
®

IBM Software Group

© 2009 IBM Corporation

Concurrency in WTP
aka Multi-Threaded Issues in WTP

2009-02-26

IBM Software Group | Rational software

2

Agenda

 Why is this topic important?

 Correctness (Race conditions)

 Deadlock

IBM Software Group | Rational software

Why do we care about this topic?

 As the size of WTP based products increase and as our users adopt

more multi-core machines, WTP based products are hitting

concurrency problems more often

This leads to poor user satisfaction

Higher support costs

Higher development costs

 Concurrency problems are:

Devastating for our users. Recovery is often, kill the product.

Hard to debug

 Two main types of problems

Random failures (Race conditions)

Deadlocks (these are the easier ones!)

IBM Software Group | Rational software

Java Memory Model

 All modern computers have different levels of memory

 Registers

 L1 Cache

 L2 Cache

 L3 Cache

 Main memory

Speed Cost

IBM Software Group | Rational software

Which of these are Thread safe?

a) j = 5;

b) j ++;

c) If (a != null)a = new A();

d) None of the above

private int j;

private A a;

IBM Software Group | Rational software

Which of these are Thread safe?

a) j = 5;

b) j ++;

c) If (a != null)a = new A();

d)None of the above

IBM Software Group | Rational software

Synchronization

 Synchronization is about more than locking

 It is about multi-threaded visibility

 - In the absence of synchronization, the compiler, processor or

runtime can do downright weird things, with respect to visibility and

order of events.

 - “If multiple threads access some mutable state variables without

appropriate synchronization, your program is broken.” – Java

Concurrency in Practice

IBM Software Group | Rational software

Synchronization

Thread A

Thread B

Unlock

Lock

i = 5

j = i + 2

In this example i and j are instance variables.

int i;
int j;

IBM Software Group | Rational software

What to do? Use Immutable Objects

 1) Immutable objects are your

friends

 Never need to worry about

concurrency issues

 Final is also your friend

This is the number one best
technique for solving

concurrency problems!

IBM Software Group | Rational software

Use synchronization

IBM Software Group | Rational software

Use Synchronization

 It is not that expensive

While I measured a performance difference between using synchronized

code and unsynchronized code, the synchronized code was still very fast.

My test was to call the accessor 400 Million times. When synchronized it

took 8s (50 M requests/s) and unsynchronized it took .23 seconds (1.7 B

requests/second).

This was on a quad machine, where 4 threads where calling the accessor. I

was trying to generate lots of contention.

 But still, use when appropriate

IBM Software Group | Rational software

Use volatiles

 The Java Memory Model

 Volatile - write before subsequent reads

 Private volatile long _something;

IBM Software Group | Rational software

Use Atomics

 Atomics are like better volatiles (because they support some

compound operations like increment)

 Good to use when only a single variable is changing

IBM Software Group | Rational software

Use java.util.concurrent

 Java 5 added a number of concurrent classes

 They are very well implemented

 They are supported by the JVM and the JIT

 Use them

But only when needed. A concurrent collection (1,700 bytes) is much bigger

than a non concurrent collection (100 bytes). Avoid having a lot of small

concurrent collections.

IBM Software Group | Rational software

What is a Deadlock?

 Aka as a deadly embrace

Thread 1 wants a lock on A and B

Thread 2 wants a lock on B and A

 Thread 1 has a lock on A and is waiting for B

 Thread 2 has a lock on B and is waiting for A

 These threads will wait forever

 External Symptoms

The product appears hung, the UI threads may or may not be responding

Little or no CPU activity

Only solution is to kill the product

IBM Software Group | Rational software

Deadlocks

 Lots of things can trigger locks

Synchronized blocks

wait()

 ILock

Scheduling Rules

Jobs

 java.util.concurrent.locks

Workspace

Display

 The JVM only knows about some of these

IBM Software Group | Rational software

Deadlocks

 No magic here

 Locks need to be ordered

 If you always lock A then B then C you can’t hit a deadlock

 Use open calls to alien methods

An open call is one that doesn’t hold any locks

 If someone calls you and they are holding a lock (like a resource

change listener)

Be aware that you now have a lock

 If that is a problem, consider calling your unsafe code on another thread

 Document your locking

IBM Software Group | Rational software

Debugging a Deadlock

 You need to get the stack traces

Ctrl-Break on Windows (or SendSignal)

kill -QUIT <pid> on Linux

 Look at all the threads that have some “length” to them.

Look for threads that are blocked (B) or waiting (CW)

Usually the two to three longest threads are the cause of the deadlock

IBM Software Group | Rational software

Recap

 Use immutable objects

 Use the appropriate level of synchronization

Don’t leave ticking bombs

Don’t think just because you can’t reproduce the problem that there is no

problem

 Use the new java 5 concurrency support

 Only make Open calls

 Document your locking

 Further Reading

 “Java Concurrency in Practice” – Brian Goetz

