v) C[1]=v setindex!(A,1,:,v) A[1,:]=v

A.assign_col(1,v) C[:,1]=v setindex!(A,:,1,v) A[:,1]=v

A.extract_row(1,out=v) v=C[1] v = getindex(A,1,:) v = A[1,:]

A.extract_col(1,out=v) v=C[:,1] v = getindex(A,:,1) v = A[:,1]

A.assign_scalar(42,slice(1,2)) A[1:2]=42 setindex!(A,1:2,:,42) A[1:2,:] = 42

A.apply(FP64.abs) A.abs() map(abs,A) abs.(A)

A.reduce_vector(FP64.min) N/A reduce(min,A,dims=1) N/A

A.reduce_float(FP64.min) N/A reduce(min,A) N/A

used to express mathematical formula naturally in code. For
those who do not prefer operator-heavy code, there is also a
“functional” API that eschews syntactic operators, trading off
a bit more typing for less cryptic code.

Of course, there is no accounting for taste, and one person’s
elegant expression is another’s inscrutable mess. For this
reason Python (and Julia) provide multiple ways to express
the same GraphBLAS operation as shown in Table II. This
table and the code examples below it highlight how remarkably
similar the two languages are at a syntactic level, and how they
can both provide multiple ways to express algorithms using
both functional and operational paradigms.

Some common criticisms of the Python programming lan-
guage is that it is slow, and in the most literal sense this is
true. Many languages, including Julia, handily beat Python
in common code benchmarks because Python lacks some of
the advanced features of these other languages, like native JIT
compilation, that can generate machine code many times faster
than the interpreted bytecode of Python.

However, Python often makes the pragmatic decision to
defer work to lower level functions written in faster “bare
metal” languages like C. The extremely popular numpy li-
brary for example, provides high performance dense matrix
functionality by exploiting existing high performance BLAS
libraries. In this sense, Python is simply used as a job scheduler
for underlying work-efficient libraries.

This approach is exactly how pygraphblas is implemented:
it utilizes the SuiteSparse:GraphBLAS library [1], [11] to
provide a high performance, parallel asynchronous implemen-
tation of the underlying functionality. As graphs get larger, the
amount of time spent “in Python” vanishes towards insignifi-
cant noise, as the bulk of the execution time is spent in kernels

inside SuiteSparse.
Research and development of the GraphBLAS in the Python

community is very active, and there are now two libraries
that utilize SuiteSparse:GraphBLAS with differing syntax and
semantics. This paper covers the pygraphblas library, but there
is also a library called grblas [12] whose syntactic variations
are not described in this paper, but for which all GraphBLAS
related concepts will still apply. It’s worth noting that the
authors of both bindings collaborate on a shared low-level
dependency pacakage to SuiteSparse:GraphBLAS [9].

B. Julia
The Julia programming language provides the high-

performance of statically-typed languages with the expressive-
ness of dynamically-typed scripting languages. Julia is well
positioned as a GraphBLAS interface for multiple reasons.
From the perspective of a library author calling out to C and
Fortran libraries can be done with no additional glue code
and low overhead. From a users perspective Julia’s Unicode
support, syntactic macros, and multiple-dispatch paradigm
help present a GraphBLAS interface which is readable, dis-
coverable, expressive, and composable.

Multiple dispatch is the core enabling feature of the Graph-
BLAS interface. There are significant performance implica-
tions of multiple dispatch, allowing function calls whose
argument types can be statically inferred to be efficiently JIT
compiled by LLVM. In this case, the real benefits of multiple
dispatch are not in performance, which is handled entirely by
SuiteSparse:GraphBLAS, but are instead be found in the user
facing interface.

We will illustrate these benefits by example with the Julia
Base.map function. The first function signature is quite sim-
ple, Base.map(f, A) which takes two untyped arguments:

an operation of some sort, and something on which to apply
that operation. A generic fallback method like this one is a
common idiom in Julia. We can define other methods for this
function, such as Base.map(f, A::AbstractArray).
When map is called and A is a subtype of AbstractArray
Julia will dispatch to that specific definition, or a more specific
one.

This allows us to define map methods which call the
correct GraphBLAS GrB_apply functions. For instance,
Base.map(op::BinaryOp, x, A::GBMatrix),
Base.map(op::BinaryOp, A::GBMatrix, x), and
Base.map(op::UnaryOp, v::GBVector) illustrate
the use of multiple dispatch to extend existing functions onto
new types. Extending existing types with new functions is
achieved in the same fashion, by defining a generic function,
which can optionally have type specific behaviors.

For an end-user, the first noticeable benefit is discoverability.
The Julia standard library Base provides a powerful but
relatively small set of verbs, including functions like reduce,
and map as well as operators like * and /. A good example
of this is the to_numpy function from the Python interface,
used to construct a NumPy array from a GraphBLAS matrix.
In Julia the equivalent would be Matrix(A::GBMatrix)
since we are free to extend the constructors of Matrix.

Multiple dispatch, and other Julia language features like
broadcasting, make simple operations succinct and readable.
For instance, C .+= abs.(A' .- B) additively accumu-
lates |AT − B| into C. More complex expressions involving
masks can be constructed using operators in their prefix form
such as -(A, B, mask=M).

For more complex expressions Julia has first-class
support for macros, which enable an experimental in-
terface virtually identical to the GraphBLAS notation.
@gb C(M) = C + A max.+ B executes the equivalent
Julia code with virtually no overhead while matching the
algebraic notation up to parentheses instead of brackets.

The final, and most key benefit of the Julia package is
composability. GBMatrix is a subtype of AbstractArray.
That means it will work with any function that accepts
AbstractArray arguments, as well as any which accept
Julia’s existing SparseMatrixCSC. This includes virtually
the entire Julia ecosystem, including sparse solvers from
SuiteSparse and MKL Pardiso.

The Julia package SuiteSparseGraphBLAS.jl con-
tains all basic functionality illustrated in this paper while
GraphBLAS.jl will accumulate algorithms in a similar
spirit to LAGraph as well as close integration with other
packages. GraphBLAS.jl is in active iteration, while
SuiteSparseGraphBLAS.jl is converging on a stable
release with the potential to become a recommended default
sparse package for Julia.

IV. PAGERANK

PageRank is a link analysis algorithm that ranks vertices in
a graph according to the rank and number of their incoming
links. This creates an iterative recursive definition, where ranks

in a vector are multiplied against a graph until they converge
to within a certain limiting threshold of rank change. While
many implementations exist that do not use linear algebra,
mathematically PageRank has a natural Linear Algebra for-
mulation and this is exploited by the GraphBLAS to make a
simple algorithm that competes well against even hand-tuned
parallel C code [13].

The PageRank kernel (PR) computes a measure of the
importance (rank) of each vertex in a graph based on the
rank of the nodes connected to the vertex. For a graph with
n vertices it starts with the PageRank vector r of length n
initialized to a small positive number (usually 1/n) and then
updates the vector according to the recurrence relation:

rk(v) = (1− d)/n+ d
∑
u 6=v

(rk−1(u)/dout(u))

where v and u are vertices, d is a damping factor set equal to
0.85 and dout is a vector for the out degree for each vertex. The
GAP benchmark suite requires an implementation to iterate
until the sum of the absolute values of the differences of two
successive iterations is less than 10−4.

In general, PageRank is a kind of Centrality Algorithm, as
it ranks vertices according to its specific notion of importance.
There are many other types of centrality algorithms, but few
of them are studied quite as deeply as PageRank. By contrast,
there is a new kind of centrality algorithm developed by P.
Burkhardt [7] called Triangle Centrality that we will explore
next.

V. TRIANGLE CENTRALITY

Centrality is a way to measure the importance of vertices in
a graph. While PageRank is one of the best known centrality
measures, there many other ways to quantify centrality. A
relatively new centrality measure is the Triangle Centrality [7].
It defines the importance of a vertex based on the concentration
of triangles in the immediate neighborhood of the vertex. More
specifically, it measures the sum of triangle-counts for a vertex
and its neighbors, normalized by the total number of triangles
in a graph. Unlike Betweeness Centrality, it does not require
all the shortest paths (or a large sample of shortest paths) and,
unlike PageRank, it is a direct rather than iterative method.

Triangle Centrality is defined in [7] as follows. Given an
undirected graph G = (V,E), with n = |V | vertices and
m = |E| edges, where N(v) is the neighborhood set of v,
N∆(v) is the set of neighbors that are in triangles with v,
and N+

∆(v) is the closed set that includes v, then the triangle
centrality for v, where ∆(v) and ∆(G) denote the respective
triangle counts of v and G, is:

TC(ν) =

1
3

∑
u∈N+

∆(ν) ∆(u) +
∑
w∈(N(ν)/N∆(ν))

∆(w)

∆(G)

This equation can be cast into a Linear Algebraic formulation
based on the adjacency matrix, A, of G. For an undirected
graph such as G, the adjacency matrix is symmetric. The
matrix product A × A returns a matrix with the two-hop

1 def PR(A, dout, damping=0.85, itermax=100, tol=1e-4):
2 # A: transpose of adjacency matrix
3 # dout: vector of out-degree of A
4 n = A.nrows
5 t = Vector.sparse(FP64, n)
6 r = Vector.dense(FP64, n, fill=1.0 / n)
7 d = dout / damping
8 dmin = Vector.dense(FP64, n, fill=1.0 / damping)
9 d.eadd(dmin, FP64.max, out=d)

10 teleport = (1 - damping) / n
11 for i in range(1, itermax):
12 t, r = r, t
13 w = t / d
14 r[:] = teleport
15 A.plus_second(w, out=r, accum=FP64.plus)
16 t -= r
17 t.abs(out=t)
18 if t.reduce_float() <= tol:
19 break
20 return r

1 function PR(A, d, damping=0.85, itermax=100, tol=1e-4)
2 # A: transpose of adjacency matrix
3 # d: vector of out-degree for A
4 n = size(A, 1)
5 t = GBVector{Float64}(n)
6 r = GBVector(n, 1.0 / n)
7 d = d ./ damping
8 dmin = GBVector(n, 1.0 / n)
9 eadd!(d, d, dmin, max)

10 teleport = (1 - damping) / n
11 for j in 1:itermax
12 t, r = r, t
13 w = t ./ d
14 r[:] = teleport
15 mul!(r, A, w, (+, second), accum=+)
16 eadd!(t, t, r, -)
17 map!(abs, t)
18 if reduce(+, t) <= tol
19 break
20 end
21 end
22 return r
23 end

Fig. 2. PageRank in Python and Julia

paths in the graph (the wedges in the graph). If you take the
intersection of the two-hop matrix) with the adjacency matrix
(the one-hop paths) you get the matrix of triangles T = A2◦A
where ◦ is the Hadamard product. If I is the identity matrix,
1 is a dense vector of ones, and Ť is the Boolean analog of
T (all zeros other than defined elements which are equal to
1), we compute the vector of triangle centrality measures for
each vertex.

c =
(3A− 2Ť + I)T1

1TT1

From this equation, we have a straightforward algorithm
that can be implemented using the GraphBLAS (Algorithm 3
in [7]).

Algorithm 1 Triangle Centrality
1: procedure TC(A)
2: T ← A2 ◦A
3: T̂ ← binary matrix of T
4: X ← 3A− 2T̂ − I
5: y ← T1
6: k ← 1Ty
7: c← 1

kXy
8: return c

Algorithm 1 is expressed in both Python and Julia in
Figure 3. Two versions of the algorithm are provided, one
is a straightforward translation of the above formula and
the other uses SuiteSparse specific optimizations to improve
performance. In Section VI we discuss these optimizations,
which complicate the algorithm slightly but provide improved
performance, particularly for large graphs.

VI. SUITESPARSE OPTIMIZATIONS

Mapping the mathematical formulation of Linear Algebra
to the GraphBLAS is straightforward. It does not always
give SuiteSparse enough information to deliver maximum
performance. A simple implementation of an algorithm can be
written quickly, but to achieve the best results it often helps to
consider variations that make algorithms more work efficient.

A particular optimization applied when an operation on a
matrix is structural (i.e., the existence of an edge, not its
weight, is relevant) is to never load its value, saving many
memory loading cycles. The work of structural operations
becomes only that “of the indexes” and SuiteSparse can
leverage this to skip work and short-circuit computational
paths.

In Figure 3 we show an updated version of the Triangle
Centrality algorithm using these SuiteSparse optimizations. An
example is the use of the plus_pair and plus_second
semirings instead of the default semiring plus_times. Be-
cause the multiplication operation is not necessary for triangle
counting, only the sum, the times operator can be replaced
with the more efficient pair and second.

The pair operator returns 1 when an edge is present in
both the left and right operands of a matrix multiplication.
Since only knowledge of the existence of the “pair” is nec-
essary to count the triangular edge, there is no need to load
or multiply the edge weights. For the operator second, the
value to be summed is taken from the second operand of
the matrix multiplication. Often this is useful when the left
operation is a binary, or structural, and it is being used to
match up with values in the right operand, which in the case
of triangle counting contains the current count for an edge.

In addition, it is not necessary to compute all of T. Only
the lower triangular part is needed.

1 def triangle_centrality1(A):
2 T = A.mxm(A, mask=A, desc=ST1)
3 y = T.reduce_vector()
4 k = y.reduce_float()
5 return (3 * (A@y) - 2 * (T.one()@y) + y) / k
6

7

8 def triangle_centrality2(A):
9 M = A.tril(-1)

10 T = A.plus_pair(A, mask=M, desc=ST1)
11 y = (T.reduce_vector() +
12 T.reduce_vector(desc=T0))
13 k = y.reduce_float()
14 T2 = T.plus_second(y) +
15 T.plus_second(y,desc=T0)
16 r = (3 * A.plus_second(y)) + ((-2) * T2) + y
17 return r / k

1 function triangle_centrality1(A)
2 T = mul(A, A', mask=A, desc=S)
3 y = reduce(+, T, dims=2)
4 k = reduce(+, y)
5 return (3 * (A*y)) - 2 *(one.(T)*y) + y) ./ k
6 end
7

8 function triangle_centrality2(A)
9 M = tril(A, -1)

10 T = mul(A, A', (+, pair), mask=M, desc=S)
11 y = reduce(+, T, dims=2) .+
12 reduce(+, T', dims=2)
13 k = reduce(+, y)
14 T2 = *(+, second)(T, y) .+
15 *(+, second)(T', y)
16 r = (3 .* *(+, second)(A, y)) + (-2 .* T2) + y
17 return r ./ k
18 end

Fig. 3. TriangleCentrality in Python and Julia with (bottom) and without (top) Optimizations

VII. PERFORMANCE RESULTS

Table III compares the performance of three different im-
plementations of the PageRank (PR) and Triangle Centrality
(TC) algorithms, on an Intel® Xeon® E5-2698 v4 CPU with
20 hardware cores. The same compiler (gcc 10.2) was used,
and 40 threads were used for each method (the value returned
by omp_get_max_threads), with hyperthreading enabled.
SuiteSparse:GraphBLAS v5.1.5 [1], [11] was used.

For Triangle Centrality there are two versions of the algo-
rithm. TC1 is a straightforward translation of the mathematical
definition of Triangle Centrality using no SuiteSparse specific
optimizations. TC2 is optimized, computing just the lower tri-
angular part of T, and using a SuiteSparse specific optimized
semiring (plus_pair). These optimizations are discussed in
Section VI.
• LAGraph [14], using the C API of GraphBLAS.
• pygraphblas with Python 3.8, presented in Section III-A.
• SuiteSparseGraphBLAS.jl with Julia 1.6, presented in

Section III-B.
The results show that both the Julia and Python interfaces

add little overhead compared to C code from LAGraph [14],
since the bulk of the work is performed by GraphBLAS.
The Python and Julia code just schedule the work of matrix
operations in an optimal order. Since they use the non-blocking
mode of SuiteSparse:GraphBLAS, where operations can return
in lazy fashion before being completed, they quickly schedule
operations and let SuiteSparse pick the best approach for
deferred work until the last possible moment.

The small cost associated with Python or Julia is balanced
by an increase in code readability, expressibility, and rapid
development. Users gain near-optimal performance, within a
few percent of state of the art hand-crafted C code, with
no compilation complexity or highly specific knowledge of
platform optimization.

This benefit should carry from one platform to the next.
A GPU implementation of SuiteSparse:GraphBLAS is in
progress, in collaboration with NVIDIA. Once completed, a

TABLE III
PERFORMANCE RESULTS (RUN TIME IN SECONDS)

Benchmark Skitter LiveJournal Orkut Friendster

Vertices 1,696,415 3,997,962 3,072,441 65,608,366

Edges 11,095,298 34,681,189 117,185,083 1,806,067,135

Triangles 28,769,868 177,820,130 627,584,181 4,173,724,142

PR:LAGraph 0.229 0.381 1.067 72.073

PR:Python 0.281 0.502 1.226 84.009

PR:Julia 0.293 0.499 1.215 84.50

TC1:LAGraph 0.520 2.072 18.765 424.425

TC1:Python 0.593 2.270 19.633 438.422

TC1:Julia 0.593 2.242 19.058 426.819

TC2:LAGraph 0.320 1.075 9.126 208.354

TC2:Python 0.367 1.172 9.385 213.996

TC2:Julia 0.351 1.138 9.271 213.622

GraphBLAS algorithm can be developed on a laptop and then
copied verbatim to a GPU with no changes needed to take
advantage of a completely different architecture.

VIII. CONCLUSION

In this paper we have introduced the Julia interface to the
GraphBLAS. This matches the expressiveness noted in our
earlier paper about the Python interface to the GraphBLAS [2].
We have shown that programmers can use Python and Julia
interfaces to the GraphBLAS without unduly sacrificing per-
formance, making graph algorithms expressed in the language
of linear algebra quicker to develop and easier to understand.

This work was supported by NVIDIA, Intel, MIT Lincoln Lab, IBM, the
National Science Foundation (1514406), and Julia Computing.

REFERENCES

[1] T. A. Davis, “Algorithm 1000: SuiteSparse:GraphBLAS: Graph
algorithms in the language of sparse linear algebra,” ACM Trans.
Math. Softw., vol. 45, no. 4, Dec. 2019. [Online]. Available:
https://doi.org/10.1145/3322125

[2] T. G. Mattson, M. Pelletier, and T. A. Davis, “Graphblas programmabil-
ity: Python and MATLAB interfaces,” in 2020 IEEE High Performance
Extreme Computing Conference (HPEC), 2020.

[3] “The GraphBLAS Forum,” http://graphblas.org/.
[4] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,

D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
J. Moreira, J. Owens, C. Yang, M. Zalewski, and T. Mattson, “Math-
ematical foundations of the GraphBLAS,” in IEEE High Performance
Extreme Computing (HPEC), 2016.

[5] A. Buluç, B. Brock, T. Mattson, S. McMillan, and J. Moreira, “The
GraphBLAS C API specification,” graphblas.org/, 2019.

[6] T. A. Davis, M. Aznaveh, and S. Kolodziej, “Write quick, run fast:
Sparse deep neural network in 20 minutes of development time via
SuiteSparse:GraphBLAS,” in 2019 IEEE High Performance Extreme
Computing Conference (HPEC), 2019, pp. 1–6.

[7] P. Burkhardt, “Triangle centrality,” https://arxiv.org/pdf/2105.00110.pdf,
April 2021.

[8] “Suitesparse matrix collection,” https://sparse.tamu.edu/.
[9] M. Pelletier, “pygraphblas: Python SuiteSparse:GraphBLAS binding,”

https://github.com/Graphegon/pygraphblas.
[10] “The Julia programming language,” https://https://julialang.org/.
[11] T. A. Davis, “Algorithm 10xx: SuiteSparse:GraphBLAS: Parallel graph

algorithms in the language of sparse linear algebra,” ACM Trans. Math.
Softw., 2021, (submitted).

[12] E. Welch and J. Kitchen, “grblas python wrapper around GraphBLAS,”
https://github.com/metagraph-dev/grblas.

[13] S. Beamer, K. Asanovic, and D. Patterson, “The GAP benchmark suite,”
arXiv:1508.03619, 2015.

[14] T. Mattson, T. A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira,
and C. Yang, “LAGraph: A community effort to collect graph algorithms
built on top of the GraphBLAS,” in Proc. GrAPL’19, Workshop on
Graphs, Architectures, Programming, and Learning, 2019.

